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Abstract. This paper proposes a semi-supervised multilingual speaker verification (MSV) system

submitted for the 2 tasks, MSV for the Asian language inside the training set (T01) and outside the

training set (T02) in O-COCOSDA and VLSP challenge 2022. To solve the problem, our strategy

is training a baseline acoustic model with given labeled data (MSV CommonVoice) and fine-tuning

the trained acoustic model with both given labeled data and given unlabeled data (MSV Youtube).

To achieve the fine-tuning step, the unlabeled data is converted to labeled data by pseudo labeling

technique using the clustering method with the embedding vectors extracted from the trained acoustic

model. Besides, we also apply test-time augmentation, back-end scoring, and score normalization with

the AS-Norm technique to improve the result. When evaluated on the VLSP 2022 challenge’s given

test set, our best system with baseline ECAPA-TDNN achieves an equal error rate (EER) of 2.296%

in T01 and 3.3296% in T02, which ranks second rank in both two tasks.
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Abbreviations

MSV Multilingual speaker verification

VLSP Vietnamese language and speech processing

O-COCOSDA Oriental chapter of coordination and standardization

of speech databases and assessment techniques

ECAPA Emphasized channel attention, propagation, and aggregation

TDNN Time delay neural network

CNN Convolutional neural network

EER Equal error rate

MUSAN Music, speech, and noise

RIRs Room impulse response

AAM-softmax Additive angular margin softmax

LMCL Large margin cosine loss

GMM Gaussian mixture model

PLDA Probabilistic linear discriminant analysis

AS-Norm Adaptive symmetric normalization

MFCC Mel-frequency cepstral coefficient
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1. INTRODUCTION

Speaker verification is an important bio-metric problem attracting significant attention
from the research community and industry due to its urgent applications in practice. The ob-
jective of speaker verification is the authentication of a claimed identity from measurements
on the voice signal. Therefore, a general speaker verification system consists of two main
steps: registration and verification. First, the user registers one or several voice samples. A
background model must be created to capture the speaker-related information, also known
as the speaker’s acoustic features. These features are considered the “voice signature” of
each person and will be saved in the database. In the verification process, the user’s voice
sample will be provided as query utterances and extracted features by the system. The user
is identified by comparing the features with the stored existing acoustic feature.

Recently, with the development of deep learning, many neural network-based speaker
models have been proposed for effective feature learning for verifying speaker’s utterances.
Deep architecture has mostly been treated as black boxes, some approaches have been pre-
sented for feature extraction and demonstrated promising results.

In this work, we use ECAPA-TDNN and ECAPA CNN-TDNN as a backbone feature
extracting model. Experiments are conducted on the labeled MSV Common Voice dataset
and the unlabeled MSV YouTube dataset. Our method is first trained on the Common
Voice dataset and further fine-tuned on the YouTube dataset. Augmentation will be applied
with the MUSAN corpus for noise and sample simulated filters for RIRs. The results are
calculated by the cosine similarity method along with the AS-Norm technique which is also
reviewed. The rest of the paper is organized as follows. Section 2. gives information about
the speech corpus. Section 3. describes our proposed system. The experimental details
are shown in Section 4. while the experimental results are outlined in Section 5. Finally,
conclusions are presented in Section 6.

2. DATASETS AND DATA AUGMENTATION

2.1. Provided datasets

The provided training set consists of two datasets: MSV Common Voice data and MSV
YouTube data. Both datasets contain utterances from 9 languages, of which 7 languages are
from Asia: English, French, Uzbekistan, Hindi, Tamil, Chinese, Japanese, Vietnamese, and
Thai. In terms of MSV CommonVoice data, after removing some non-existing audios from
the Tamil metadata file, we obtained 592840 utterances and 17714 speakers in total. The
number of utterances per speaker ranges from 1 to over 40000. Meanwhile, the MSV YouTube
data set contains 73542 utterances without speaker ID. For both public and private tests, T01
consists of utterance pairs of 4 languages (French, Japanese, Thai, and Vietnamese) while
T02 contains test pairs of 3 languages (Arabic, Indonesian, and Mongolian). For detailed
statistics about each dataset, please refer to Table 1, 2, 3, and 4.

2.2. Data augmentation

Augmentation increases the amount and diversity of the training data, which helps reduce
overfitting. We employ two of the popular augmentation methods in speech processing –
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Table 1: MSV Common Voice data statistics

Language # Speaker # Utterances
English 3975 100991
French 2495 90035
Hindi 226 9189
Japanese 465 29447
Tamil 325 108397
Thai 5515 126058
Uzbekistan 901 79704
Vietnamese 96 3859
Chinese 3716 45160

Table 2: MSV YouTube data statistics

Language # Utterances
English 7116
French 7643
Hindi 7999
Japanese 8413
Tamil 8522
Thai 7439
Uzbekistan 8405
Vietnamese 8894
Chinese 9111

Table 3: Public test statistics

Task # Utterances # Test pairs
French 2896 15337
Japanese 4431 15488
Thai 2257 15352
Vietnamese 3771 15339
Arabic 2301 15444
Indonesian 1471 15304
Mongolian 3203 15298

Table 4: Private test statistics

Task # Utterances # Test pairs
French 3022 15337
Japanese 4766 15488
Thai 2381 15352
Vietnamese 4000 15339
Arabic 2602 15444
Indonesian 1411 15304
Mongolian 3431 15298
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additive noise and room impulse response (RIR) simulation. For additive noise, we use
the additive noise and music subsets of the MUSAN corpus [14]; for RIRs, we sample the
simulated filters of small and medium rooms released in [9].

2.2.1. Offline data augmentation

For each speaker in MSV Common Voice data having less than 6 utterances, we use RIRs
and MUSAN to create extra augmented copies of his/her randomly selected utterances. After
this augmentation, 620363 utterances from 17714 speakers are generated to extract acoustic
features.

2.2.2. Online data augmentation

We apply an efficient implementation of the augmentation methods so that they can be
performed online in the data loader. Because the augmented version of the dataset does not
need to be stored, this allows the models to be trained without the need for a large amount of
storage. Moreover, this allows different noises and RIR filters to be applied at every epoch,
therefore, allowing the creation of unlimited variations of the utterances during the training
model. SpecAugment, which is introduced in [11], is also applied in this implementation.

It is worth mentioning that offline augmented data is also adopted in online augmentation
but with a smaller chance of getting augmentation. To increase the diversity of training data
as well as the balance between the augmentation data and the original data, after trial and
error, we chose the ratio for offline data augmentation and online data augmentation to be
30% and 65%, respectively.

3. SYSTEM DESCRIPTION

We adapt the same system settings for both T01 and T02. Figure 1 and 3 describe the
overview of our solution to these challenges.

3.1. Network structures

Figure 1: Training protocol

3.1.1. Backbone (Acoustic model)

We use ECAPA-TDNN as the backbone model in our experiments [3]. This architec-
ture is an enhanced version of the popular x-vector topology [15]. The use of hierarchi-
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cally grouped convolutions [4] reduces the model parameter count. It also introduces 1-
dimensional TDNN-specific Squeeze-and-Excitation-blocks [6] which rescale the intermediate
time context-bound frame-level features per channel according to global utterance proper-
ties. The pooling layer uses a channel and context-dependent self-attention mechanism to
attend to different speaker-characterizing properties at different time steps for each feature
map. Finally, Multi-layer Feature Aggregation [5] provides additional complementary in-
formation for the statistics pooling by concatenating the final frame-level features with the
intermediate features of previous layers.

3.1.2. Loss function

• Additive angular margin softmax (AAM-softmax) [2]. Introduce a concept of
margin between classes to increase inter-class variance.

• Large margin cosine loss (LMCL) [17]. Reformulate the softmax loss as a cosine
loss by L2 normalizing both features and weight vectors to remove radial variations,
based on which a cosine margin term is introduced to further maximize the decision
margin in the angular space. As a result, minimum intra-class variance and maximum
inter-class variance are achieved by virtue of normalization and cosine decision margin
maximization.

3.2. Training protocol

All our models are trained through three stages. Firstly, we train our models on MSV
Common Voice data. After that, the trained models are applied to MSV YouTube data to
extract embeddings, do clustering, and get pseudo labels. Then, we fine-tune our models
with these pseudo labels.

3.2.1. Training with MSV common voice data

In the first stage, we train the model ECAPA-TDNN on the MSV Common Voice data
using AAM-softmax or LMCL as the loss function. The detail of our training configurations
is presented in Subsection 4.3. and Table 5.

3.2.2. Clustering with MSV YouTube data

To use YouTube data to fine-tune the model, we decided to apply a clustering method
to convert this unlabeled data to the labeled ones which was in the same form as the input
of MSV Common Voice data. The overview of our clustering process is presented in Figure
2.

First, in each folder which is named after the URL of the YouTube video containing
the preprocessed audios of speakers, we use the Gaussian mixture model (GMM) [12] as an
approach to divide similar audios into clusters that are considered as the speakers and we do
this for each language separately. By experiment and experience, we realize that clustering
for each YouTube video brings a better result than clustering for combining all the videos
of each language due to observing directly the number of speakers obtained in both two
methods. The number of clusters parameter of the GMM algorithm is set to 3 based on
observing some samples from the data set.

However, some clusters may have noisy audios as well as can be overlapping with other
clusters since a speaker might appear in more than one video. To deal with the first problem,
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Figure 2: Clustering process

every utterance having more than one cosine score with other utterances inside this cluster
smaller than a threshold of 0.3 is considered noisy audio and will be marked to be removed.
After that, every cluster having the mean of its cosine similarity matrix lower than the
threshold (default 0.45) will be also removed. Finally, we use a cosine score matrix belonging
to different clusters to compare with each other. The score of two speakers is the average
of the cosine similarity matrix between them which is evaluated by a threshold given by
plotting the distribution of the cosine matrix. If the average cosine score of 2 clusters is
higher than a threshold of 0.7, they are combined into one speaker. All the above threshold
is decided by trial and error based on hearing some utterances of the obtained clusters. After
doing all these steps, we have 3206 speakers with 44638 utterances in total and the number
of utterances per speaker ranges from 1 to 933. Our idea is inspired by this paper [16].

3.2.3. Fine-tuning with MSV YouTube data

After the clustering process, we obtain the pseudo-label for the MSV YouTube data. We
use this data to fine-tune the pre-trained model in the first stage to obtain the final model
which is used for testing. The details of training setups are shown in Section 4.3.

Table 5: Sub-system configurations

Index Configuration
S1 ECAPA-TDNN + AAM-softmax + Cosine
S2 ECAPA-TDNN + AAM-softmax + PLDA
S3 ECAPA-TDNN + AAM-softmax + Cosine + AS-Norm
S4 ECAPA-TDNN + LMCL + Cosine
S5 ECAPA-TDNN + LMCL + Cosine + AS-Norm
S6 ECAPA-TDNN + LMCL + Fine-tune + Cosine + AS-Norm
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Table 6: EER(%) of our submissions to O-COCOSDA and VLSP 2022 - A-MSV shared
task.

Index T01 Public T02 Public T01 Private T02 Private
S1 1.6041 2.814 - -
S2 2.074 2.834 - -
S3 1.3875 2.6577 - -
S4 0.7547 1.3858 2.6328 3.7529
S5 0.6832 1.1944 2.5886 3.3908
S6 0.6047 0.9835 2.296 3.3296

Figure 3: Testing protocol

3.3. Testing protocol

3.3.1. Test-time augmentation

We first extract the embedding vectors of full audio and calculate the similarity score
between the two vectors for each test pair. Moreover, we sample ten 3-second temporal
segments at regular intervals from every segment in the test set and compute the 10×10=100
similarities for every pair using all possible combinations of segments. The average of the
full audio similarity and the mean of the 100 similarities is used as the final pairwise score.

3.3.2. Back-end scoring

Two different methods are applied as a back-end for two tasks. Firstly, we utilize the
Cosine similarity score to compute the distance between the two embedding vectors. Besides
that, we also use the PLDA [8] classifier for both models. We use LDA as a dimension-
ality reduction technique and the LDA dimension was set to 100. After that, the vector
representations are length-normalized and modeled by PLDA.
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3.3.3. Score normalization

To achieve better results, score normalization is applied to reduce within-trial variability.
This section describes the techniques in which the score between enrollment utterance e and
test utterance t is denoted s(e, t).

- Z-norm [13]: Zero score normalization employs impostor score distribution for enroll-
ment files. N speakers E = {εi}Ni=1 to be different from e and t will be used as cohort samples
for calculation. The cohort scores are formed by scoring utterance e and all utterances in
the cohort set. The formula is

Se = {s(e, εi)}Ni=1. (1)

The normalized score is then

s(e, t)z−norm =
s(e, t)− µ(Se)

σ(Se)
. (2)

- T-norm [1]: Test score normalization is different from the Z-score as it normalizes the
impostor score distribution for the test utterance. The scores can be computed by the same
formula as the Z-score

St = s(t, εi), (3)

s(e, t)t−norm =
s(e, t)− µ(St)

σ(St)
. (4)

- S-norm [7]: The symmetric normalization computes an average of normalized score
from Z-norm and T-norm. Z-norm and T-norm depend on the order of e and t while the
S-norm function normalized with symmetric normalization recipes s(e, t) and s(t, e). The
S-norm score is formed as

s(e, t)s−norm =
1

2
(
s(e, t)− µ(Se)

σ(Se)
+

s(e, t)− µ(St)

σ(St)
). (5)

- Adaptive score normalization [10]: In adaptive score normalization techniques, the
normalization score is computed depending on part of the cohort. Z-norm, T-norm, and S-
norm are approached with the same cohort selection while the selected cohort might change
in adaptive techniques. There are ways to select an adaptive cohort: either selected to be X
most positive scores samples to the enrollment utterance or the test utterance. Therefore,
each enrollment utterance e and test utterance t have different cohort sets, and scores based
on cohorts for the enrollment can be computed as follows

Se(E top
e ) = {s(e, ϵ)}∀ϵ∈Etop

e
, Se(E top

t ) = {s(e, ϵ)}∀ϵ∈Etop
t

(6)

and correspondingly for the test utterance t. The adaptive S-norm score for the first is

s(e, t)s−norm =
1

2

(s(e, t)− µ(Se(E top
e ))

σ(Se(E top
e ))

+
s(e, t)− µ(St(E top

t ))

σ(St(E top
t ))

)
. (7)

We utilize an Adaptive S-norm for the normalization of s(e, t) which is computed by
cosine similarity score. The imposter cohort includes more than 200000 utterances from
the training dataset which will be selected from the top 1000 scores to compute mean and
standard deviation for each enrollment and test utterance in a trial pair.
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4. EXPERIMENTAL DETAILS

4.1. Backbone model and loss function

We conduct all of our experiments using ECAPA-TDNN as the backbone model. There
are two variants proposed in the paper, but we use the larger model with C = 1024.

Regarding the loss function, we select a margin of 0.2 and a scale of 30 for AAM-softmax,
since these values give the best results on the VoxCeleb1 test set as shown in the paper. We
use a margin of 0.35 and a scale of 64 for LMCM in this work.

4.2. Input representations

During training, we use random 2-second temporal segments extracted from each utter-
ance. Pre-emphasis with a coefficient of 0.97 is applied to the input signals. The spectro-
grams are extracted with a hamming window of 25ms width and 10ms step size. The input
features are 80-dimensional Mel-frequency cepstral coefficients (MFCCs) extracted from the
spectrograms. The features are mean normalized at the input to the network.

4.3. Training details

As mentioned in Subsection 3.2.1, when training with the MSV Common Voice data), the
Adam optimizer with weight decay of 2e-5, the exponential decay rate for the 1st-moment
estimates of 0.9 and 2nd-moment estimates of 0.999 are used. We use a single GPU GTX
2080 Ti with 64 mini-batch and an initial learning rate of 0.001 to train all of our models. 200
frames of each sample in one batch are adopted to avoid over-fitting and speed up training.
The learning rate is reduced by 5% every 2 epochs. The network has been trained for 100
epochs. Finally, we set the maximum utterances per speaker to 200 when training to avoid
much imbalance between speakers and also speed up the training process.

As described in Subsection 3.2.3, the settings for the final stage in our proposed method
are slightly different from the first stage. We first let the last fully connected layer warm
up by freezing all previous layers for 5-10 epochs and then trained the entire network with
an initial small learning rate of 5e-5 with a decay factor of 0.1. Since the amount of data
and the number of utterances per speaker are not too large, we did not set the maximum
utterances per speaker when training with MSV Common Voice data.

5. EXPERIMENT RESULTS

In this section, we show our submissions to the AMSV-VLSP 2022 Challenge in two
tasks: T01 and T02. The baseline system is an ECAPA-TDNN backbone followed by AAM-
Softmax. The performance is evaluated using the equal error rate (EER). As Table 6 shows,
our baseline system performs better when using the Cosine back-end compared to use PLDA
back-end, and its performance is improved significantly with the help of AS-Norm. The EER
is also decreased considerably when we use ECAPA CNN-TDNN backbone and it gets the
most promising result with ECAPA-TDNN backbone followed by LMCL, Cosine back-end,
and AS-Norm. By fine-tuning with MSV YouTube data, our best system achieves EER of
2.296% in T01 and 3.3296% in T02, which ranks second rank in both two tasks.
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6. CONCLUSION

In this paper, we describe our method submitted to the O-COCOSDA and VLSP 2022 -
A-MSV Shared task: Asian Multilingual Speaker Verification. ECAPA-TDNN has been an
outperformed backbone for embedding extractors. It is trained on MSV Common Voice data
and fine-tuned on MSV YouTube data, both based on the LMCL. We also apply the test-time
augmentation technique, Cosine similarity back-end, and AS-Norm for score normalization.
The system shows superiority and results in 2.296% and 3.330% for EER respectively which
ranks second place on both T01 and T02 of the O-COCOSDA and VLSP 2022 - A-MSV
Shared task: Asian Multilingual Speaker Verification.
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