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Abstract. The prediction of weather changes, such as rainfall, clouds, floods, and storms, is critical

in weather forecasting. There are several sources of input data for this purpose, including radar and

observational data, but satellite remote sensing images are the most commonly used due to their ease

of collection. In this paper, we present a novel method for weather nowcasting based on Mamdani

complex fuzzy inference with multiple band input data. The proposed approach splits the process

into two parts: the first part converts the multiple band satellite images into real and imaginary parts

to facilitate the rule process, and the second part uses the Spatial CFIS+ algorithm to generate the

predicted weather state, taking into account factors such as cloud, wind, and temperature. The use of

MapReduce helps to speed up the algorithm’s performance. Our experimental results show that this

new method outperforms other relevant methods and demonstrates improved prediction accuracy.

Keywords. Weather forecast; Complex fuzzy inference system; Remote sensing images; Multiple

band satellite images.

1. INTRODUCTION

Today’s society is planning heavily relies on weather forecasting, which uses science and
technology to make predictions about clouds, temperature, and rainfall,... in a specific area.
Lower hazards for humans result from more accurate weather predictions. A detailed picture
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of the current weather conditions in a particular area needs to be prepared to forecast the
weather. This requires regular and accurate monitoring of the atmospheric layers from low
to high by surface and high-altitude observation stations and remote sensing systems such as
satellite images and meteorological radars. With the advantages of science and technology,
especially space science, the collection of satellite images is now easier and cheaper. Various
satellite images are stored in [3], where users can get them free for weather prediction or
other relevant research. Bands separate the satellite images after collecting to distinguish
the factor that the band results in, such as cloud, temperature, humidity, etc.

There are some typical widely used approaches to forecast weather from satellite images
in [1, 7–12]. The first ones [7–9] used existing models with small changes for adapting with
data to forecast the weather. Although these methods resulted in positive values in the
experiment, they still depended on these models and were not flexible with other data.
The second ones [1, 10–12] employed many scientists’ attention relating to fuzzy inference
systems and complex fuzzy inference systems. However, the limitations of these approaches
were using single-band satellite image series for input data. This may predict overfitting to
the training data, while the real weather may change rapidly due to other relevant factors
like humidity, temperature, etc.

In this paper, a novel method for weather nowcasting based on Co-Spatial complex fuzzy
inference with multiple band input data is introduced. This innovative algorithm has two
phases to do the training and testing phases. The first one with split multiple band images to
extract the real and imaginary parts to build the rules. The last one uses the rule to export
the forecast image. Experimental evaluation on multiple band satellite image sequences will
be performed to compare with others on prediction accuracy. The results of the experiments
show that the proposed method is better than the relevant ones.

The rest of the paper is organized as follows. Section 2 and 3 presents the related works
and backgrounds for weather forecasting. Section 4 indicates the proposed method, and
Section 5 shows the experimental results. Finally, conclusions and further works are covered
in Section 6.

2. RELATED WORKS

With the vigorous development of recording/imaging equipment and satellite imaging
equipment, the quality and accuracy of satellite images is getting higher and higher. Along
with that, a variety of applications related to these images are also known. Some of them
may include the following:

Gao [7] et al. researched the problem of retrieving water leaving reflectances. In this
study, with the database obtained from GOES 16 17, the authors proposed many spectrum-
matching methods to improve the efficiency of the prediction process. The results of this
study help open up a new direction that can be complementary to the current operational
ocean.

In addition, the database from NOAA, GOES 16 17, there have also been many studies
related to the problem of predicting variation based on data, which can be mentioned as:

The study of Bao [8] and colleagues on the problem of detecting the direction of storm
movement using the HAFS model. The forecast results from this method are highly ap-
preciated in terms of image quality. The characteristics of the storm are also shown more
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clearly, offering a solution that is more feasible in the future. In the study of Meng [9] et
al., in building an operator to calculate the path of clouds/ice on the database GOES-17,
the results were obtained from real datasets. Other studies show the powerful effects of the
operators built by the author.

To solve problems related to time series forecasting in general or weather forecasting
in particular, a recent method attracting many scientists’ attention is using fuzzy inference
systems and complex fuzzy inference systems. Some research can be mentioned, such as the
study of Phong [11] and the research team on the time series prediction problem using the
PSO swarm optimization algorithm and simulated annealing technique. The study has shown
many essential fuzzy and defuzzifying formulas for time series forecasting. The experimental
results of the model on several datasets show very positive effects of this study. Another
study that can be mentioned is the study of time series prediction based on the semantic
rules of Phong [12]; by including semantic information in the rule system, the author has
shown another potential direction to solve this problem based on some experimental results
obtained from the proposed model. However, these methods often need help processing time
due to many rules and easily cause overfitting. To solve this problem, many solutions to
reduce the rule have been proposed, one of which can be mentioned is the study of Liu [10]
and collaborators. In this study, the author gave a solution based on the firing strength rule
values to evaluate the rule’s effectiveness, thereby giving a more suitable set of rules. To
enhance the algorithm performance, MapReduce [14], a model designed by Google, was used
to process the data more effectively. The model, when tested in practice, has obtained very
positive results.

3. BACKGROUND

3.1. Mamdani complex fuzzy inference system (M-CFIS)

The Mamdani Complex Fuzzy Inference System (M-CFIS) [2] integrates the concept of a
complex fuzzy inference system (CFIS) and the classical Mamdani FIS (M-FIS). The general
structure of Mamdani CFIS consists of six steps: Create a set of complex fuzzy rules, fuzzify
the inputs, find the rule’s firing strength, define the consequence of the complex fuzzy rules,
aggregation and defuzzification are converting complex fuzzy output values to obtain crisp
values. The steps of the Mamdani complex fuzzy inference system algorithm are described
in Figure 1 below.

Figure 1: Diagram of M-CFIS algorithm
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3.2. Co-Spatial complex fuzzy inference system (Co-Spatial CFIS+)

The Co-Spatial complex fuzzy inference system (Co-Spatial CFIS) [1] is a developing
version of Mamdani-CFIS based on CFS theory for change detection from satellite images
contains the spatial triangles of the fuzzy rules with the 6 boundary point value of the real
part, imaginary part (a, b, c, a′, b′, c′) and the parameter to regulate the boundary point value
as the following formulas (1-6)
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j × V rel
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j
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where,

- X: The set of the input parameters,

- HoD: The value of the imaginary part of the input image,

- Ui,j : Degree of membership,

- a, b, c ∈ [0, 1]: The boundary point value of the real part,

- a′, b′, c′ ∈ [0, 1]: The boundary point value of the imaginary part,

- V rel
j : The real part cluster center value of the jth rule,

- V img
j : The imaginary part cluster center value of the jth rule.

3.3. MapReduce

MapReduce is a model exclusively designed by Google [14] with the ability to program-
matically process large amounts of data in parallel while distributing algorithms on the same
computer. Recently, MapReduce is becoming one of the more generalizing terms.

MapReduce will include two main stages, Map and Reduce.

- Map stage performs “filtering” and “classifying” input data.
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- The Reduce stage will perform the process of aggregating all data based on the Map
stage results.

With the above design, the MapReduce model has some advantages as follows:

- MapReduce can easily handle all problems with vast amounts of data thanks to its
computational power and complex analytical tasks. In just a short period, it can quickly
process and give easy results.

- MapReduce can run in parallel on different distributed computers with the ability to
operate independently combined with the distribution and handling of technical errors to
bring high efficiency to the entire system.

- MapReduce can execute on various programming languages with corresponding support
libraries. Details of the implementation stages of MapReduce are implemented as follows:

- Map function: This function is responsible for processing a key pair (key, value) to
create a new key pair (keyl, valuel). At this time, the key-pair (keyl, valuel) will act as an
intermediary. After that, the user only needs to write data to the hard disk and quickly
notify the Reduce function to let the data enter the Reduce input.

- Reduce function: This function has the task of receiving the pair of intermediate key-
words and the value corresponding to that amount of keywords (keyl, valuel) to form a
different set of keys by concatenating them. These key/value pairs will be entered into the
Reduce functions through a position pointer. This process will make it easier for program-
mers to manage a large number of lists as well as allocate values that are suitable for system
memory.

In addition, in between Map and Reduce, there is another intermediate step called Shuf-
fle. After the Map completes its task, Shuffle will continue to collect and synthesize the
keyword/intermediate value pair created by the previous Map and pass it to Reduce for
further processing.

4. THE PROPOSED METHOD

4.1. Main system

With input data as satellite images according to different channels, the study was con-
ducted to determine each input image channel’s real and imaginary parts. To connect the
data of image channels to evaluate better the influence of different channels on the prediction
results, the study uses a mapping mechanism to help determine the imaginary part values
of each input image channel based on the imaginary part values of the other input image
channels.

Next, conduct the rule generation process based on the Co-Spatial CFIS+ [1] method.
The rules obtained from this process will be used for the corresponding image prediction
process. However, to improve the quality of the rule system, the study also shows some
solutions to help reduce the number of rules used while maintaining specific efficiency. In
addition to reducing the processing time, the study uses a parallel calculation mechanism
between color channels and image bands to reduce prediction time.

Details of the steps are described in Figures 2, 3 as below.
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Figure 2: The Training phase of the proposed method

Figure 3: The Testing phase of the proposed method
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4.2. Details of the proposed method

� Step 1. Data preprocessing

Step 1.1. Choose input images band

The US Navy database [3] provides 25 bands of images (including single-channel satel-
lite images and composite images from channels); this study used three channels, in-
cluding:

- GeoColor imagery supplies as close an approximation to daytime True Color im-
agery as is possible from GOES-16 and thus allows for an intuitive understanding of
meteorological and surface-based components.

- The Air Mass RGB analyzes the environment enclosing synoptic systems by improving
air masses’ temperature and moisture factors. Additionally, this RGB can determine
between polar and tropical air masses, especially along upper-level frontal borders, and
identify high-level, mid-level, and low-level clouds.

- Day cloud phase RGB is used to estimate the grade of the Cooling cloud: This RGB
is used to evaluate the phase of cooling cloud tops to observe convective initiation,
storm evolution, and decay. The Day Cloud Phase Distinction RGB takes benefit of
cloud reflectance distinctions between the observable and near-infrared channels and
temperature variances between ground and clouds in the infrared to supply improved
contrast between background textures and grades of clouds (i.e., water vs. ice).

Step 1.2. Input splits

The real part is the actual value of the input image It, and the imaginary part is the
difference between the nearest pixel and the previous pixel represented by the equation
(7) below

HoD = I(t) − I(t−1), (7)

where,

- HoD: The value of the imaginary part of the input image,

- I(t): The real value of the input image at time t,

- I(t−1): The real value of the input image at time t− 1.

Step 1.3. Mapping

The variation of elements in a band comes not only from the information in that band
but can also be influenced by other image bands, so it is necessary to normalize the
phase or transform data of the bands to improve high-quality input made according to
the formula (8) below

MHoD
(i)
j =

HoD
(i)
j + α

∑B
k=1,k ̸=iHoD

(k)
j

1 + α (B − 1)
, j = 1, 2, ..., N, (8)

where,

- MHoD
(i)
j : The imaginary value of the jth pixel in band i after mapping,

- HoD
(i)
j : The imaginary value of pixel jth in band i,
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- HoD
(k)
j : Imaginary value of pixel jth in band k,

- α: The correlation coefficient between the imaginary part of the ith color channel and
the imaginary part of the remaining color channels,

- B: Number of bands used for forecasting,

- N : Number of pixels of the input image.

Step 1.4. Input data

After mapping in Step 1.3, the input data for the training process is synthesized from
the real part data of the input data, and the imaginary part value after the mapping
has the following form: X(t)

(
I(t),MHoD

)
.

� Step 2. Clustering

In this section, the study proposes the MapReduce ComplexFuzzy model based on
the fundamental improvement of the MapReduce Fuzzy [15] algorithm to conduct real
and imaginary parts clustering. The MapReduce ComplexFuzzy proposed model is
presented in Figure (4), where:

- The input image is converted into a list for MapReduce processing.

- The cluster centers of the real and imaginary parts are randomly initialized.

- Perform data division into multiple windows (windows have different sizes and can
be bounded by each other so that the ability to preserve information is the best). Each
window is processed in parallel by MapTask to obtain new data.

- MapTask processes all windows; new data from previous steps will be sorted, merged,
and grouped in clusters.

- ReduceTask will process clustered data to recalculate cluster centers.

- The system checks the convergence of cluster centers. If not converged, go back and
continue to implement MapTask and ReduceTask. If it has converged, then aggregate
the clustering results as cluster centers V and degree matrices belonging to U to serve
the rule generation process of the next step.

Details of the steps to implement the MapReduce ComplexFuzzy algorithm are as
follows.

Step 2.1. Data transformation for MapReduce complex fuzzy

Transform input data into lists containing information such as the relative position,
and the real and imaginary part value of pixels. This process will later transform the
input data to fit the MapReduce ComplexFuzzy model and retrieve the relative pixel
position later.

Step 2.2. Splitting the input image (Splitting)

From the data obtained from step 2.1, the study divides the input lists into regions of
size c× c based on sliding windows. This process aims to split the data for distributed
processing at the nodes but does not ignore the features that can be confused due to
the image segmentation process.

Step 2.3. Mapping
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Figure 4: MapReduce complex fuzzy algorithm diagram

Algorithm 1 Mapping Complex Fuzzy algorithm details

Input:
Each Xij data element is a tuple consisting of row and column position information, real

part value, imaginary part value (i, j, xij , HoDij), the fuzzifier m.
Output:

The result after convergence includes a set: The value of the center of cluster V and the
list of elements belonging to the corresponding cluster V is the tuple (i, j, xij , HoDij).
Initialize:

Randomly initialize the value of the cluster center V of the real part and the imaginary
part.

1: Iterate the elements in the data set Xij one by one
2: Consider each value of cluster center µij according to the following formula

µij =

[[∑C

k=1

∑C

l=1

(
d ((xij , HoDij) , Vk)

d ((xij , HoDij) , Vl)

) 2
m−1

]]−1

where, d ((xij , HoDij) , Vl) is the euclidean distance of the pixel under consideration
xij , HoDij , and the cluster center Vk

3: Update the parameter set of cluster center V and the value corresponding to cluster
center V , including (i, jxij , HoDij và µij)

4: Update cluster centers V and (i, j, xij , HoDij , and µij) to set lstK2V 2
5: The output is the set of lstK2V 2

Step 2.4. Shuffling

Based on the values of cluster center V , this research will proceed to group the cluster
centers with similar values into the same group. These groups will be saved toK2lstV 2.
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Step 2.5. Reduce

Algorithm 2 Reduce Complex Fuzzy algorithm details

Input: The result obtained in step 2.4 (Shuffling) K2lstV 2, the fuzzifier m
Output:
New cluster center value (real part, imaginary part) after being updated

1: Initialize the array cnew with the same number of elements as the original divisor cluster.
Where values cnew = 0.

2: Initialize variable totalU = 0
3: For each key Vij consider each pair of data points (i, j, xij , HoDij , µij), respectively.

we have cnew+ = (xij , HoDij)× (µij)
m

4: totalU+ = (µij)
m

5: Update Vij =
cnew
totalU

6: If Vij is not converged, it will return to the Mapping step to recalculate the U value of
membership.
Otherwise, return the value K2lstV 2

� Step 3. Training parallel

Using the Co-Spatial CFIS+ [1] method and parallel computing technique to conduct
parallel training of each band and each color channel in a band.

� Step 4. Synthesize rule

Step 4.1. Rule pruning

During the inference process, rules with a small number of pixel values can be inferred
within the bounds of these rules. The results of this rule can lead to noisy predictions
because only a tiny portion of the data is represented. Therefore, we will remove these
rules and keep the ones with better representation.

We define the rule to be discarded according to the following expression (9){
P (i)outside

N ≤ ε remove the ith rule
else wise keep using the ith rule,

(9)

where,

- P (i)outside: The total number of pixels to infer is outside the bound,

- ε: Rule rejection threshold value.

Step 4.2. Rule optimizing

To continue to improve the quality of the rule system, we will remove the duplicate rules
in the rule system. Two rules i, j are considered duplicates if the following expression
(10) is satisfied{

ai
aj

+ bi
bj

+ ci
cj

+ a′i
a′j

+ b′i
b′j

+ c′i
c′j

≤ θ merge pth and qth rule

elsewise keep using pth and qth rule.
(10)
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The rule r is combined from two rules i, j satisfying the following expression (11)

ar =
ai + aj

2
; br =

bi + bj
2

; cr =
ci + cj

2
; a′r =

a′i + a′j
2

; b′r =
b′i + b′j

2
; c′r =

c′i + c′j
2

.

(11)

� Step 5. Predict output image

From the rule system obtained after training, conduct parallel processing between
bands and each color channel to predict the output image of each color channel on
each band. The forecast results of each channel and each band will then be aggregated
into the final forecast image.

5. EXPERIMENTAL RESULTS

This section presents performance comparisons of the proposed method with Co-Spatial
CFIS+ [1] in which the proposed approach demonstrates effectiveness and merit in compar-
ison with the existing approaches.

5.1. Environmental setup

To ensure the quality and objectivity of experimental situations about data, algorithms,
and matching measures. The research conducts experiments on the US Navy’s [3] dataset in
the same location at different time intervals. The dataset contains images collected in Hawaii
(Data 1), U.S. Pacific Coast (Data 2), and Gulf of Mexico (Data 3), each dataset includes 3
bands GeoColor, Air Mass RGB, and Day cloud phase RGB, and using the Spatial CFIS+
algorithm and on two measures, RMSE and R2, to compare the predictive quality and
reliability of the model with the number of Clusters of 10 and then to evaluate the efficiency
of the model in terms of processing time, the research adds comparisons on 14, 17, and 20
nodes. Experimental results were aggregated and averaged over ten experimental runs. The
result is performed on VXRAIL S470 system server with eight physical server nodes; each
physical server node has an Intel E5-2660 V414C 2.0 GHz processor, 256 Gb RAM, and 512
Gb Hard Drive.

5.2. Evaluation measures

To evaluate the effectiveness of the proposed model, we use two performance indexes:
The R squared (R2) [13] measures, and the root mean square error (RMSE) [6]. These
indexes are defined as fomulas (12), (13) as follows

RMSE (Xdb, X(t+1)) =

√√√√ n∑
i=1

(
Xdb

i −X
(t+1)
i

)2

, (12)

R2 = 1− RSS

TSS
, (13)

where,

- X(t+1): The observed value,
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- Xdb: The predicted value,
- n: The number of samples,
- RSS: Sum of squared residuals,
- TSS: Total sum of squares.

5.3. Results

The results of comparing the proposed model and the Spatial CFIS+ model on the RMSE
measure are shown in Table 1 and Figure 5.

Table 1: Average RMSE results of models on three datasets

Data
Spatial CFIS+ Proposed method

Forecast
image
1

Forecast
image
2

Forecast
image
3

Forecast
image
4

Forecast
image
5

Forecast
image
1

Forecast
image
2

Forecast
image
3

Forecast
image
4

Forecast
image
5

Data 1 3.237 6.436 6.903 7.078 8.388 2.825 5.876 6.515 6.442 7.432

Data 2 5.582 5.840 6.328 6.493 8.210 5.105 5.287 5.795 5.909 7.601

Data 3 6.544 7.280 7.814 7.967 8.932 6.051 6.640 7.193 7.247 8.020

Figure 5: Sum of RMSE of two methods on three datasets

From the above results, the proposed model has an average RMSE result for ten exper-
imental runs, showing that the model’s accuracy has been improved through the average
value of the total RMSE of ten runs over three times better. The dataset of the proposed
model has been reduced by 10% compared to the Spatial CFIS model. The proposed model
still uses the spatial-temporal complex fuzzy inference system as the basis for the rule gen-
eration process, but the prediction quality is significantly improved because the imaginary
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preprocessing of the model is synthesized with additional factors. Impact factors from other
channels help enhance the quality of the forecast.

In addition, the proposed model and Spatial CFIS+, both models have problems related
to cumulative errors. The more predictive images, the greater the error. However, with
the proposed model, the cumulative error between consecutive images has been significantly
reduced compared to the Spatial CFIS+ model, which plays an essential role in improving
the model’s efficiency.

The results of comparing the proposed model and the Spatial CFIS+ model on the R2

measure are shown in Table 2 and Figure 6.

Table 2: Results R2 of the proposed method and Spatial CFIS+

Data
Spatial CFIS+ Proposed method

Forecast
image
1

Forecast
image
2

Forecast
image
3

Forecast
image
4

Forecast
image
5

Forecast
image
1

Forecast
image
2

Forecast
image
3

Forecast
image
4

Forecast
image
5

Data 1 0.964 0.961 0.966 0.967 0.965 0.970 0.965 0.971 0.974 0.970

Data 2 0.966 0.961 0.961 0.959 0.963 0.972 0.966 0.967 0.965 0.967

Data 3 0.960 0.959 0.964 0.967 0.966 0.966 0.966 0.969 0.972 0.972

Figure 6: Comparison results R2 of the proposed method and Spatial CFIS+

From the results of comparing R2 of the two models on the three datasets shown in Table
2 and Figure 6, we can see that the correlation of the proposed model and the Spatial CFIS+
model is relatively similar to the total difference value of 0.6%.

Especially with Data 1 and Data 3, there is a relatively straightforward difference in the
corresponding forecast images compared with the Spatial CFIS+ model. This shows that
the forecast results from the proposed model have high confidence in these datasets. The



46 NGUYEN TRUNG TUAN, et al.

experimental results of the total processing time of the two models on the three datasets are
shown in Table 3 and Figure 7 below.

The experimental results of the total processing time of two models on three datasets are
shown in Table 3 and Figure 7, indicating that the processing time of the proposed model is
significantly reduced. The proposed model has a total processing time on all three datasets
from 3 to 5 times faster than the Spatial CFIS+ model. When the number of clusters is
increased, the proposed model shows its superiority.

Table 3: Comparing the total processing time of the proposed model and Spatial CFIS+ on different

Cores.

Data
Spatial CFIS+ Proposed method

10 Cluster 14 Cluster 17 Cluster 20 Cluster 10 Cluster 14 Cluster 17 Cluster 20 Cluster

1 core 41.489 73.416 81.098 104.345 28.161 33.651 39.381 46.519

4 cores 34.565 61.561 67.203 86.731 11.983 17.416 19.712 29.943

8 cores 28.113 50.394 55.010 71.382 7.326 9.376 12.333 19.447

12 cores 28.151 49.841 53.026 70.793 7.851 9.703 13.095 19.456

(a) Time processing for 10 clusters (b) Time processing for 14 clusters

(c) Time processing for 17 clusters (d) Time processing for 20 clusters

Figure 7: Computational time of methods on three datasets
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Table 4: The Summary table of performance evaluation results on 10 clusters

No Core CPU
SPATIAL CFIS+ Proposed method

Speedup Efficiency Speedup Efficiency

1 cores - - - -

4 cores 1.200 0.300 2.350 0.588

8 cores 1.476 0.184 3.844 0.481

12 cores 1.474 0.123 3.587 0.299

(a) Speedup (b) Efficiency

Figure 8: The total speedup and efficiency factor between three datasets of 10 clusters

Table 5: The Summary table of performance evaluation results on 14 clusters

No Core CPU
SPATIAL CFIS+ Proposed method

Speedup Efficiency Speedup Efficiency

1 cores - - - -

4 cores 1.193 0.298 1.932 0.483

8 cores 1.457 0.182 3.589 0.449

12 cores 1.473 0.123 3.468 0.289

(a) Speedup (b) Efficiency

Figure 9: The total speedup and efficiency factor between three datasets of 14 clusters
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Table 6: The Summary table of performance evaluation results on 17 clusters

No Core CPU
SPATIAL CFIS+ Proposed method

Speedup Efficiency Speedup Efficiency

1 core - - - -

4 cores 1.207 0.302 1.998 0.499

8 cores 1.474 0.184 3.193 0.399

12 cores 1.529 0.127 3.007 0.251

(a) Speedup (b) Efficiency

Figure 10: The total speedup and efficiency factor between three datasets of 17 clusters

The results in the Table 4, 5, 6 shows that the speedup value will be most effective when
the number of CPU cores is 8, and the efficiency value will be the most effective when the
number of CPU cores is 4. This is consistent with the assessment in experiments. When
performing parallel computation on multiple CPUs, the increase in the amount of the core
is not proportional to the efficiency of the model’s processing time.

The Speedup value effectively describes the computation time of the model with one and
multiple CPU cores. For both models, this value tends to decrease as the number of cores
increases. However, the proposed model gives much better results in all cases.

The efficiency value determined by the ratio of computational efficiency over time and the
number of cores, tends to decrease as the number of cores increases. However, the proposed
model gives better results, up to 100%, than the Spatial CFIS+ model.

When the number of clusters changes these values, the proposed model still maintains
speedup and efficiency. Still, the model tends to slow down significantly when the number
of clusters becomes very large.

Although the proposed model for the efficiency and speedup values of the proposed
model has improved, the new efficiency values are only at a relative threshold between
approximately 0.4 and 0.5.

6. CONCLUSIONS

This research has focused on presenting the application model of a spatial-temporal
complex fuzzy inference system in predicting the change of satellite image series with the
following main characteristics:
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- Propose a way to synthesize the new imaginary part based on the synthesis of its
imaginary part and the imaginary part synthesized from the other channels.

- Propose an algorithm that uses MapReduce in the data clustering process called MapRe-
duce ComplexFuzzy based on the improvement of the MapReduce Fuzzy algorithm.

- Propose a mechanism for synthesizing rules and optimizing the rule system.

Although the model has had initial outcomes, as mentioned above, the model still has
some limitations:

- The MapReduce method and distributed processing in the proposed model are only
processed at the clustering step to replace the FCM algorithm, so the model’s processing
speed has remained relatively high.

- The rule reduction and optimization mechanism of the rule system in the model are
still relatively simple, so the rule has yet to be improved much.
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