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Abstract. In this paper, we consider a boundary value problem for a fully fourth-order nonlinear

functional differential equation which contains all lower derivatives of proportional delay arguments.

By the reduction of the problem to operator equation for the right-hand side nonlinear function,

we establish the existence and uniqueness of the solution and construct iterative methods on both

continuous and discrete levels for solving it. We obtain the total error estimate for the discrete

iterative solution. Many examples demonstrate the validity of the obtained theoretical results and

the efficiency of the numerical method.
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1. INTRODUCTION

In this paper, we consider a class of boundary value problems for fourth-order nonlinear
functional differential equation

u′′′′(t) = f(t, U(t)), 0 < t < 1,

u(0) = a, u(1) = b, u′(0) = c, u′(1) = d,
(1)

where U(t) = (u(t), u(φ0(t)), u
′(t), u′(φ1(t)), u

′′(t), u′′(φ2(t)), u
′′′(t), u′′′(φ3(t))), (2)

and f : [0, 1]× R8 → R and φi : [0, 1] → [0, 1] (i = 0, 3) are continuous functions.

A particular case of the problem (1) when U(t) = (u(t), u(φ(t))) was studied in [1]. In this
work, by reducing the problem to the equivalent integral equation, the authors established
the existence and uniqueness of a solution under very strong assumptions, one of them is the
Lipschitz condition of the function f(t, u, v) in the variables u, v in the domain [a, b] × R2.
Under some other assumptions, the authors constructed an iterative scheme with the use of
cubic spline interpolation at each iteration. The analysis of convergence was made, but it
is a regret that in the proof of Theorem 8 [1, page 139], there are vital errors shown by us
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in a private letter to the authors and in [2]. After that, these errors were overcome in the
corrigendum [3]. It should be emphasized that in all illustrative examples (Example 11 and
Example 12 [1]), the conditions for ensuring the existence and uniqueness of solutions are
not satisfied although the numerical results show good convergence.

In a very recent work [2], we proposed an effective method for investigating simultaneously
the existence of solution and numerical method for the third-order functional differential
equation

u′′′(t) = f(t, u(t), u(φ(t))) (3)

associated with general linear boundary conditions. The method is a further development
of our method for nonlinear boundary value problems in [4, 5].

In connection to the general functional differential equation u(p)(t) = f(t, u(φ(t))), p ≥ 1
it should be said that in its particular case when φ(t) = αt, 0 < α < 1, the equation is called
pantograph equation or proportional delay differential equation. This type of equation is
intensively investigated in many works such as [6–10]. The above-mentioned works are
concerned with initial value problems.

The solution of boundary value problems for second-order functional differential equation
is considered in several works, e.g., [11–14], where numerical, semi-analytical, and neural
network methods are used.

The present work aims to investigate the existence and uniqueness of the solution of the
boundary value problem for general fourth-order nonlinear functional differential equation
(1)-(2) and develop an efficient numerical method for finding the solution.

2. EXISTENCE AND UNIQUENESS OF SOLUTION

Following the approach in [2, 15] (see also [4, 5]) to investigate the problem (1)-(2), we
introduce the nonlinear operator A defined in the space of continuous functions C[0, 1] by
the formula

(Aψ)(t) = f(t, U(t)), (4)

where u(t) is the solution of the problem

u′′′′(t) = ψ(t), 0 < t < 1,

u(0) = a, u(1) = b, u′(0) = c, u′(1) = d.
(5)

It is easy to verify the following result.

Proposition 1. If the function ψ is a fixed point of the operator A, i.e., ψ is the solution of
the operator equation

Aψ = ψ, (6)

where A is defined by (4)-(5) then the function u(t) determined from the BVP (5) is a solution
of the BVP (1)-(2). Conversely, if the function u(x) is the solution of the BVP (1)-(2) then
the function

ψ(t) = f(t, U(t))

satisfies the operator equation (6).

Now, let G(t, s) be the Green function of the problem (5). We have

G(t, s) =
1

6

{
s2(1− t)2(3t− s− 2ts), 0 ≤ s ≤ t ≤ 1,
t2(1− s)2(3s− t− 2ts), 0 ≤ t ≤ s ≤ 1.
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Denote G0(t, s) = G(t, s) and

Gi(t, s) =
∂iG(t, s)

∂ti
, (i = 1, 3). (7)

Then there hold the estimates∫ 1

0
|Gi(t, s)|ds ≤Mi, (i = 0, 3) (8)

with
M0 =

1

384
, M1 =

1

72
√
3
, M2 =

1

12
, M3 =

1

2
. (9)

The solution of the problem (5) is represented in the form

u(t) = g(t) +

∫ 1

0
G(t, s)ψ(s)ds, (10)

where g(t) is the polynomial of second degree satisfying the boundary conditions

g(0) = a, g(1) = b, g′(0) = c, g′(1) = d. (11)

Taking the derivatives of (9), we obtain

u(i)(t) = g(i)(t) +

∫ 1

0
Gi(t, s)ψ(s)ds, (i = 0, 3). (12)

Therefore, from (7), we have

∥u(i)∥ ≤ ∥g(i)∥+Mi∥ψ∥, (i = 0, 3), (13)

where ∥.∥ is the norm in the space C[0, 1], ∥v∥ = max0≤t≤1 |v(t)|, v ∈ C[0, 1].
Now for every positive number M define the domain

DM =
{
(t, u, ū, y, ȳ, v, v̄, z, z̄) | 0 ≤ t ≤ 1; |u|, |ū| ≤ ∥g∥+M0M ; |y|, |ȳ| ≤ ∥g′∥+M1M,

|v|, |v̄| ≤ ∥g′′∥+M2M ; |z|, |z̄| ≤ ∥g′′′∥+M3M
}
.

(14)

As usual, the closed ball of the radius M centered at 0 in the space of continuous functions
C[0, 1] is denoted by B[0,M ].

Theorem 1. Assume that:

(i) The function φk(t) (k = 0, 3) are continuous functions from [0, 1] to [0, 1].

(ii) The function f(t, u, ū, y, ȳ, v, v̄, z, z̄) is continuous and bounded by M in the domain DM ,
i.e.,

|f(t, u, ū, y, ȳ, v, v̄, z, z̄)| ≤M, ∀(t, u, ū, y, ȳ, v, v̄, z, z̄) ∈ DM . (15)

(iii) The function f(t, u, ū, y, ȳ, v, v̄, z, z̄) satisfies the Lipschitz conditions in the variables
u, ū, y, ȳ, v, v̄, z, z̄ with the coefficients Li ≥ 0, (i = 0, 7) in DM , i.e.,

|f(t, u2, ū2, y2, ȳ2, v2, v̄2, z2, z̄2)− f(t, u1, ū1, y1, ȳ1, v1, v̄1, z1, z̄1)|
≤ L0|u2 − u1|+ L1|ū2 − ū1|+ L2|y2 − y1|+ L3|ȳ2 − ȳ1|
+L4|v2 − v1|+ L5|v̄2 − v̄1|+ L6|z2 − z1|+ L7|z̄2 − z̄1|,

∀(t, ui, ūi, yi, ȳi, vi, v̄i, zi, z̄i) ∈ DM (i = 1, 2).

(16)
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(iv) q := (L0 + L1)M0 + (L2 + L3)M1 + (L4 + L5)M2 + (L6 + L7)M3 < 1. (17)

The the problem (1)-(2) has a unique solution u(t) ∈ C4[0, 1], satisfying the estimate

|u(i)(t)| ≤ ∥g(i)∥+MiM, (i = 0, 3) ∀t ∈ [0, 1]. (18)

Proof. Sketch the steps of the proof:
i) Show that the operator A is a mapping B[0,M ] → B[0,M ].
ii) Show that A is a contraction mapping in B[0,M ].
Then the operator equation (6) has a unique solution ψ ∈ B[0,M ]. By Proposition 1 the
solution of the problem (5) for this right-hand side ψ(t) is the solution of the original problem
(1)-(2).
The detailed proof is similar to that in [2] for the equation (3). ■

3. SOLUTION METHOD AND ITS CONVERGENCE

Consider the following iterative method:

1. Given ψ0 ∈ B[0,M ], for example,

ψ0(t) = f(t, 0, 0, 0, 0, 0, 0, 0, 0). (19)

2. Knowing ψk(t) (k = 0, 1, ...) compute

uk(t) = g(t) +

∫ 1

0
G(t, s)ψk(s)ds,

ūk(t) = g(φ0(t)) +

∫ 1

0
G(φ0(t), s)ψk(s)ds,

yk(t) = g′(t) +

∫ 1

0
G1(t, s)ψk(s)ds,

ȳk(t) = g′(φ1(t)) +

∫ 1

0
G1(φ1(t), s)ψk(s)ds,

vk(t) = g′′(t) +

∫ 1

0
G2(t, s)ψk(s)ds,

v̄k(t) = g′′(φ2(t)) +

∫ 1

0
G2(φ2(t), s)ψk(s)ds,

zk(t) = g′′′(t) +

∫ 1

0
G3(t, s)ψk(s)ds,

z̄k(t) = g′′′(φ3(t)) +

∫ 1

0
G3(φ3(t), s)ψk(s)ds.

(20)

3. Update

ψk+1(t) = f(t, uk(t), ūk(t), yk(t), ȳk(t), vk(t), v̄k(t), zk(t), z̄k(t)). (21)

Set
pk =

qk

1− q
, d = ∥ψ1 − ψ0∥. (22)
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Theorem 2. [Convergence] Under the assumptions of Theorem 1 the above iterative method
converges and there holds the estimate

∥u(i)k − u(i)∥ ≤Mipkd, (i = 0, 3),

where u is the exact solution of the problem (1)-(2), u(i) is its derivative of order i and Mi is
given by (9).

This theorem follows straightforward by from the convergence of the iterative method
for a fixed point of the operator A, the representations (10), (12), and the formulas for
computing uk(t), yk(t), vk(t), zk(t) in (20).

Now we design a discrete iterative scheme for realizing the above iterative method on
a continuous level. For this purpose, we construct the uniform grid ω̄h = {ti = ih, h =
a/N, i = 0, 1, ..., N} on the interval [0, 1] and denote by Φk(t), Uk(t), Ūk(t), Yk(t), Ȳk(t),
Vk(t), V̄k(t), Zk(t), Z̄k(t) the grid functions, which are defined on the grid ω̄h and approx-
imate the functions ψk(t), uk(t), ūk(t), yk(t), ȳk(t), vk(t), v̄k(t), zk(t), z̄k(t) on this grid,
respectively.

Below are the steps of the discrete iterative method:
1. Given

Ψ0(ti) = f(ti, 0, 0, 0, 0, 0, 0, 0, 0), i = 0, ..., N. (23)

2. Knowing Ψk(ti), k = 0, 1, ...; i = 0, ..., N, compute approximately the definite integrals
(20) by the trapezoidal rule

Uk(ti) = g(ti) +

N∑
j=0

hρjG(ti, tj)Ψk(tj),

Ūk(ti) = g(ξ0i) +
N∑
j=0

hρjG(ξ0i, tj)Ψk(tj),

Yk(ti) = g′(ti) +

N∑
j=0

hρjG1(ti, tj)Ψk(tj),

Ȳk(ti) = g′(ξ1i) +
N∑
j=0

hρjG1(ξ1i, tj)Ψk(tj),

Vk(ti) = g′′(ti) +
N∑
j=0

hρjG2(ti, tj)Ψk(tj),

V̄k(ti) = g′′(ξ2i) +

N∑
j=0

hρjG2(ξ2i, tj)Ψk(tj),

Zk(ti) = g′′′(ti) +
N∑
j=0

hρjG
∗
3(ti, tj)Ψk(tj),

Z̄k(ti) = g′′′(ξ3i) +

N∑
j=0

hρjG
∗
3(ξ3i, tj)Ψk(tj), (i = 0, ..., N),

(24)

where ρj are the weights
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ρj =

{
1/2, j = 0, N

1, j = 1, 2, ..., N − 1,
ξmi = φm(ti), m = 0, 3

and

G∗
3(t, s) =

{
G3(t, s), s ̸= t,
1
2 [lims→t−0G3(t, s) + lims→t+0G3(t, s)], s = t.

3. Update

Ψk+1(ti) = f(ti, Uk(ti), Ūk(ti), Yk(ti), Ȳk(ti), Vk(ti), V̄k(ti), Zk(ti), Z̄k(ti)). (25)

To study the convergence of the above discrete iterative method, we need some auxiliary
results.

Proposition 2. Assume that the functions φm(t), (m = 0, 3) have continuous derivatives
up to second order in [0, 1] and the function f(t, u, ū, y, ȳ, v, v̄, z, z̄) has all partial derivatives
continuous up to second order in the domain DM . Then the functions generated by the iterative
method (19)-(21) satisfy the following conditions

zk(t) ∈ C3[0, 1], vk(t) ∈ C4[0, 1], yk(t) ∈ C5[0, 1], uk(t) ∈ C6[0, 1],

ψk(t), ūk(t), ȳk(t), v̄k(t), z̄k(t) ∈ C2[0, 1].
(26)

Proof. We shall prove the above proposition by induction for k.

For k = 0, by the assumption on the function f , we have ψ0(t) = f(t, 0, 0, 0, 0, 0, 0, 0, 0) ∈
C2[0, 1]. Taking into account the expression of G3(t, s) (see Appendix), we have

z0(t) = g′′′(t) +

∫ 1

0
G3(t, s)ψ0(s)ds

= g′′′(t) +

∫ 1

0
s2(3− 2s)ψ0(s)ds−

∫ 1

t
ψ0(s)ds.

Therefore, z′0(t) = ψ0(t). It implies that z′0(t) ∈ C2[0, 1] and consequently, z0(t) ∈
C3[0, 1]. In view of (20) it follows that v0(t) ∈ C4[0, 1], y0(t) ∈ C5[0, 1], u0(t) ∈ C6[0, 1].
Next, we can obtain z̄′0(t) = φ′

3(t)ψ0(φ3(t)) ∈ C1[0, 1]. Hence, z̄0(t) ∈ C2[0, 1]. It is also easy
to show that v̄0(t), ȳ0(t), ū0(t) ∈ C2[0, 1].

Thus, the proposition is true for k = 0.

Now suppose that the proposition is true for k ≥ 0, i.e., there holds (26). Then, from the
assumption of the smoothness of the function f and from the formula (21), it follows that
ψk+1(t) ∈ C2[0, 1]. Making a similar argument as for the case k = 0, we obtain

zk+1(t) ∈ C3[0, 1], vk+1(t) ∈ C4[0, 1], yk+1(t) ∈ C5[0, 1], uk+1(t) ∈ C6[0, 1],

ūk+1(t), ȳk+1(t), v̄k+1(t), z̄k+1(t) ∈ C2[0, 1].

Thus, the proposition is proved. ■



EXISTENCE RESULTS AND NUMERICAL SOLUTION 399

Proposition 3. For any function ψ(t) ∈ C2[0, 1] there hold the estimates∫ 1

0
Gm(ti, s)ψ(s)ds =

N∑
j=0

hρjGm(ti, sj)ψ(sj) +O(h2), m = 0, 1, 2, (27)

∫ 1

0
G3(ti, s)ψ(s)ds =

N∑
j=0

hρjG
∗
3(ti, sj)ψ(sj) +O(h2), (28)

∫ 1

0
Gm(ξmi, s)ψ(s)ds =

N∑
j=0

hρjGm(ξmi, sj)ψ(sj) +O(h2), m = 0, 1, 2, (29)

∫ 1

0
G3(ξ3i, s)ψ(s)ds =

N∑
j=0

hρjG
∗
3(ξ3i, sj)ψ(sj) +O(h2), (30)

where ξmi = φm(ti), m = 0, 3.

Proof. For proof of (27)-(28) see [16, Proposition 2], and for (29)-(30) see [2, Proposition
3.3].

■

Proposition 4. Under the assumptions of Theorem 1, we have the estimates

∥Ψk − ψk∥ω̄h
= O(h2), ∥Uk − uk∥ω̄h

= O(h2), (31)

∥Yk − yk∥ω̄h
= O(h2), ∥Vk − vk∥ω̄h

= O(h2), ∥Zk − zk∥ω̄h
= O(h2), (32)

where ∥.∥ω̄h
is the max-norm of the grid function defined on the grid ω̄h.

Proof. It is not hard to prove the proposition by induction using Propositions 2 and 3,
and taking into account the formulas (19), (23) and (20), (24) of the iterative methods on
continuous and on discrete levels. ■

Similar but simpler propositions are proved in detail in [2, Proposition 3.5] and [16,
Proposition 3].

Now combining Proposition 4 with Theorem 2, we obtain the following result on the error
estimate of the actually obtained numerical solution of the original problem.

Theorem 3. Under the assumptions of Theorem 1 for the approximate solution of the problem
(1)-(2) obtained by the discrete iterative method (23)-(25), we have the estimates

∥Uk − u∥ω̄h
≤M0pkd+O(h2), ∥Yk − u′∥ω̄h

≤M1pkd+O(h2),

∥Vk − u′′∥ω̄h
≤M2pkd+O(h2), ∥Zk − u′′′∥ω̄h

≤M3pkd+O(h2),

where pk and d are defined by (22).

4. EXAMPLES

In all examples below first, we verify the conditions of Theorem 1 which guarantees the
existence and uniqueness of a solution and also the convergence of the iterative methods.
After that, we perform the iterative method, (23)-(25) until ∥Uk − Uk−1∥ω̄h

≤ 10−16. In the
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tables of results for the convergence of the iterative method N + 1 is the number of grid
points, h = 1/N , K is the number of performed iterations, u is the exact solution if it is
known and Error = ∥UK − u∥ω̄h

and Error1 = ∥YK − u′∥ω̄h
are errors of the solution and

its first derivative, respectively.

Example 1. [1, Example 11]. Consider the following problem

u(4)(t) =
22

(t+ 1)5
+

1

(t+ 1)2

(
[u(t)]2 + [u(t)]3

)
u(
t

2
), 0 < t < 1,

u(0) = 1, u(1) =
1

2
, u′(0) = −1, u′(1) = −1

4
,

(33)

for which the exact solution is u(t) = 1
t+1 .

For this problem, the right-hand side function f is

f(t, u, ū) =
22

(t+ 1)5
+

1

(t+ 1)2
(u2 + u3)ū.

Obviously, this function does not satisfy the Lipschitz conditions in the domain [0, 1]× R2.
Thus, the important condition (ii) in [1, page 131] is not met. So, the uniqueness of the
solution is not ensured, and of course, Theorem 2 and Theorem 8 there on the convergence
of the iterative method are not applicable. Differently from Bica [1] below, we show that
the problem (33) has a unique solution and the discrete iterative method (23)-(25) converges
with accuracy of second order. Indeed, for the problem it is easy to find the function
g(t) = −1

4 t
3 + 3

4 t
2 − t + 1 satisfying the boundary conditions, and ∥g∥ = ∥g′∥ = 1, ∥g′′∥ =

∥g′′′∥ = 3
2 . It is possible to verify that for M = 25, we have |f(t, u, ū| ≤ M in the domain

DM =
{
(t, u, ū) | 0 ≤ t ≤ 1; |u|, |ū| ≤ 1 +M0M}. Further, in DM the function f(t, u, ū)

satisfies the Lipschitz conditions in u and ū with the coefficients L0 = 6, L1 = 2.4. Therefore,
q = (L0 + L1)M0 = 0.0219 < 1. By Theorem 1 the problem (33) has a unique solution and
by Theorem 3 the iterative method (23)-(25) converges.

In Table 1 below, the convergence of the iterative method is reported. As shown in the

Table 1: The convergence in Example 1

N h2 K Error Error1

50 4.0000e-04 8 1.4520e-08 3.8031e-08
100 1.0000e-04 8 9.0870e-10 2.3801e-09
150 4.4444e-05 8 1.7954e-10 4.7028e-10
200 2.5000e-05 8 5.6812e-11 1.4881e-10
300 1.1111e-05 9 1.1223e-11 2.9396e-11
400 6.2500e-06 9 3.5512e-12 9.3012e-12
500 4.0000e-06 8 1.4546e-12 3.8097e-12
800 1.5625e-06 9 2.2204e-13 5.8115e-13
1000 1.0000e-06 9 9.1038e-14 2.3798e-13

table, the errors of the approximate solution and its first derivative are of order 4 although
Theorem 3 ensures only order 2. This fact also will be observed in the next example.
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Example 2. [1, Example 12]. Consider the following problem

u(4)(t) = e−t[u(t)]3/2u(
t

2
), t ∈ (0, 1),

u(0) = 1, u(1) = e, u′(0) = 1, u′(1) = e,
(34)

for which the exact solution is u(t) = et.

For this problem the right-hand side function f is

f(t, u, ū) = e−tu3/2ū.

As in the previous example, the function f(t, u, ū) does not satisfy the Lipschitz conditions in
the domain [0, 1]×R2. So, the important condition (ii) in [1, page 131] is not met. Hence, the
uniqueness of the solution is not ensured, and of course, Theorem 2 and Theorem 8 there on
the convergence of the iterative method are not applicable. Below, the theory in the previous
section is applied to the example. We have for this example g(t) = (3−e)t3+(2e−5)t2+t+1,
and consequently, ∥g∥ = e. It is possible to verify that for M = 15, we have |f(t, u, ū| ≤ M
in the domain

DM =
{
(t, u, ū) | 0 ≤ t ≤ 1; |u|, |ū| ≤ e+M0M}.

Further, in DM the function f(t, u, ū) satisfies the Lipschitz conditions in u and ū with the
coefficients L0 = 7, L1 = 5. Therefore, q = (L0 + L1)M0 = 0.0313 < 1. By Theorem 1,
the problem (33) has a unique solution and by Theorem 3, the iterative method (23)-(25)
converges.

The results of the convergence of the iterative method for this example are given in Table
2.

Table 2: The convergence in Example 2

N h2 K Error Error1

50 4.0000e-04 9 3.0102e-10 2.2923e-09
100 1.0000e-04 9 1.8814e-11 1.4328e-10
150 4.4444e-05 9 3.7157e-12 2.8302e-11
200 2.5000e-05 10 1.1755e-12 8.9548e-12
300 1.1111e-05 10 2.3226e-13 1.7686e-12
400 6.2500e-06 10 7.3275e-14 5.5933e-13
500 4.0000e-06 9 3.0198e-14 2.2893e-13
800 1.5625e-06 9 4.8850e-15 3.4639e-14
1000 1.0000e-06 9 2.2204e-15 1.4211e-14

Example 3. Consider a more complicated problem

u(4)(t) = et +
1

9

(
[u(

t

2
)]2u′′′(

t

2
)− u′(t)u′′(

t

2
) + u(t)u′′′(t)− [u′′(t)]2

)
, t ∈ (0, 1),

u(0) = 1, u(1) = e, u′(0) = 1, u′(1) = e,
(35)
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for which the exact solution is u(t) = et.
For this example

f = f(t, u, ū, y, ȳ, v, v̄, z, z̄) = et +
1

9
(ū2z̄ − yv̄ + uz − v2),

g(t) = (3− e)t3 + (2e− 5)t2 + t+ 1.

So, we have ∥g∥ = ∥g′∥ = e, ∥g′′∥ = 8− 2e, ∥g′′′∥ = 18− 6e. It is possible to check that for
M = 20 there holds |f(t, u, ū, y, ȳ, v, v̄, z, z̄)| ≤M inDM , whereDM is defined by (14). In this
domain, the function f(t, u, ū, y, ȳ, v, v̄, z, z̄) satisfies the Lipscchitz conditions in the variables
u, ū, y, ȳ, v, v̄, z, z̄ with the coefficients L0 = 1.30, L1 = 7.20, L2 = 0.47, L3 = 0, L4 = 0.94,
L5 = 0.32, L6 = 0.31, and L7 = 0.86. Therefore, q = 0.6446 < 1 and the problem (35) has a
unique solution, and the iterative method (23)-(25) converges. The results of the convergence
of the problem are given in Table 3.

Table 3: The convergence in Example 3

N h2 K Error Error1

50 4.0000e-04 9 9.2553e-08 3.0639e-07
100 1.0000e-04 9 2.3182e-08 7.6420e-08
150 4.4444e-05 9 1.0307e-08 3.3946e-08
200 2.5000e-05 11 5.7979e-09 1.9088e-08
300 1.1111e-05 9 2.5771e-09 8.4831e-09
400 6.2500e-06 9 1.4497e-09 4.7715e-09
500 4.0000e-06 9 9.2781e-10 3.0537e-09
800 1.5625e-06 8 3.6243e-10 1.1928e-09
1000 1.0000e-06 8 2.3196e-10 7.6339e-10

It is easy to see in Table 3 that for this example when the right-hand side is rather compli-
cated, the errors of the approximate solution and its first derivative are not of order 4 as in
the previous examples (Bica’s examples), where the right-hand sides are simple. Obviously,
here Error and Error1 are of O(h3).

Example 4. Consider the following problem

u(4)(t) = t2 − 1

4
u(t) +

1

4
[u(φ0(t))]

2 +
1

2
u′(t)u′(φ1(t)) +

1

8
[u′′(t) + u′′(φ2(t))]u(t)

+
1

4
[sin(u′′′(t)) + cos(u′′′(φ3(t)))], t ∈ (0, 1),

u(0) = 1, u(1) =
19

6
, u′(0) = 1, u′(1) =

7

2
,

(36)

where φ0(t) = t
2 , φ1(t) = t2, φ2 = t2

2 , φ3(t) = t2

3 . At this moment, we do not know any
information on the solvability of the problem.

For the above problem

f = t2 − 1

4
u+

1

4
ū2 +

1

2
yȳ +

1

8
(v + v̄)u+

1

4
(sin(z) + cos(z̄)),

g(t) =
t3

6
+ t2 + t+ 1.
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Hence, ∥g∥ = 19
6 , ∥g′∥ = 7

2 , ∥g′′∥ = 3, ∥g′′′∥ = 1. It is possible to verify that with
M = 23 there holds |f | ≤ M in the domain DM , where DM is defined by (14). Also, in
DM the function f(t, u, ū, y, ȳ, v, v̄, z, z̄) satisfies the Lipscchitz conditions in the variables
u, ū, y, ȳ, v, v̄, z, z̄ with the coefficients L0 = 1.48, L1 = 1.62, L2 = L3 = 3.7, L4 = L5 =
0.41, L6 = L7 = 0.25. Therefore, q = 0.3857 < 1 and the problem (36) has a unique solution
and the iterative method (23)-(25) converges. The results of the convergence of the problem
are given in Table 4. Recall that in the table, K is the number of iterations performed when
∥Uk − Uk−1∥ω̄h

≤ 10−16.

Table 4: The convergence in Example 4

N K

50 12
100 13
150 13
200 12
300 13
400 14
500 14
800 13
1000 13

The graph of the found approximate solution is depicted in Figure 1.

0 0.2 0.4 0.6 0.8 1

t

1

1.5

2

2.5

3

3.5

 u
(t)

Figure 1: The graph of the approximate solution in Example 4

Remark. It should be remarked that Theorem 1 and Theorem 3 give only sufficient condi-
tions for the existence and uniqueness of the solution, and the convergence of the iterative
method for finding the solution. In the case if these conditions are not satisfied, the iterative
method also can be convergent. Below, we give some examples to illustrate this remark.
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Example 5. Consider the following problem

u(4)(t) = [u′′(
t

4
)]4, 0 < t < 1,

u(0) = 1, u(1) = e, u′(0) = 1, u′(1) = e,
(37)

which has the exact solution u(t) = et.

For this example, f = f(t, v̄) = (v̄)4. It is impossible to find M > 0 so that |f | ≤ M
in the domain DM = {(t, v̄) | 0 ≤ t ≤ 1, |v̄| ≤ 8 − 2e + M

12}. Recall that 8 − 2e = ∥g′′∥
(see Example 3). Therefore, the theorems 1 and 2 are not applicable. Regardless of this,
the iterative method (23)-(25) converges to the exact solution u(t) = et. The results of
convergence for the problem (37) are shown in Table 5.

Table 5: The convergence in Example 5

N h2 K Error Error1

50 4.0000e-04 20 4.3691e-08 1.3415e-07
100 1.0000e-04 21 1.0868e-08 3.3749e-08
150 4.4444e-05 20 4.8264e-09 1.5026e-08
200 2.5000e-05 21 2.7140e-09 8.4562e-09
300 1.1111e-05 22 1.2059e-09 3.7597e-09
400 6.2500e-06 22 6.7828e-10 2.1150e-09
500 4.0000e-06 22 4.3409e-10 1.3537e-09
800 1.5625e-06 22 1.6956e-10 5.2882e-10
1000 1.0000e-06 22 1.0852e-10 3.3845e-10

Example 6. Consider the following problem

u(4)(t) = (u(t))2 + (u′′(
t2

2
))4, t ∈ (0, 1),

u(0) = 1, u(1) =
19

6
, u′(0) = 1, u′(1) =

7

2
.

(38)

We do not know any information about the solution to the problem. And it is easy to
verify that the conditions of Theorem 1 are not satisfied. Therefore, it is not ensured of the
existence of solutions and the convergence of the iterative method. However, the results of
numerical experiments show that the iterative method (23)- (25) has a good convergence.
The number of iterations needed for achieving the tolerance ∥Uk − Uk−1∥ω̄h

≤ 10−16 is 15
or 16.

5. CONCLUSION

In this paper, we have considered the Dirichlet problem for a fully fourth-order nonlinear
functional differential equation, where its right-hand side contains all lower derivatives of
proportional delay arguments. By reducing the problem to an operator equation for the
right-hand side nonlinear function, we have established the existence and uniqueness of the
solution under some easily verified conditions and constructed an efficient iterative method
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for finding the solution at both continuous and discrete levels. A total error of the ac-
tual numerical solution which consists of the error of the iterative process and the error of
discretization at each iteration is obtained. Many examples with numerical experiments con-
firm the applicability and validity of the obtained theoretical results. To our best knowledge,
this is the first time a boundary value problem for a fully fourth-order nonlinear functional
differential equation is studied.

It should be said that the proposed approach here to boundary value problems for non-
linear functional differential equations is very effective because it simultaneously gives the
existence results and the convergence of the solution method which is very easily realized.
The approach can be applied to a wide class of boundary value problems for nonlinear
functional differential equations of arbitrary order and any linear boundary conditions.
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APPENDIX

Derivatives in t of the Green function G(t, s):

G(t, s) =
1

6

{
s2(1− t)2(3t− s− 2ts), 0 ≤ s ≤ t ≤ 1,
t2(1− s)2(3s− t− 2ts), 0 ≤ t ≤ s ≤ 1,

G1(t, s) =
∂G(t, s)

∂t
=

{
−(s2(2t− 2)(s− 3t+ 2st))/6− (s2(2s− 3)(t− 1)2)/6, 0 ≤ s ≤ t ≤ 1,
−(t2(2s+ 1)(s− 1)2)/6− (t(s− 1)2(t− 3s+ 2st))/3, 0 ≤ t ≤ s ≤ 1,

G2(t, s) =
∂2G(t, s)

∂t2
=

{
−(s2(s− 3t+ 2st))/3− (s2(2s− 3)(2t− 2))/3, 0 ≤ s ≤ t ≤ 1,
−((s− 1)2(t− 3s+ 2st))/3− (2t(2s+ 1)(s− 1)2)/3, 0 ≤ t ≤ s ≤ 1,

G3(t, s) =
∂3G(t, s)

∂t3
=

{
s2(3− 2s), 0 ≤ s < t ≤ 1,
s2(3− 2s)− 1, 0 ≤ t < s ≤ 1,

G∗
3(t, s) =


s2(3− 2s), 0 ≤ s < t ≤ 1,
t2(3− 2t)− 1/2, s = t,
s2(3− 2s)− 1, 0 ≤ t < s ≤ 1.
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