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Abstract. This paper introduces an optimal tracking controller for robot manipulators with satura-

tion torques. The robot model is presented as a strict-feedback nonlinear system. Firstly, the position

tracking control problem is transformed into the optimal tracking control problem. Subsequently, the

saturated optimal control law is designed. The optimal control law is determined through the solution

of the Hamilton-Jacobi-Bellman (HJB) equation. We use a reinforcement learning algorithm with

only one neural network (NN) to approximate the solution of the equation HJB. The technique of

experience replay is used to relax a persistent citation condition. By Lyapunov analysis, the tracking

and the approximation errors are uniformly ultimately bounded (UUB). Finally, the simulation on

a robot manipulator with saturation torques is performed to verify the efficiency of the proposed

controller.
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1. INTRODUCTION

Robot manipulators have brought excellent efficiency in manufacturing, healthcare, and
services. Controller designs, aiming to improve performance and reduce costs, have continu-
ously received the attention of researchers [1,2]. Sliding controllers for the robot manipulators
from basic to advanced have been implemented, such as adaptive slide controllers [3], termi-
nal slide controllers [4], third-order slide controllers [5], and fixed-time slide controllers [6].
Chwa et al. [7] proposed a sliding controller combined with a system identifier and distur-
bance observer. A terminal slide controller combined with the backstepping controller was
used in [8, 9]. Intelligent controllers combined with advanced controllers have also been im-
plemented, such as an adaptive fuzzy sliding controller [10], an adaptive fuzzy backstepping
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controller [11], and a terminal slide mode controller combined with a radial basic function
(RBF) neural network (NN) controller [12].

In practice, the actuators are constrained by the saturation torque, which results in
reduced control efficiency or instability. Wei et al. [13] proposed an efficient impedance
controller based on the Lyapunov function to solve the input saturation problem. Ling et
al. [14] designed an adaptive fuzzy dynamic surface controller in which the smooth function
was used with the mean value theorem to solve the difficulties related to input saturation.
Yang et al. [15] proposed a bounded barrier Lyapunov function and have designed an auxiliary
system to suppress the input saturation effect. In [16], a NN controller combined with the
backstepping technique was proposed to apply to robot manipulators with input saturation.
The controllers proposed in [13–16] have effectively solved the input saturation problem for
the robot manipulators; however, optimal control has not been presented.

The optimal control problem’s solution depends on the HJB equation’s solution. Rein-
forcement learning and NN have been proper methods to approximate online HJB equation
solutions [17, 18]. The optimal control for the robot manipulators was proposed in [19–21].
The algorithm in [20] used 2 NNs, which increased the computational cost. In [22–24], the
saturated optimal tracking controller was designed using RL with only one NN. They imple-
mented the proposed algorithm through experiments on a mobile robot [23] and a PMSM
system [24]. For robot manipulators with input constraints, Zhao et al. [25] proposed an
optimal controller based on RL in discrete time. To the best of our knowledge, the saturated
optimal tracking controller has not been resolved for the robot manipulators in continuous
time.

From the above analysis, we design an optimal tracking controller for robot manipulators
with input constraints based on an RL method using a NN. The contributions of this paper
include the following.

1. The dynamics of the robot manipulator are represented as a strict-feedback nonlinear
system with saturation inputs. The feedforward control inputs are proposed. Then the
tracking control problem is transformed into an optimal control problem.

2. The cost function of the saturation system is proposed. The solution of the HJB
equation determines the saturation optimal control law. Therefore, in this paper,
we use a reinforcement learning algorithm with only one NN instead of 2 [17, 20] to
approximate the solution of the HJB equation. Furthermore, the experience replay is
applied when updating the NN parameters to relax a persistent citation condition.

The structure of the paper is organized as follows. The robot manipulators’ dynamics
and the system transformation problem are presented in Section 2. In Section 3, based on
the transformed problem, the saturated optimal control law is designed. In Section 4, the
simulation results are shown. Some conclusions are made in section 5.

2. DYNAMICS OF THE ROBOT MANIPULATOR AND
SYSTEM TRANSFORMATION

This section presents the robot manipulator dynamics model and proposes a feedforward
controller to convert the tracking control problem into the optimal control problem.
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2.1. Dynamics of the robot manipulator

Consider a model of robot manipulator Euler – Lagrange systems [1] with the dynamic
equation presented as

D(φ)φ̈+H(φ, φ̇)φ̇+G(φ) = τ, (1)

where φ = [φ1, φ2, . . . , φn] ∈ Rn×1 is the angular position vector, φ̇ = [φ̇1, φ̇2, . . . , φ̇n] ∈ Rn×1

is the angular velocity vector, and φ̈ = [φ̈1, φ̈2, . . . , φ̈n] ∈ Rn×1 is the angular acceleration
vector. The inertia matrixD(φ) ∈ Rn×n is symmetric positive definite,H(φ, φ̇) ∈ Rn×n is the
Coriolis-centripetal matrices, and G(φ) ∈ Rn×1 is the dynamic friction. τ = [τ1, τ2, . . . , τn] ∈
Rn×1 is the control input vector, which is bounded by ρ, i.e.,∥τ∥ ≤ ρ.

Property 1. There exist positive constants bD, bH , and bG such that
∥∥D−1(φ)

∥∥ ≤ bD,
∥H(φ, φ̇)∥ ≤ bH , and ∥G(φ)∥ ≤ bG.

By defining υ = φ̇, dynamics (1) is rewritten as a strict-feedback nonlinear system as
follows {

χ̇φ = 𭟋φ(χφ) + gφ(χφ)χυ

χ̇υ = 𭟋υ(χφ, χυ) + gυ(χφ, χυ)τ,
(2)

where χφ = φ, χυ = υ, 𭟋φ(χφ) = 0n×1, gφ(χq) = In, fυ(χφ, χυ) = −D−1(φ)(H(φ, φ̇)υ +
G(φ)) ∈ Rn×1, and gυ(χφ, χυ) = D−1(φ) ∈ Rn×n.

Remark 1. From Properties 1, one has ∥𭟋υ(χφ, χυ)∥ ≤ b𭟋υ , ∥gυ(χφ, χυ)∥ ≤ bgυ , where bfυ
and bgυ are known positive constants.

Define χφd as the reference position trajectory, and tracking error zφ = χφ − χφd. The
control objective is to find feedback control laws for the system (2), such that lim

t→∞
zχφ(t) → 0.

Furthermore, a defined tracking cost function related to tracking errors and control inputs
is minimized.

2.2. System transformation

The problem of optimal controller design is easily accomplished with an affine nonlinear
system. Therefore, this section presents the steps to convert system (2) to the equivalent
affine nonlinear system by applying the backstepping technique [18].

We first define the new variables as follows: χυd = χ∗
υd+χ

a
υd, τ = τ∗+τa, where χυd is the

augmented pseudo-control input vector, χ∗
υd = [χ∗T

υd1, ..., χ
∗T
υdn]

T will be the saturated virtual
optimal control input designed in the next section, χa

υd is the feedforward virtual control
input, τ is the real control input vector, τ∗ = [τ∗T1 , ..., τ∗Tn ]T will be the saturated optimal
feedback control input designed in the next section, τa = [τaT1 , ..., τaTn ]T is the feedforward
control input.

Taking the derivative zφ and zυ, we get{
żφ = −χ̇φd + gφ(χφ)χ

∗
υd + gφ(χφ)χ

a
υd + gφ(χφ)zυ

żυ = −χ̇υd +𭟋υ(χφ, χυ) + gυ(χφ, χυ)τ
∗ + gυ(χφ, χυ)τ

a.
(3)
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We design the feedforward control inputs as follows{
χa
υd = g−1

φ (χφ)(Λ1zυ + χ̇φd + fφ(zφ))

τa = g−1
υ (χφ, χυ)

(
𭟋υ(zφ, zυ) + χ̇υd −𭟋υ(χφ, χυ)− gTφ (χφ)zφ − Λ2zυ

)
,

(4)

where zυ = χ̇φ − χυd, χ
a
υd and τa are limited by (ρ− σ tanh(1)), i.e.,{

∥χa
υd∥ ≤ ρ− σ tanh(1)

∥τa∥ ≤ ρ− σ tanh(1),
(5)

where 0 < σ < ρ.
Substituting (4) into (3), the tracking error dynamics become{

żφ = �̄�φ(zφ, zυ) + gφ(χφ)χ
∗
υd + gφ(χφ)zυ

żυ = �̄�υ(zφ, zυ) + gυ(χφ, χυ)τ
∗ − gTφ (χφ)zφ,

(6)

where �̄�φ(zφ, zυ) = 𭟋φ(zφ) + Λ1zυ, �̄�υ(zφ, zυ) = 𭟋υ(zφ, zυ)− Λ2zυ.

Lemma 1. Consider the following error dynamics

ż = �̄�φυ(zφ, zυ) + gφυ(χφ, χυ)µ
∗, (7)

where z = [zTφ , z
T
υ ]

T ∈ R2n×1, �̄�φυ(zφ, zυ) = [�̄�T
φ(zφ, zυ), �̄�T

v (zφ, zυ)]
T ∈ R2n×1,

gφυ(χφ, χυ) = diag [gφ(χφ), gυ(χφ, χυ)] ∈ R2n×2n, µ∗ = [χ∗T
υd , τ

∗T ]T ∈ R2n×1,

µa = [χaT
υd , τ

aT ]T ∈ R2n×1, µτ = [χT
υd, τ

T ]T = µ∗ + µa ∈ R2n×1. Suppose the saturated
optimal control law u∗ is designed to stabilize the system (7). In that case, the optimal
tracking control problem for system (2) and the optimal control problem for system (7) are
equivalent.

Proof. Consider a Lyapunov function for system (7) as follows

L1 =
1

2
zTφzφ +

1

2
zTυ zυ. (8)

Taking derivative (8) along trajectories of (6), one obtains

L̇1 = zTφ �̄�φ(zφ, zυ) + zTφ gφ(χφ)χ
∗
υd + zTφ gφ(χφ)zυ + zTυ �̄�υ(zφ, zυ) + zTυ gυ(χφ, χυ)τ

∗

− zTυ g
T
φ (χφ)zφ

= zTφ (�̄�φ(zφ, zυ) + gφ(χφ)χ
∗
υd) + zTυ (�̄�υ(zφ, zυ) + gυ(χφ, χυ)τ

∗)

= zT (�̄�φυ(zφ, zυ) + gφυ(χφ, χυ)µ
∗) .

(9)

On the other hand, for system (7), consider a Lyapunov function as

L2 =
1

2
zT z. (10)
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Taking derivative (10), one obtains

L̇2 =
1

2
zT (�̄�φυ(zφ, zυ) + gφυ(χφ, χυ)µ

∗). (11)

Comparing (9) with (11), it can be seen that if the control law u∗ makes the system (7) stable,
i.e., L̇2 < 0, then L̇1 < 0, therefore, the closed system (2) is also stable. In other words, the
optimal tracking problem for the system (2) is transformed into the optimal control problem
for the system (7).

The proof is completed. ■

Remark 2. From (4), it can be seen that if the optimal control input vector τ∗ is designed
to satisfy the constraint ∥τ∗∥ ≤ σ, then the control input vector τ satisfies the constraint
∥τ∥ ≤ ρ.

3. OPTIMAL TRACKING CONTROL

In this section, we analyze and design the optimal control law for system (7) with input
constraint, such that the tracking error is stable. Furthermore, the cost function is minimized,
where the cost function is suggested as

J (z) =

∞∫
t

(zTΘz +Ω(µ))dt, (12)

where Θ is a positive definite matrix, µ is an approximation of µ∗ at each given time, and
Ω(µ) ≥ 0 is the energy cost function. Then the problem of optimal tracking control for
system (2) is solved by Lemma 1.

Consider system (7) with the cost function defined as (12). For input constraints, one
choice for Ω(µ) is [26]

Ω(µ) = 2ϱ

∫ µ

0
tanh−T (s/ϱ)Rds, (13)

where R = diag(r1, ..., r2n) > 0. To facilitate the calculation and implementation of the
proposed algorithm, we transform equation (13) as follows:

- Firstly, using integral by parts (13), we get

Ω(µ) = 2ϱtanh−T

(
s

ϱ

)
Rs+Ω1(µ), (14)

where Ω1(µ) = −2ρR̄
µ∫
0

s∇γds, ∇γ = ∂tanh−T (s/ϱ)
∂s .

- Next, defining κ = tanh−T (s/ϱ) → s = ρ tanh(κ), Ω1(µ) becomes

Ω1(µ) = −2ρ2R̄

tanh−T (µ/s)∫
0

tanh(κ)dκ. (15)
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Defining β = tanh(κ) → dκ = dβ
1̄−tanh2(κ)

= dβ
1̄−β2 , where 1̄ = [1, 1, · · · , 1]T , (15) is rewritten

as

Ω1(µ) = −2ϱ2R̄

µ/ϱ∫
0

β

1̄− β2
dβ = ϱ2R̄ ln

(
1̄−

(
µ

ϱ

)2
)
. (16)

Substituting (16) into (14), Ω(µ) becomes

Ω(µ) = 2ρtanh−T

(
µ

ϱ

)
Rµ+ ϱ2R̄ ln

(
1̄− µ2

ρ2

)
. (17)

Using differential (12) along the system trajectories (7), we get the following Bellman
equation

zTΘz +Ω(µ) +∇J T (z)(�̄�φυ(zφ, zυ) + gφυ(χφ, χυ)µ) = 0, (18)

where ∇J (z) = ∂J (z)/∂z. The Hamilton function for the system (7) is defined as

H (z, µ,∇J (z)) = zTΘz +Ω(µ) +∇J T (z)(�̄�φυ(zφ, zυ) + gφυ(χφ, χυ)µ). (19)

Let J ∗(z) be the optimal cost function, which is defined as

J ∗ (z) = min
µ

(J (z)) . (20)

Define the optimal Hamilton function as follows

H (z, µ,∇J ∗(z)) = zTΘz +Ω(µ) +∇J ∗T (z)(�̄�φυ(zφ, zυ) + gφυ(χφ, χυ)µ). (21)

The HJB equation is presented as

H (z, µ∗,∇J ∗(z)) = zTΘz +Ω(µ∗) +∇J ∗T (z)(�̄�φυ(zφ, zυ) + gφυ(χφ, χυ)µ
∗) = 0, (22)

where ∇J ∗(z) = ∂J ∗(z)/∂z. Applying ∂H(z,µ,∇J ∗(z))
∂µ = 0 to (19), we derive the saturated

optimal control law as follows

µ∗ = argmin
µ
H(z, µ,∇J ∗(z)) = −ρ tanh

(
1

2ρ
R−1gTφυ(χφ, χυ)∇J ∗(z)

)
. (23)

To solve the optimal control problem, one solves the HJB equation (22), then determines
the saturated optimal control law µ∗ as (27). In this paper, we solve the HJB equation using
RL and NN. J ∗(z) is approximated as follows

J ∗(z) =W T ζ(z) + ϵ(z), (24)

∇J ∗(z) =W T ∂ζ(z)

∂z
+
∂∇ϵ(z)
∂z

=W T∇ζ +∇ϵ, (25)

whereW ∈ RH is the NN weight vector, ζ(z) : Rn → RH is the NN activation function vector
with ζ(0) = 0, H is the number of neurons in the hidden layer, ϵ(z) is the NN approximation
error.
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Assumption 1. One can choose ζ (z) to be a linearly independent basis set with quadratic,
tanh, or sigmoid elements to satisfy ∥ζ (z)∥ ≤ bζ , ∥∇ζ∥ = ∥∂ζ (z) /∂z∥ ≤ s∇ζ , ∥ϵ (z)∥ ≤ bϵ,
∥∇ϵ∥ = ∥∂ϵ (z) /∂z∥ ≤ s∇ϵ, where bζ , b∇ζ , bϵ, and b∇ϵ are positive constants [24].

Substituting (25) into (22), the equation HJB is rewritten as

H
(
z, µ∗,W T∇ζ

)
= zTΘz +Ω(µ∗) +W T∇ζ(�̄�φυ(zφ, zυ) + gφυ(χφ, χυ)µ

∗)− ϵH = 0, (26)

where ϵH = −∇ϵ(�̄�φυ(zφ, zυ) + gφυ(χφ, χυ).

By the weight vector (24) is unknown, J ∗(z) is approximated by

Ĵ (z) = Ŵ T ζ(z), (27)

where Ŵ ∈ RH . The control law (23) is rewritten as

µ̂ = −ϱ tanh
(

1

2ϱ
R−1gTφυ(χφ, χυ)∇ζT Ŵ

)
. (28)

Substituting (27) into (22), the HJB equation (22) is rewritten as

Ĥ
(
z, µ̂, Ŵ T∇ζ

)
= zTΘz +Ω(µ̂) + Ŵ T∇ζ(�̄�φυ(zφ, zυ) + gφυ(χφ, χυ)µ̂) = e1, (29)

where e1 = −W̃ T∇ζ(�̄�φυ(zφ, zυ) + gφυ(χφ, χυ)µ̂) + ϵH and W̃ =W − Ŵ .

The weight update law Ŵ is designed to minimize the squared error of E = 1
2e

T
1 e1. Apply

the algorithm Normalized gradient descent
˙̂
W= − α1

∂E
∂Ŵ

and the technique of experience

replay (namely concurrent learning (CL)) [26, 27], the weight update law Ŵ is proposed as
follows:

- If zT (�̄�φυ(zφ, zυ) + gφυ(χφ, χυ)µ̂) < 0, then

˙̂
W = −α1

η

(ηT η + 1)2

(
ηT Ŵ+zTΘz +Ω(µ̂)

)
− α1

∑P

i=1

η(ti)

(η(ti)
T η(ti) + 1)

2

(
η(ti)

T Ŵ+z(ti)
TΘz(ti) + Ω(µ̂(ti))

)
.

(30)

- If zT (�̄�φυ(zφ, zυ) + gφυ(χφ, χυ)µ̂) ≥ 0, then

˙̂
W = −α1

η

(ηT η + 1)2

(
ηT Ŵ+zTΘz +Ω(µ̂)

)
− α1

∑P

i=1

η(ti)

(η(ti)
T η(ti) + 1)

2

(
η(ti)

T Ŵ+z(ti)
TΘz(ti) + Ω(µ̂(ti))

)
+ α2

1

2
∇ζGz,

(31)

where η = ∇ζ(�̄�φυ(zφ, zυ)+gφυ(χφ, χυ)µ̂), G = gφυ(χφ, χυ)R
−1gTφυ(χφ, χυ), α1 > 0, α2 > 0.

The past data is recorded and stored in {η(ti)}Pi=1, {r(ti)}
P
i=1, where r(ti) = zTΘz + Ω(µ̂).

Note that {η(ti)}Pi=1 must be linearly independent, i.e., rank (η(t1), η(t2), ..., η(tP )) = H, the
number of selected is P ≥ H [26].
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Theorem 1. Consider the error dynamics to be defined by (12) with input constraint, the
HJB equation is given by (22), and the saturated optimal control law is given by (23). Let
the saturated optimal control law is approximated by NN (28), where the NN weights are
tuned online by (30) and (31). Then, the tracking errors and the approximation error are
UUB stable. Furthermore, the value function (27) and the control law (28) converge to the

near-optimal value, i.e.,
∥∥∥J ∗(z)− Ĵ (z)

∥∥∥ ≤ bJ , ∥µ∗ − µ̂∥ ≤ bµ, where bJ and bµ are small

positive constants.

Proof. Consider the Lyapunov function for system (7) as follows

J3 =
1

2
α2z

T z +
1

2
trace

(
W̃ T W̃

)
= J31 + J32. (32)

Taking the derivative of J3 with respect to time, one obtains

J̇3 = α2z
T ż + W̃ T ˙̃W = α2z

T (�̄�φυ(zφ, zυ) + gφυ(χφ, χυ)µ̂) + W̃ T ˙̃W. (33)

Firstly, the tuning law (30) is considered. By α2z
T (�̄�φυ(zφ, zυ) + gφυ(χφ, χυ)µ̂) < 0, it

is easy to see that ∃λ0 > 0 such that

α2z
T (�̄�φυ(zφ, zυ) + gφυ(χφ, χυ)µ̂) < −α2λ0 ∥z∥ . (34)

The weight approximation error dynamics can be written as

˙̃W = −α1ξ
(
ηT W̃ − ϵH

)
− α1

∑P

i=1
ξ(ti)

(
ηT (ti)W̃ − ϵH(ti)

)
, (35)

where ξ = η

(ηT η+1)2
. Taking the derivative J32 along (35), one obtains

J̇32 = −α1W̃
TΓW̃ + α1W̃

T

(
ξϵH +

∑P

i=1
ξ(ti)ϵH(ti)

)
, (36)

where Γ = ξηT +
∑P

i=1 ξ(ti)η
T (ti) > 0. Using Young’s inequality, we have

J̇32 ≤ −λmin(Γ)
∥∥∥W̃∥∥∥2 + ∥∥∥W̃∥∥∥2ξηT +

α2
1ϵH
4

+
∥∥∥W̃∥∥∥2∑P

i=1
ξ(ti)η

T (ti) +
α2
1Pϵ

2
H

4

≤ −(α1 − 1)λmin(Γ)
∥∥∥W̃∥∥∥2 + α1

2

4
(P + 1)ϵ2Hm,

(37)

where λ (.) is an eigenvalue of the matrix and ϵHm is the upper bound of ϵH . From (34) and
(37), we have

J̇3 ≤ −α2λ0 ∥z∥ − ψ1

∥∥∥W̃∥∥∥2 + ψ2, (38)

where ψ1 = (α1 − 1)λmin(Γ), ψ2 = α1
2

4 (P + 1)ϵ2Hm and α1 > 1. The Lyapunov derivative is
negative if

∥z∥ > ψ2

α2λ0
= b̄z, (39)

∥∥∥W̃∥∥∥ >√ψ2

ψ1
= b̄W̃ . (40)
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Next, the tuning law (31) is considered. J̇31 is rewritten as

J̇31 = α2z
T �̄�φυ(zφ, zυ) + α2z

T gφυ(χφ, χυ)µ̂− 1

2
α2z

TG∇ζT Ŵ . (41)

According to Property 1, α2z
T �̄�φυ(zφ, zυ) is bounded by (−ψ3∥z∥2), i.e.,

α2z
T �̄�φυ(zφ, zυ) < −ψ3∥z∥2, (42)

where ψ3 = α2b�̄�, b�̄� is the upper bound of �̄�φυ(zφ, zυ). Then, J̇3 becomes

J̇3 ≤ −ψ3

(
∥z∥ − ψ4

2ψ3

)2

− ψ1

∥∥∥W̃∥∥∥2 + ψ2 +
ψ2
4

4ψ2
3

, (43)

where ψ4 =
1
2α2bGb∇ζ∥W∥, ∥G∥ ≤ bG. The Lyapunov derivative is negative if

∥z∥ >

√
4ψ2

3ψ2 + ψ2
4

4ψ3
3

+
ψ4

2ψ3
= ¯̄bz, (44)

∥∥∥W̃∥∥∥ >√4ψ2
3ψ2 + ψ2

4

4ψ2
3ψ1

= ¯̄bW̃ . (45)

From (39), (40), (44), and (45), It can be concluded that if ∥z∥ or
∥∥∥W̃∥∥∥ exceeds a compact

set bz or bW̃ , then J̇3 < 0, where bz = max
(
b̄z,

¯̄bz

)
and bW̃ = max

(
b̄W̃ ,

¯̄bW̃

)
. Therefore, the

tracking and NN errors are UUB stable [28].
From (23), (24), (27), and (28), it can be seen that Ĵ (z), µ̂ converge to the near-optimal

values, i.e.,∥∥∥J ∗(z)− Ĵ (z)
∥∥∥ ≤ bW̃ b∇ζ + bϵ = bJ , and ∥µ∗ − µ̂∥ ≤ λmin (R) gφυmax

(
bW̃b∇ζ + b∇ϵ

)
= bµ,

with bJ ≥ 0, bµ ≥ 0. One chooses α1 and α2 appropriately to achieve the desired convergence
quality.

The proof is completed. ■

4. SIMULATIONS

In this section, the efficiency of the saturated optimal tracking controller (SOTC) is
verified by simulation. The updating of the weights of the NN using only PE (persistence of
excitation) is performed to show the effect of using CL.

Consider a two-link robot manipulator [19] with saturation torques, the matrices of the
dynamics equation are

D(φ) =

[
ϱ1 + 2ϱ3 cos (φ2) ϱ2 + ϱ3 cos (φ2)
ϱ2 + ϱ3 cos (φ2) ϱ2

]
,

H(φ, φ̇) =

[
−ϱ3 sin(φ2)φ̇2 −ϱ3 sin(φ2)(φ̇1 + φ̇2)
ϱ3 sin(φ2)φ̇1 0

]
, G(φ) =

[
8.45 tanh(φ̇1)
2.35 tanh(φ̇2)

]
,

(46)

where ϱ1 = 3.473 kgm2, ϱ2 = 0.196 kgm2, ϱ3 = 0.242 kgm2, the control input vector
τ = [τ1, τ2]

T is bounded by ∥τ∥ ≤ 4 N.m. Let E = (X,Y ) be the coordinates of the
manipulator’s end-effector in the workspace and Ed = (Xd, Yd) be the desired coordinates.
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Figure 1: Evolution of NN weights in the case of
using only PE.

Figure 2: Evolution of NN weights in the case of
using CL.
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Figure 4: The position of the second joint

The desired path of Ed is given as follows{
Xd = 1 + 0.5 sin(0.5t+ π

2 )
Yd = 1 + 0.5 cos(0.5t+ π

2 ).
(47)

The reference position trajectory χφd is determined by the inverse kinematics equation, i.e.,{
χφd2 = arccos

X2
d+Y 2

d −l21−l22
2l1l2

χφd1 = arctan Yd
Xd

− arctan
l2 sin(χφd2)

l1+l2cos(χφd2)
,

(48)

where l1 = l2 = 1 m. The initial position and velocity values are chosen as φ(0) =
[0.5,−0.5]T , φ̇(0) = [0, 0]T .

We choose the SOTC parameters as follows: Λ1 = Λ2 = diag[1, 1], the activation
function is determined as the Kronecker product quadratic polynomial basis vector, i.e.,
ζ(z) = [z2φ1, zφ1zφ2, zφ1zυ1, zφ1zυ2, z

2
φ2, zφ2zυ1, zφ2zυ2, z

2
υ1, zυ1zυ2, z

2
υ2], Θ = I ∈ R4×4, R = 1,

α1 = 50, α2 = 0.01, σ = 0.6, ρ = 4, initial values for the weights of NN are zeros. The PE
condition is applied by adding noise

PE = 0.5(sin2(t) cos(t) + sin2(2t) cos(0.1t) + sin2(1.2t) cos(0.5t) + sin5(t) + sin2(1.12t)

+ cos(2.4t) sin3(2.4t)),
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Figure 5: The position tracking errors
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Figure 6: The saturated optimal control inputs
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Figure 7: The feedforward control inputs
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Figure 8: The control torques

to the control inputs. Simulation time is t = 100 s with a sampling period of T = 0.01 s.

We perform SOTC simulation in case of using only PE condition with 0 ≤ t ≤ 80 s.
In this case, the results of the weights NN are illustrated in Figure 1, showing that the
weights get stuck in a local minimum [26]. It isn’t easy to obtain convergent weights
using only PE. On the other hand, using PE for a long time affects the actuators and
is challenging to implement in practice. SOTC only uses the PE condition for the first
0.4 s, then uses CL with the data stack size as P = 20. Figure 2 illustrates the conver-
gence of the NN weights of the SOTC. The weights of NN converge to the optimal values
W = [0.4303,−0.6671,−0.148, 0.0157, 1.14,−0.0216, 0.1913, 0.0074, 0.0284, 0.01572]T . Fig-
ures 3, 4, and 5 show the position of the joints and the tracking errors. After the algorithm
converges, the tracking errors are approximately 10−3. SOTC provides the saturated optimal
control inputs value, as shown in Figure 6, the feedforward control inputs value, as shown in
Figure 7, and the control inputs value, as shown in Figure 8. It can be seen that the control
inputs are within the saturation limit. The result of the actual path of E is shown in Figure
9, where the actual path of E is determined by the forward kinematics equation, i.e.,{

X = l1cos(χφ1) + l2cos(χφ1 + χφ2)
Y = l1sin(χφ1) + l2sin(χφ1 + χφ2).

(49)
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Figure 10: The tracking error of SOTC and OTC
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Next, we simulate a comparison with an optimal tracking controller (OTC) proposed
in [21]. Select the parameters for the OTC as follows: Q = I ∈ R4×4, R = diag[20, 100],
Λ = diag[200, 50]. Comparative simulation results are shown in Figures 10, 11, and 12. The
mean square error (MSE) of the positions of the control algorithms is calculated according
to the following formula

MSE =
1

n

n∑
i=1

(
χi
φ − χi

φd

)2
, (50)

where n is the total number of samples stored. The results of the MSE values are shown in
Table 1. It can be seen that the OTC provides significant oscillation control inputs. Fur-
thermore, OTC has a larger tracking error than SOTC. The results show that the saturation
inputs problem has been resolved, and the tracking performance of the SOTC has been
verified.

Table 1: Comparison of tracking error of SOTC and OTC

MSE The first joint The second joint

SOTC 0.0025 0.0084

OTC 0.0059 0.0159
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Remark 3. The proposed algorithm only uses a single NN instead of 2 NNs [17, 20]. The
algorithm in [17, 20] uses one NN critic and one NN actor. For system (7), a NN needs
ten weights and ten action functions. Therefore, the number of parameters to be stored in
the proposed algorithm is 20, and the algorithm in [17, 20] is double that of the proposed
algorithm. Thus, the computational cost of the algorithm in [17, 20] increases, which will
reduce the convergence speed significantly compared to the proposed algorithm.

5. CONCLUSION

This paper has solved the problem of designing the optimal tracking controller for robot
manipulators with saturation torques. The feedforward control inputs have been proposed
to convert the position-tracking control problem into the optimal control problem. The
saturated optimal control law was built using a single NN based on the online RL algorithm.
When updating the weights of the NN, the CL technique was used to relax a persistent
citation condition. The proposed controller ensures that the tracking and approximate errors
are UUB stable and the cost function converges to a near-optimal value. In future work, we
will apply the proposed controller in an experiment.
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