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Abstract. The exponential growth of bioinformatics in the healthcare domain has revolutionized

our understanding of DNA, proteins, and other biomolecular entities. This remarkable progress has

generated an overwhelming volume of data, necessitating big data technologies for efficient storage and

indexing. While big data technologies like Hadoop offer substantial support for big XML file storage,

the challenges of indexing data sizes and XPath query performance persist. To enhance the efficiency

of XPath queries and address the data size problem, a novel approach that is derived from the spatial

indexing method of the R-tre family. The proposed method is to modify the structure of leaf nodes

in the indexing tree to preserve XML-sibling connections. Then, new algorithms for constructing

the new tree structure and processing sibling queries better are introduced. Experimental results

demonstrate the superior efficiency of sibling XPath queries with reduced data sizes for indexing,

while other XPath queries exhibit notable performance improvements. This research contributes to

the development of more effective indexing methods for managing and querying large XML datasets

in bioinformatics applications, ultimately advancing biomedical research and healthcare initiatives.
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1. INTRODUCTION

XML documents store structured text data, also known as semi-structured data [40,41].
They have been popular for decades because of their flexible data structure and easy sharing
over the Internet. Usually, the XML documents used on the internet are not very large.
However, the rapid growth of the internet and biotechnology recently has produced very
large bioinformatics XML documents that can reach gigabytes, and terabytes [20]. Reputable
sources such as SRA (Sequence Read Archive), NCBI Genome, and Ensembl provide access
to such data, including decoded sequences. For example, on NCBI’s website, the data stored
in August 2019 was 6.2 terabases, statistics since 1982 show the amount of data doubled
every 18 months. Therefore, despite a lot of areas where XML documents are used to store
data, we focused our research and experimentation on one of the most prominent areas
recently in the creation of giant XML documents, Bioinformatics [21, 22]. Bioinformatics
XML documents contain definition data in the form of text tags, which create a flexible
XML structure that is rich and varied due to contributions from numerous independent
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Figure 1: XPath axis in 2-dimensional space

biological individuals and organizations [15,36,37]. Current research on bioinformatics XML
documents typically separates the data into two sources:

� The first source is data of tags and XPath queries can be used to get information on
the relationship among entries of the data.

� The second source is biological data, which can be sequences of DNA, protein, and
RNA. There are also numerous ad-hoc queries available, such as similarity search
queries.

In this paper, we will focus on the first data source and XPath queries [24, 25]. To
locate specific elements in an XML document, we use the positional path, which is an
expression that specifies how to navigate in an XML tree from one node to another. A
positional path consists of positional steps, each step consisting of the “axis”, “node”, and
“predicate”. To locate a particular node in an XML document [27, 28], we incorporate
multiple positional steps, each of which refines the search process. An axis indicates which
node is related to the current node, which should be included in the search [29,38,39]. The
XPath [1] specification lists a family of 13 axes, an axes-based query like this: descendant ::
b/followsibling :: [location()! = Last()]. XPath is designed to query XML documents and
retrieve data through elements (tags) based on a family relationship path (father, brother,
and child) or relative (ancestor, descendants, preceding, and following) among the elements.

In the 13-axis XPath queries, we found out the first concern that 46% (6/13 axes) are
siblings or derived from sibling axes. In the remaining 7 axes, there are some axes that
retrieve most of the XML data, such as the preceding or the following of an element, which
means almost half of the data size. According to Figure 1, we can see that the preceding or
following are impractical for bioinformatics large data because the data returned will be too
large to analyze. Therefore, instead of studying to improve the efficiency of all XPath query
axes as in recent studies, it would be better if we only focus on improving the efficiency of
commonly used axes such as the siblings, children, and ancestors, in which special attention
is paid to the sibling.

Next our concern is how to index such a large amount of data [16–19]. Those documents
can only be stored on multiple hard disks, or in a distributed storage system. To minimize
the number of times data needs to be fetched from the hard drive, indexing methods need
to be supported by querying methods to maximize the use of main memory, such as Cache
and Buffer. In addition, the indexing methods require that the resulting data match the
query request as much as possible to reduce post-processing costs. For example, the XPath
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queries extract all data with the same origin/sibling relationship of a type of White Mouse or
extract all data that are descendants of African pigs. With exceptionally large data sources,
traditional indexing methods can have the following problems, the first is the amount of data
that is indexed will be very large, even larger than the data source, and the second is the
amount of data generated by queries can also be too large to analyze.

Therefore, a new indexing method for bioinformatics XML data needs to solve two prob-
lems simultaneously: (1) To reduce data source size as well as not to generate too much of
the indexed data [23, 26]. (2) To optimize common XPath query performance on indexed
data [33,42]. The paper uses a method to reduce data source size by converting text data to
numbers and then proposes a new indexing tree structure by modifying the R-tree [2] struc-
ture optimized for sibling queries and some new query algorithms to enhance sibling-related
query performance. The proposed method has been implemented by modifying an original
R-tree representing the R-tree family. In the future, this approach can be extended to other
variants such as R*, R+ tree,.. similarly.

The paper covers the following content, Section 2 will present through recent studies
related to our research. Section 3 will present the proposed method and algorithms. Section
4 is the experimental results of the proposed method. Section 5 is the conclusion of the
paper.

2. RELATED WORKS

The XML semi-structured data model, like any structured data model, also includes
widely used proprietary query languages, namely XPath and XQuery [32, 34, 35]. XPath
serves as the fundamental form of XQuery and can work in two modes: sequential and
indexed. In sequential mode, XML data is queried without preprocessing and requires a
full data read [30, 31]. In indexed mode, XML data is preprocessed to build another data
structure for efficient querying, which also generates smaller output data like a compression
method and allows direct querying on output data without decompressing. This compression
method usually focuses on solving only the part of the descriptive data that makes up the
XML document structure.

The paper will seek to resolve the problem encountered on exceptionally large XML doc-
uments, here are some methods that have been implemented. XGrind [3] and Xpress [4]
are two compression methods for XML documents. XGrind replaces attribute and element
names with unique characters, while Xpress encodes XML document label paths into sepa-
rate segments using inverse math. Both approaches enable direct querying on compressed
documents, but they only handle simple path queries and exhibit a linear size ratio be-
tween compressed and original data, which limits their ability to efficiently support multiple
queries.

Hence, the approach XQzip was introduced by Cheng and NG [5]. XQzip employs the
Structure Index Tree (SIT) for the original XML document. On the other hand, XQueC
by Arion et al. [6] employs the structure summary tree for storing XML documents. These
techniques yield improved compression ratios and quicker query performance. To enhance the
efficiency of XPath queries, Arroyuelo et al. [7] introduced the concept of constructing a label
tree from the XML tree structure and subsequently employing the array bit index method for
compressing XML documents. The data segment is compressed through conventional means.
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In the method proposed by Qian et al. [8], the XML document’s structure is separated from
its content and compressed independently to optimize data transfer bandwidth and decrease
latency. However, queries are limited due to the poor number of indexing methods applicable
to text data. To overcome this limitation, the structural description by tags in the XML
document is converted into a digital order/coordinate form, enabling the application of
stronger indexing methods.

Dietz [9] introduced the initial approach that incorporates structured encoding tech-
niques alongside algorithms for tree traversal based on pre-order and post-order values. One
limitation of this approach is the need to repeatedly compute the pre-order and post-order
pairs whenever new data is introduced. To address this concern, Li and Moon introduced
XISS [10], which employs the B+-tree method for indexing both elements and attributes.
However, the query performance of this technique is not well due to numerous intermediate
results, and each time a new node is added, a complete reorganization becomes necessary.
XR-tree [11] is a new method that focuses on solving the problem with two lists of nodes
containing descendants and ancestors, and the task is to find parent-child pairs. XR-stack
algorithm improves B+-tree by using a list SL(N) containing elements Ei that are pointed to
by at least one entry m but not by the ancestors of N , and nodes are linked from left to right.
The size of SL(N) is difficult to estimate accurately due to the variety of XML documents,
but is expected to be larger than the original data file. XR-tree uses a structured join to
efficiently find elements with relationships between two data sets. Another approach is to
move tag names into 2D space using pre order and post-order for X and Y axes, respectively.
This approach divides the four main XPath query paths equally into four spaces, simplifying
node selection based on their relationships in space. Some studies have used R-tree methods
to index this data.

The R-tree is a widely used indexing method for multidimensional data, especially for
non-uniformly distributed data. It divides the data space into rectangles and allows for
overlapping, with each rectangle representing a Minimum Bounding Rectangle (MBR) con-
taining nodes of the tree. Algorithms designed for the R-tree are optimized for minimal
overlapping MBRs. The AR*-tree [12] is an improved algorithm from T.Grust [13] that
converts each entry in the XML document into n-dimensional space by splitting it into n
entries of 1-dimensional, creating a node group. Each entry contains index information in
only one dimension, and the algorithm chooses which dimensions are necessary for querying
while ignoring unnecessary ones. This method generates a large index file size due to the use
of many pointers. Therefore, with large XML documents, this method will create too large
an index size.

From the above methods, it shows that a general characteristic is that they have not
solved queries optimally by indexing and not optimized the size of the generated index file.
A balanced approach is necessary to optimize data size and ensure XPath query perfor-
mance. However, the existing researches mainly focus on small, randomly generated XML
documents. We see that research needs to focus on a prominent field where there is large
and exceptionally large XML data so that the evaluation results are practical and oriented.
In this paper, our research focuses on bioinformatics XML documents because they have a
large size and are very diversified.
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Figure 2: Generalized process model

3. PROPOSED METHOD BIOX-TREE

To make it easy for the reader to visualize, Figure 2 describes the general process of how
the indexing of a large bioinformatics XML document according to the proposed method,
called BioX-tree, is performed. The large bioinformatics XML document is converted into
2-dimensional space in Dietz [9] way. Then, these data is indexed to create an indexed data
file. From here based on this, it is possible to execute XPath queries.

3.1. Converts XML document to 2-dimensional spatial coordinates

Dietz’s method transforms the XML documents by extracting XML-tag locations and
converting them into spatial representations using Cartesian coordinates. An XML document
is described as a tree with a parent-child hierarchy, and then nodes are indexed with a value
pair based on first and second-order tree traversal algorithm, this value pair forms the NodeID
for each tag name [10]. However, using spatial indexing methods based on R-tree to index
the transformed XML data is more likely to experience problems:

First, it is the problem of overlap proportional to the scope of the query space. That
means, when a query has a large spatial scope, it is more likely to overlap with the node
spaces of the index tree (they also overlap). As a result, it takes more time to search the
tree, retrieve the data, and post-correct the returned data. Meanwhile, the XPath queries
after spatially being converted will be huge windows for the search, which will greatly affect
the performance of the queries. Figure 3 presents an XML document instance with a small
number of points representing XML data in a plane. Assuming we want to retrieve all
descendants of the current node E, we would need to use the query window {pre(E), ∞; 0,
post(E)} [14]. However, the necessary search area is the white rectangular region, with its
top-left corner at node E. Thus, the very large gray-shaded area in that query window is
redundant. Meanwhile, we easily see that the points distributed in the space are converged
in the middle and stretched infinitely.

Second, the XML data structure shows explicit and orderly relationships between ele-
ments such as father, child, and brother,... However after transformation, those relationships
are only shown in the distribution of the four regions as shown in Figure 3.

Finally, the R-tree will distribute the elements regardless of their relationship scattered
across the nodes of the tree. As a result, XPath queries executed on the R-tree will require a
lot of execution overhead and will result in redundant results. This will incur post-processing
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Figure 3: The spatial scope of the descendant query of E includes gray and white areas

costs to shorten the results.

According to our observations, the data is distributed on a linear axis like an airplane
wing. We tested various XML documents with a few hundred nodes to a few hundred
thousand nodes showing the same result. The reason may be: (1) The characterization of
the data after spatial transformation; (2) The number of XML element sibling relationships
is much more than the parent-child relationship. All the previous methods do not consider
these characteristics, they only focus on improving the R-tree structure to suit XPath queries.

3.2. BioX-tree index structure

Based on the above analysis, we construct an improved R-tree method that takes care of
data characterization and overcomes the disadvantages of XPath queries, named BioX-tree.
The BioX-tree applies the strategy of changing the structure of the leaf nodes and improves
the Insert/Split algorithms to maintain the connection between the elements in the tree for
sibling relationships in XML data. Meanwhile, the method minimizes the spatial distribution
effect on the queries and only increases the index tree size insignificantly compared to the
original R-tree.

We designed the BioX-tree index tree structure, the R-tree family. The tree must strictly
maintain the XPath sibling relationship between the elements so that sibling elements will
not be arbitrarily scattered across the index tree. Specifically, the leaf nodes of the BioX-tree
will contain only siblings of the same parent element in the original XML data. The sibling
elements in a leaf node will be arranged in the correct order from front to back, consecutively.
If there are multiple leaf nodes containing siblings of the same parent, each node will have
two pointers pointing to the other leaf nodes in the order that contains the previous and the
following siblings. As a result, the children of a parent element in the original XML data
are centrally distributed over a set of leaf nodes that are connected by 2 pointers on each
node. Thus, we can see that: (1) Adding 2 pointers per leaf node will not increase the node
size significantly over the overall tree nodes; (2) BioX-tree will easily find all sibling elements
only need any sibling element found previously on the BioX-tree. In the BioX-tree, each
leaf element/entry equates to a tag name position in the XML data; each entry consists of
5 attributes {pre(E), post(E), par(E), att(E), tag(E)}; each node contains many entries and
will have a size corresponding to 1 block on the hard drive. Similar to the R-tree, a non-leaf
node has the form (pointer, MBR), where the pointer refers to the child node. Unlike the



AN IMPROVED INDEXING METHOD FOR QUERYING BIG XML FILES 329

(a)

(b)

Figure 4: (a) Tree hierarchy of elements in rice DNA XML document. (b) leaf nodes are
linked on the BioX-tree
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R-tree, each leaf node has two pointers named the previous pointer and the next pointer
to connect with other leaf nodes that contain sibling elements in the previous or following
order.

For illustration, Figure 4(a) depicts the tree structure of an XML document containing
rice DNA data (referred to as X document). They are numbered in pairs of pre- and post-
tree traversal order. Figure 4(a) notes these two-value pairs on each tag name, respectively
pre-post. For example, the root tag will be noted as 1–31, where 31 is the total number of
X’s tag names. After indexing the transformation data (for identification, we use 1 traversal
value, pre-order, for each tag element), those elements will be stored in the leaf nodes of the
BioX tree, as shown in Figure 4(b).

Specifically, XML elements of the same origin (parent) will be stored in the same leaf
node. In the case of a leaf node whose number of entries exceeds the limit, that node will
be split into 2 and there will be 2 pointers connecting them to each other. This is to ensure
a connection between sibling elements is maintained. The arrows in brown indicate the
pointers that link a leaf node to its preceding and succeeding sibling nodes.

In this example, the siblings with pre-order tree traversal values of 21, 22, 23 are inserted
into the same leaf node in the XML document. When this leaf node becomes full, element
24 will be stored in a new leaf node. Two pointers are connected back and forth between
the two leaf nodes to maintain the connection of those sibling elements.

3.3. Spatial analysis of the BioX-tree

With the structural design of the BioX-tree as shown above, Figure 5 depicts the MBRs
of the leaf nodes of a BioX-tree in space. We recognize that MBRs of ancestral or parent
XML elements are always larger and also cover MBRs of descendants or descendants.

Figure 5 shows the leaf nodes of the BioX-tree in 2-dimensional space through the mini-
mum bounding rectangles (MBR). Where, R1 is the MBR of the sub-tags of the tags (2;5)
of Figure 4(a), likewise R2, R3 in Figure 5 are the MBRs of the sub-tags of the tags (7;9),
(11;14) in Figure 4(a), and similarly for smaller MBRs. From the above observations, we
propose theorems for the correlation between the MBRs (of the leaf nodes) of the BioX-tree
with the subtree of the XML tag when represented in the BioX-tree space.

Theorem 1 . Suppose in an XML document, the T tag is the parent of the t1, t2, . . . , tn
(sibling) tags. Then, in the BioX-tree space, the MBRs that bound the sub-trees of t1, t2, . . . , tn
will always be completely separate (do not intersect).

For instance, R1, R2, and R3 represent bounding rectangles of sub-trees that are con-
sistently distinct and arranged from left to right within the space depicted in Figure 2. To
establish this theorem, we can readily observe that the pre-order values of elements in the
Minimum Bounding Rectangle (MBR) for the left sibling’s sub-tree always have smaller
values than the pre-order values of elements in the MBR for the right sibling’s sub-tree.
Conversely, with post-order values, the values on the left are consistently greater than those
on the right. Consequently, the MBRs for sub-trees of sibling tags in the BioX-tree space
of XML documents are always separate. Hence, Theorem 1 demonstrates that grouping
sibling XML tags with the same parent into the same leaf node of the BioX-tree may not
significantly optimize the R-tree structure for queries. This observation has been supported
by experimental results presented in the paper on the BioX-tree. Our proof is based on
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Figure 5: MBRs of the leaf nodes in the BioX-tree

the observation of the geometrical distribution of the rectangles and the numbering rule for
traversing the tree. It can be explained more clearly by mathematical formulas, but we do
not present it in this paper.

Theorem 2 . Assuming an XML document where the T tag serves as the parent of sibling tags
t1, t2, . . . , tn. Within the BioX-tree space, excluding the MBRs of the subtree of the first sibling
(t1) and the last sibling (tn), the MBR encompassing t1, t2, . . . , tn will invariably enclose all
the MBRs of the subtrees of t1, t2, . . . , tn−1.

As an illustration, let’s consider the case where R encompasses R2 as well as R21, R22,
and R23. To establish this theorem, it becomes apparent that the pre-post values of t1 and
tn are positioned before and after the pre-post value of T , respectively. Hence, the pre-post
values within the subtrees of t1, t2, . . . , tn−1 evidently fall within the MBR range of both t1
and tn. Building upon Theorem 2, we can derive Consequence 3, which pertains to the query
algorithm for searching an XML tag within the BioX-tree structure. Our proof is based on
the observation of the geometrical distribution of the rectangles and the numbering rule for
traversing the tree. It can be explained more clearly by mathematical formulas, but we do
not present it in this paper.

Consequence 3. Assuming the process of locating a t− tag within the BioX-tree involves the
query algorithm identifying the pre-post value pair of t in both the MBRs of nodes R1 and R2.
If R1 is contained within R2, the algorithm will no longer need to traverse another subtree
whose MBR is also encompassed by R2 in order to find t. This is because it is guaranteed that
t belongs to the subtree of R1.

Based on the theorems and consequences presented, we have undertaken a redesign of the
BioX-tree algorithms in order to enhance query optimization and address inherent structural
limitations.
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3.4. Proposed algorithms

The above analysis helps us propose new insert and query algorithms. The goal of new
algorithms is to build BioX-tree up, increase XPath sibling query efficiency, and reduce
redundant tree-traversing steps due to the disadvantages of BioX-tree structure. Our new
algorithms are:

� Algorithm 1: insert(N,E) is used to insert a new element E into an existing index tree
or during the creation of a new tree. Unlike the original algorithm, this algorithm will
find (using Algorithm 2: find sibling node(N,E)) and insert into the leaf nodes that
contain the siblings of that element. Moreover, this algorithm will consider whether
the element is the first or the last sibling. If so, the nodes that contain that element will
only have a maximum capacity of m (minimum) elements instead of M (maximum)
elements. As a result, the size of the MBR bounding that node will be smaller and can
reduce the possibility of intersecting with other MBRs of the tree. These changes are
due to Theorem 1.

� Algorithm 3: find node(N,E) is improved from the original algorithm to find el-
ements in the tree. Unlike the original algorithm, this algorithm avoids redundant
searches in subtrees thanks to Theorem 2 and Consequence 3. Specifically, while a
query looks for element E if a tree traversing step continues with nodes R and R inside
R1, that query will skip the other subtrees of R1 and store the value R. At any internal
node:

– If there is R containing R1, subtree will be ignored.

– If there is R in R1, save R to compare with the next step, continue to browse R.

� New XPath query algorithms including Algorithm 4: sibling query(N,E, RESULT)
and Algorithm 5: children query(N,Q, RESULT) are completely newly built be-
cause they will use pointers to search. As a result, the algorithm avoids most of the
overlapping between the MBRs of the index tree. Other XPath query algorithms such
as following query, preceding query, ancestor query are changed thanks to
the improved find node(N,E) algorithm. However, since these changes are not sig-
nificant, they will not be covered in this paper.

Method sibling query complexity is calculated according to the number of nodes that
must be retrieved. We have, the complexity for the query to find 1 element of the R-tree:

� In the best-case scenario, the time complexity for our algorithm is O(logmN), where
N represents the number of nodes in the tree, and m represents the number of entries
in a node.

� The worst case is O(N).

� The average case is O(m logmN).

So the R-tree’s sibling query is x× y window:
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Algorithm 1 Insertion algorithm

1: procedure insert(N,E)
2: Input: Node N containing entry E
3: Output: Entry E inserted into the tree
4: Begin
5: SiblingNodes = find sibling node(N,E)
6: if (SiblingNodes is found) then
7: if (SiblingNodes is the first node or last node) then
8: FullNodeCapacity = m
9: else

10: FullNodeCapacity = M
11: end if
12: if |SiblingNodes| < FullNodeCapacity then
13: insert new context node E into SiblingNodes
14: else
15: create new leaf node(E)
16: end if
17: else
18: create new leaf node(E)
19: end if
20: create pointers(pre, post, SiblingNodes)
21: End
22: end procedure

� In the best-case scenario, the time complexity of the algorithm is O(x× y × logmN),
where N denotes the number of nodes in the tree, m represents the number of entries
in a node, and x and y are additional factors contributing to the computation.

� The worst case is O(x× y ×N).

� The average case is O(x× y ×m logmN).

BioX-tree’s sibling query has complexity:

� In the best-case scenario, the time complexity of the algorithm is O(k+logmN), where
N represents the number of nodes in the tree, m represents the number of entries in a
node, and k denotes the number of siblings found in the query.

� The worst case is O(k +N).

� The average case is O(k +m logmN).

BioX-tree’s query algorithm did not use the query window to find sibling elements.
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Algorithm 2 Find sibling node algorithm

1: procedure find sibling node(N,E)
2: Input: Current node N , entry E to find sibling.
3: Output: Node N containing siblings of entry E
4: Begin
5: if (N is NOT a leaf) then
6: for each entry E′ in N whose MBR intersects with the MBR of entry E do
7: find sibling node(N ′, E)
8: end for
9: else

10: if (N contains an entry that is a sibling of E) then
11: Return N
12: end if
13: end if
14: End
15: end procedure

Algorithm 3 Find node algorithm

1: procedure find node(N,E)
2: Input: Current node N containing entry E
3: Output: Node N containing entry E
4: Begin
5: min N = N
6: if (N is not a leaf) then
7: for each entry E′ of N whose MBR of N ′ intersects with the MBR of E do
8: if (N ′ intersects or is inside min N) then
9: Invoke find node(N ′, E) where N ′ is the child node of N pointed to

by E′

10: end if
11: end for
12: else
13: if (N contains an entry E) then
14: Return N
15: end if
16: end if
17: End
18: end procedure
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Algorithm 4 Sibling query algorithm

1: procedure sibling query(N,E,RESULT)
2: Input: Current node N (when starting, N will be the root node) and entry E to

find siblings
3: Output: List RESULT containing all entries that are siblings of entry E
4: Begin
5: Call find node(N,E) to find node N ′ containing entry E
6: if (node N ′ is not NULL) then
7: Get entries E′ in N ′

8: for each entry E′′ in E′ do
9: insert E′′ into RESULT

10: end for
11: if (following siblings pointer F is not NULL) then
12: Call following sibling query(N,F,RESULT)
13: end if
14: if (preceding siblings pointer P is not NULL) then
15: Call preceding sibling query(N,P,RESULT)
16: end if
17: else
18: Not found
19: end if
20: End
21: end procedure

Algorithm 5 Children query algorithm

1: procedure children query(N,Q,RESULT)
2: Input: Current node N (when starting, current node will be the root node), query

window Q.
3: Output: List RESULT containing all children of entry E
4: Begin
5: if (N is not a leaf) then
6: Find entries E′ in N with MBR intersects with MBR of Q
7: for each entry E′′ in E′ do
8: children query(N ′, Q,RESULT) // where N ′ is a child node of N indicated

by E′′

9: end for
10: else
11: Find entries E′′ in N with MBR intersects with MBR of Q
12: sibling query(N,E′′,RESULT)
13: end if
14: End
15: end procedure
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Figure 6: Model of experiment

4. EXPERIMENTS

4.1. Model and data of experiment

To test the proposed methods, we will choose large bioinformatics XML documents that
contain typical data and convert them into multi-record tabular data. Each record will have
five columns describing a tag with its spatial coordinates. We will evaluate the reduction
in size due to the transformation and construct index trees using R-tree and BioX-tree
methods. XPath query algorithms will be executed on these index trees to measure speed
efficiency. The effectiveness achieved will be evaluated by comparing the results of multiple
experiments, and the model of the experiment is shown in Figure 6.

To evaluate the practical effectiveness of the method, we selected bioinformatics XML
documents that contain completely different structured and characteristic biological data.
We utilized four bioinformatics datasets from reputable sources, covering different biological
characteristics such as DNA, protein, and subspecies. The datasets are DNACorn (3.06 GB)
and DNARice (15.8 GB) which provide information on corn and rice DNA, respectively,
obtained from NCBI. Swissprot (3.9 GB) is a collection of functional information on proteins
with precise, consistent, and comprehensive annotation from Uniprot, representing all protein
descriptions. Allhomologies (1.26 GB) contain information on tree subspecies within the
mouse family, obtained from Ensembl. We ran the test on a computer configuration CPU
Intel Xeon E5520 - 2.7 GHz and RAM 20 GB, installed Windows Server 2016 Enterprise.

4.2. Experimental scenario

On each XML document, we randomly select 200 tag names and then execute XPath
queries according to these tags, which also means finding tags with a familiar relationship
with the selected tags. The queries are performed on a part of an XML document (XML
small tree) of increasing size with the number of tag name/node of 20000, 40000, 60000 and
80000 tags, respectively. Due to the repetitive nature of the structure, we do not experiment
on the entire XML document because unnecessary program runtime will be required. For
each XPath query type, the average hard disk hits of 200 random queries per type will be
used to evaluate the method’s performance. In this experiment, we evaluate the algorithm
speed based on the number of hard disk hits. Fewer hard disk hits mean higher query
performance. This is a standard evaluation method for indexing data on a hard disk.
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Figure 7: Compare XML data with data after transformation

4.3. Results of bioinformatics data compression

Figure 7 shows a quite good compression ratio, especially for documents describing DNA.
However, the Allhomologies document describing subspecies information was quite surprising
because of the low compression rate. The varying compression results of XML documents
were analyzed, and it was determined that the cause was the Attribute tags. In particular,
the Allhomologies document, which describes species information, has many Attribute tags.
When a tag has numerous attributes, the entire content of the tag is represented as a long
string, the conversion algorithm must separate each attribute into separate rows in the data
table, thus increasing the size of the converted data. Hence, it becomes evident that the
practical application of this transformation method does not consistently yield a favorable
compression ratio due to its reliance on the XML document’s structure. This paper primarily
contributes to the exploration of the compression algorithm through the digital space con-
version method. Further research endeavors will be dedicated to finding solutions to address
this limitation.

4.4. Experimental results of queries

Hard disk indexing methods all evaluate the experimental efficiency of the algorithm
based on the number of hard disk accesses because the hard disk access speed is much
slower than the main memory. So, the speed efficiency for the indexing methods is mainly
measured by the number of hard disk accesses. Time cost per clock will be considered when a
method uses a lot of memory to improve computation efficiency. In this article, the proposed
method completely does not use memory to improve efficiency. Therefore, the experiments
still evaluate the speed efficiency according to the number of hard disk accesses, each access
will take 1 block on the hard disk and put into memory equivalent to one node in the index
tree.

Figures 8(a) and (b) show that the speed of the BioX-tree is much better than the R-tree.
This result can be explained as follows, the R-tree method can only use range queries to find
sibling or descendant elements. In contrast, the BioX-tree will use point queries to approach
any sibling or child element and then pull out all the siblings of that element thanks to the
connection pointers between leaf nodes of the BioX-tree.

The BioX-tree has made sibling queries significantly more efficient when compared to
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Compare (a) sibling query, (b) children query, (c) ancestor query, (d) descendant
query, (e) following query, (f) preceding query between the BioX-tree and the R-tree

the R-tree thanks to its improved design. However, we also want to experiment with (con-
ventional) range queries for the BioX-tree to test and evaluate how the quality effect on the
query, in general, is with this new structure. Typically, these queries use rectangular areas
to scan and search the space of the index tree. In particular, for XPath queries that must
find all ancestors or all descendants, the proceeding/following elements of a given element,
they use a quarter of the plane to search. The performance results of these queries will best
reflect redundant multi-step problems resulting from the overlap and lead to a slowdown in
search speed.

Figure 8(c) shows the performance of the BioX-tree slightly worse than the R-tree in
some cases with distinct size data. The reason is that we have forced XML sibling elements
into leaf nodes according to the BioX-tree rule. Possibly, that makes the index structure less
optimal than the R-tree in some cases, leading to an unexpected overlap problem. However,
due to the improvement of the query algorithm, the performance of the BioX-tree is not
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much worse than the R-tree, sometimes even better.

Figure 8(d) shows the performance of the BioX-tree slightly better than the R-tree. The
space containing descendant elements has a much greater density than the space containing
ancestor elements, so if regular range queries are used, the BioX-tree will potentially have
poor performance. Therefore, the BioX-tree finds only the children of each child element
and then uses the pointers to obtain their sibling element.

Similarly, Figure 8(c), 8(e), 8(f) show the performance of the BioX-tree is slightly less
expensive than the R-tree, and they both cost hard disk access. The reason is that a range
query is forced to scan one of the four large regions of space, resulting in severe overlap. In
the next study, we will have to find a solution to better solve this problem.

In conclusion, the method we showed was much better speed with sibling queries. With
range queries, our method has kept almost the same as the original method. In short, the
new method’s sibling queries are much faster than that of the R-tree method. Other queries
that take advantage of the sibling query’s algorithm also provide better performance, like
querying children for an element, because the children query is essentially sibling queries
for the element’s children. Similarly, descendant queries for an element are also sibling
queries for the children and grandchildren of that element. However, because the number of
descendant elements is so large that they are distributed randomly on disk space, the result
is that the search by pointers is not very efficient. Finally, other queries that cannot take
advantage of the sibling query algorithm, such as ancestor, following, preceding, must use the
traditional R-tree query algorithm. Therefore, the query efficiency is highly dependent on
the overlapping between the MBRs on the index tree. Naturally, the BioX trees have more
overlapping than the R-trees. But fortunately, thanks to the improved FindNode algorithm,
the BioX’s query is approximately as efficient as the R-tree.

5. CONCLUSION

With the aim of improving the indexing method so that the information of large bioin-
formatics XML documents can be retrieved efficiently and at the same time can reduce
the data size. We developed the BioX-tree indexing method to efficiently retrieve informa-
tion from large bioinformatics XML documents while reducing data size. We converted the
documents into tabular data with tag and coordinate information and improved the R-tree
method for faster XPath queries, particularly sibling queries. We also analyzed the advan-
tages and disadvantages of the proposed method with the original R-tree. Based on the
correlation between the XML data tree structure and the BioXtree structure, we have given
some theorems and consequences to improve several query algorithms, thereby overcoming
the disadvantages of the BioX-tree. Experimental results show that the BioX-tree is more
efficient for sibling XPath queries than the original R-tree method, while retaining effective-
ness for other queries. Our focus on bioinformatics data is due to their large and diverse
XML documents. The bioinformatics XML documents used in this paper have come from
reputable sources, so we believe that the experimental results are objective and useful in
real practice. The proposed method can be applied to upgrade other R-tree families with
specific goals. In addition, our research is ignoring biological data in XML documents. The
biological data is much larger than the structural data, and the queries for them are also very
specialized. In the future, we will offer a more comprehensive solution for indexing entire
XML documents.
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