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Abstract. Wi-Fi Fingerprinting based Indoor Positioning System (IPS) aims to help locate and nav-

igate users inside buildings. It has become a popular research topic in recent years with two goals of

removing redundant data and increasing positioning accuracy and it has produced acceptable results.

In this paper, we propose a feature reduction method and apply a machine learning model that com-

bines two-phases. Specifically, Phase one builds machine learning models according to classification

and regression algorithms including K-Nearest Neighbor (KNN), Support Vector Machine (SVM),

Random Forest (RF), Regressor additional tree (extraTree), Light Gradient Enhancer (LGBM), Lo-

gistic Regression (LR), and Linear Regression (LiR). Phase two uses a regression algorithm that

combines the data predicted in Phase one is used for the training data. The proposed technique is

tested on UJIIndoorLoc a dataset showing a prediction accuracy of 98.73% by building-floor, and an

estimated accuracy of 99.62% and 99.52%, respectively, by longitude and latitude. When compared

with the results of the models in which we use independent algorithms, and of other researches that

have different models using the same algorithms and on the same dataset, most of our results are

better.

Keywords. Wi-Fi fingerPrinting; Received signal strength-RSS; Indoor positioning system; Ma-

chine learning.

1. INTRODUCTION

Nowadays, outdoor positioning using GPS [1] is a mature field of research with a high level
of precision of 1 to 5m. Since GPS operates most efficiently with Line-of-Sight (LoS) as it uses
satellite signals for positioning, it is not feasible to use GPS in an indoor environment [2]. IPS
has wide application in real life. In addition to navigation in rescue and emergency operations
in buildings, IPS help users to locate and navigate their positions in the environments such as
museums, hospitals, and mega malls. As a result, IPS has become a broad research area over
the past 20 years. Methods for indoor positioning are introduced in [3], in which the method
using RSS of radio signals emitted from Access Points (AP) and obtained from Reference
Points (RP) is the most used and popular in indoor navigation system. Fingerprinting is
the most widely used technique [4, 5] among numerous indoor positioning techniques based
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on RSS values. The traditional fingerprinting method is divided into two stages as shown
in Figure 1. IPS typically includes several APs disseminating Wi-Fi and mobile devices

Figure 1: Indoor positioning model by traditional fingerprinting

connecting to Wi-Fi. To predict the user’s location via mobile devices, RSS is used to build
a fingerprinting database. There are two phases in fingerprinting: The training phase and
the testing phase. In the training phase, RSS values of APs from known RPs are collected
to build a fingerprinting database. Specifically, for each sampling, if the number of APs is
n, the fingerprinting at the ith RP has coordinates (xi, yi) defined as Eq.(1)

fi = [(xi, yi) , RSS1, RSS2, ..., RSSn] . (1)

To increase data quality, at an RP, the number of samples is taken many times, then the
fingerPrinting values of the ith RP form a matrix of Eq. (2)

Fi =
[
(xi, yi) , RSS1

1 , ..., RSS1
n, ..., RSSm

1 , ..., RSSm
n

]
, (2)

where n is the number of APs, and m is the number of samples. The fingerprinting database
obtained from all k reference locations (RPs) such as Eq.(3). The collected data is then
called the training set

Dk(Fi) = {Fi1, Fi2, ..., Fik} . (3)

In the testing phase, the RSS values are sampled in real time at the unknown location.
The role of pattern matching in traditional fingerprinting algorithms is to determine the
similarity between training and testing fingerprints. The purpose is to find a pair consisting
of testing and training points that are nearest to one another in the fingerprint space, and
then use the position information of the training point to approximate (and estimate) the
testing point in the location space.

The fingerprinting method faces two main problems. First, since many obstacles (like
windows, doors, and walls) exist in indoor space, the radio frequency signal will propagate
through different paths, which causes the signal to reach the receiver at different times. A
different receiving time causes different phases, which can be superposed and cause signal dis-
tortion. This phenomenon above is called the multipath effect. Due to the multipath effect,
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RSS quality is degraded, which makes fingerPrinting values become irregular and unstable,
and the fingerPrinting database may be large and unreliable [6], leading to an increase in po-
sitioning error [7,8]. To address this issue, some filtering and feature reduction methods such
as Principal Component Analysis (PCA) [9] and Linear Discriminant Analysis (LDA) [10,11]
have been used to improve the quality of the dataset. The second concern is the quality of
positioning which requires high accuracy and efficiency. Many machine learning algorithms
such as K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Decision Tree (DT),
Random Forest (RF), Light Gradient Boosting Machine (LGBM), Logistic Regression (LR),
Convolutions Neural Network (CNN), Deep Neural Networks (DNN), and Recurrent Neural
Network (RNN) have been tested by many research groups to increase location accuracy
with remarkable results. However, until now there is still not an algorithm that would be
applicable in different environment settings [12, 13]. Therefore, it is very valuable and fea-
sible to improve the efficiency of the fingerprint database and build new machine learning
models to improve location accuracy.

In this research, we propose a feature reduction method and an indoor localization
method using a machine learning models that combine the algorithms of KNN [14, 15],
SVM [16], RF [17], ExtraTree [18] , LGBM [19], LR [20], and Linear Regression (LiR) [21].
We use the classification problem to predict the floor number. The latitude and longitude
values are estimated by the regression problem, the user’s location is predicted based on
the estimated latitude and longitude values. We test the proposed model on the UJIIndoor-
Loc [22] dataset which is a public dataset used by many research groups [13]. The main
contributions of this research are summarized as follows:

� Proposing a method to reduce features of the classification problem.

� Proposing a two-phase combination model and modelling training algorithm.

� Deploying the combined model into the classification problem to predict the building-
floor by LR, KNN, and SVM algorithms.

� Deploying the combined model into the regression problem to estimate the longitude
and latitude using extraTree, KNN, FR, LGBM, and LR algorithms.

The remainder of this paper is structured as follows: Section 2. Related works, Section 3.
Feature reduction method, proposed model, architecture description, and positioning process
based on our proposed model, followed by Section 4 in which we describe experimental results
and evaluations. Finally, we summarize the contribution of this research in Section 5.

2. RELATED WORKS

KNN was used very early in traditional machine learning methods applied in Wi-Fi
RSS fingerprinting-based IPS. In 2000, the Microsoft Research team developed a positioning
system called RADAR [15] using KNN. The result showed that the location estimation model
using KNN outperformed fingerprinting algorithms. The average accuracy of this system
was roughly 3m with 75% of the localization errors were below 4.7m. This was considered
to establish a research base for using KNN algorithms in particular and machine learning
algorithms in general. In [23], the authors used KNN combined with the user’s travel history.
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According to the findings, the new method had a higher positioning efficiency than KNN
by 45%. In [24], with the method applying the weighted KNN, the positioning error of the
result was between 1.42m and 1.61m, while for the KNN method, it was from 1.78m to 2.18m
depending on the used K value. KNN is also used in combined models such as a combined
model of DNN and KNN used by the authors in [25]. The results varied depending on the
number of K chosen. The average error was from 1.39m to 1.5m. Compared with other
machine learning methods such as DT, KNN, DNN, SVM, and RF, this solution produced
better results. The SVM classification algorithm-based approach was proposed in [26, 27].
It showed that SVM had a more accurate result than fingerprinting. The accuracy of the
study using [26] was reported as 2m in 77% of the testing cases, and [27] was 93.75% in
98.75% of the testing cases. DNN, KNN, and SVM algorithms were used in [28]. KNN
produced better results than DNN. MSE for KNN ranged from 3.485m to 5.950m, with
an average MSE of 4.163m, while DNN had a corresponding value of 4.169m, 4.163m, and
4.166m. KNN, however, lacked DNN’s level of stability. SVM performed the worst with an
average MSE of 11.06m. In spaces without walls or obstructions, the authors in [29] used
RF with smart watches. As a result, RF accuracy increased to 97.5%, and execution time
was significantly improved. The proposed algorithm by the authors in [30], which utilize
regional grid division to reduce the maximum error, and adopt adjusted cosine similarity to
match the proper grid and fingerprint, resulted in a decrease of the maximum error by 1.15m
compared with the original RF. When combined with the extraTree, DL, and RF in [18], the
Root Mean Square Error (RMSE) was 8.79m and 8.83m, respectively, for the X and Y axes.
In [19], the authors used LGBM in a setting combining Wi-Fi with pictures. The test result
showed an accuracy of 90% within 1.53m. It was an increase in accuracy by more than 20%
when compared with the fingerprint positioning method, and improvement in performance
by more than 15% when compared with DT and RF. Logistic Regression (LR) was employed
by the authors in [20]. A 95.83% accuracy was obtained after data optimization, which was
an increase of 80% greater than K-Mean. Chenlu Xiang et al. used LR combined with data
optimization and tested their model in the standard laboratory [31, 32], both resulted in a
positioning error of 92cm. Linear Regression was used in [21], in which the authors built an
automatic tool to improve the instability of RSS. As a result, the average error was reduced
from 8.95m to 4.03m. Liye Zhang et al . used LiR in [33], with the maximum error reduced
from 10m to 4.5m and the average error reduced from 3.72m to 2.31m.

When examining other researches that used the JIIndoorLoc dataset, we find that the
authors of Stanford University [34] tested the KNN, SVM, Gradient Boosting (BG), and
DT models to predict the floor number. They created new test datasets using random
values from the original dataset with magnitudes of 100, 200, 500, 1000, 2000, and 5000
samples, then used PCA to reduce the features. Their analysis revealed that KNN had
good performance for large datasets. Although DT was a quick training method, KNN was
more effective. Gradient Boosting had a small cross-validation error for small datasets and
was less affected by missing data. SVM had the lowest accuracy and less efficiency. KNN
was used by the authors in [35] to perform two tasks: the classification KNN to predict
the building location, and the KNN regression to estimate the coordinates. Floors were
determined by the RF algorithm. The research team removed the useless data before the
experiment. The results were presented for each building, in which the accuracies of the floor
were 97.95%, 90.87%, and 95.86%; The Mean Absolute Error (MAE) values for longitude
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were 6.05m, 7.1m, and 9.08m; And the MAE values for latitude were 5.08m, 8.26m, and 8.13m
for three buildings. The study in [36] was named the Fast-Accurate-Reliable Localization
System (AFARLS) by combining COSELM (constrained online sequential extreme machine
learning) with KNN. Accordingly, the accuracy by floor predicted by the AFARLS result was
95.41%, while the KNN result was 89.92%. The highest mean of the positioning accuracy
of AFARLS was 6.4m. Before applying KNN, SVM, and RF in [37], quantization was used
to reduce noise. The results showed that the accuracy by position for KNN, SVM, and RF
algorithms were 67.49%, 62.71%, and 68.5%, respectively. The RF algorithm used to predict
the floor number had an accuracy of 97%. Liye Zhang et al. divided the training dataset
into two parts which were 80% for training and 20% for testing as they aimed for room-level
positioning [38]. The team proposed a novel feature extraction algorithm named JLGBMLoc
(Joint Denoising Auto-encoder (JDAE) with LGBM algorithm). The test results revealed
that the proposed method had a room-level positioning accuracy of 96.73%, and a floor-level
positioning accuracy of 99.32%.

In general, the accuracy of the location was generally improved by the application of data
processing techniques such as weight matching, data normalization, and size reduction in all
of the aforementioned methods. Those methods have not, however, been applied effectively
yet. This was caused by their autonomous operation, insufficient data used in the training
process as well as the incidence of over-fitting. To address those issues, in this paper we
introduce a new machine learning model which combines machine learning algorithms in
two-phase for the training phase. UJIIndoorLoc dataset is used to test the model.

3. PROPOSED METHOD AND MODELS

3.1. Dataset description

The UJIIndoorLoc dataset covers a 108,703m2 area that includes 3 buildings, each hav-
ing 4 or 5 floors [1]. It consists of 21,049 samples, of which 19,938 samples are for training,
and 1,111 samples are for testing. Each sample consists of 529 features labeled as ‘WAP01’,
‘WAP02’,..., ‘WAP520’, ‘LONGITUDE’, ‘LATITUDE’, ‘FLOOR’, ‘BUILDINGID’, ‘SPACEID’,
‘RELATIVEPOSITION’, ‘USERID’, ‘PHONEID’, ‘TIMESTAMP’. The first 520 features
consist of different APs with RSS values ranging from -104dB to 0dB. RSS value is set to
100 for each undetectable AP. The remaining 9 features consist of longitude and latitude val-
ues for each sample given in meter; Floor number is given as either 0, 1, 2, 3, or 4; BuildingID
is given as either 0, 1, or 2; SpaceID corresponding to the type of location where the mea-
surement was collected (e.g., office, classroom); Relative position in relation to the SpaceID
(e.g., inside or outside the door); UserID of the user who takes the samples; PhoneID of
the phone used to take the samples; and lastly, Timestamp as the time that the samples
are taken. The value of the features FLOORID, BUILDINGID, SPACEID, RELATIVEPO-
SITION, and USERID in the validation data is set to 0. RSS values in UJIIndoorLoc are
collected by spaceID, fingerPrinting of spaceIDi is as in Eq. (4)

fi = [RSS1, RSS2, .., RSS520, longitude, latitude, floorID, buildingID,

spcaeIDi, relativePosition, userID, phoneID, timeStamp]. (4)

For each spaceID, the fingerPrinting samples are collected multiple times by different
userID and phoneID. And by design, locations in different buildings, different floors have set
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the same spaceID value, for example, spaceID=101 has been used for many pairs (floorID,
buildingID) like [(2,1); (3,2); (4,2); (1,2),..]. Therefore, the fingerPrinting values of the ith

spaceID form a matrix as Eq. (5)

Fi = [(RSS1
1 , ..., RSS1

250, longtitude
1, latitude1, f loorID1, buildingID1,

spcaeIDi, relativePosition1, userID1, phoneID1, timeStamp1)

(................)

(RSSm
1 , ..., RSSm

250, longtitude
m, latitudem, f loorIDm, buildingIDm,

spcaeIDi, relativePositionm, userIDm, phoneIDm, timeStampm)], (5)

where m is the number of samples.

Because the UJIIndoorLoc dataset is very large, besides that spaceID can appear in
many different buildings and floors, leading to RSS values of overlapping and overlapping
fingerprinting, leading to the time of the classification problem to predict buildings and floors
increase. Therefore, it is necessary to have a solution to remove the features to reduce the
time of the classification problem.

3.2. Proposed feature reduction method

In the proposed method, we aim to reduce the computation time and increase positioning
performance by reducing the dimension of the feature. In UJIIndoorLoc, each building has
a set of multiple data lines. Each data line is represented as [RSS1, RSS2, · · · , RSSI520,
buildingID]. The first 520 features are RSS values measured from 520 APs. The last element
is the building number from 0 to 2.

For each building, we calculate the average value of all 520 features by spaceID. Since we
have 3 buildings in the dataset, we create a new dataset as shown in Eq.(6), in which the
first 520 elements are the expected values of the features and the last is the building number

 RSS1, RSS2, · · · , RSSI520, 0

RSS1, RSS2, · · · , RSSI520, 1

RSS1, RSS2, · · · , RSSI520, 2

 . (6)

In the classification problem, the more informative the building features are, the better
the building classification is. To identify the most informative features of each class, we
determine the absolute difference between the pairs 0-1, 0-2, and 1-2 by cross-matching the
corresponding pairs in the dataset Eq. (6). This gives us three arrays that represent building
pairings, which then are sorted in descending order. Those with low-difference or duplicate
features are then removed. As a result, each array with N features has the highest difference.
The three arrays are combined to create a feature set that has 3×N values for the building
classification model. The building feature reduction method is illustrated in Algorithm 1.

We do the same with regards to floorID in the given dataset as the data row now reads
as [RSS1, RSS2, · · · , RSSI520, floor], where the first 520 features are the measured signal
levels and the last element is the floor number from 0 to 4. The results such as “floorArray”



TWO-PHASE COMBINED MODEL TO IMPROVE THE ACCURACY 383

Algorithm 1 Building feature reduction algorithm

Input:
1: B0 ← all lines in the dataset have buildingID=0;
2: B1 ← all lines in the dataset have buildingID=1;
3: B2 ← all lines in the dataset have buildingID=2;

Output:
4: B: The set of features has been reduced

Step 1:
5: BA0 ← Calculation of mean by SpaceID in class B0 ;
6: BA1 ← Calculation of mean by SpaceID in class B1 ;
7: BA2 ← Calculation of mean by SpaceID in class B2 ;

Step 2:
8: B01 ← BA0∪BA1 ;
9: B02 ← BA0∪BA2 ;

10: B12 ← BA1∪BA2 ;
Step 3:

11: Sort arrays B01, B02 and B12 in descending order
Step 4:

12: Remove duplicate, low-difference features
Step 5:

13: B ← B01∪B02∪B12

is defined as Eq. (7) 
RSS1, RSS2, · · · , RSSI520, 0

RSS1, RSS2, · · · , RSSI520, 1

RSS1, RSS2, · · · , RSSI520, 2

RSS1, RSS2, · · · , RSSI520, 3

RSS1, RSS2, · · · , RSSI520, 4

 (7)

To obtain the most informative features of each floor, dataset Eq.(7) is processed in the
same manner as dataset Eq.(6). Following the combination of the pairings 0-1, 0-2, 0-3, 0-4,
1-2, 1-3, 1-4, 2-3, 2-4, and 3-4, the sorting and removing process are executed. Eventually,
we receive 10 arrays. Each one has N features with the highest difference.

3.3. Proposed model

The fingerprinting method based on machine learning (ML) consists of two phases, as
shown in Figure 2: training and testing. In the training phase, the fingerprint database (or
training dataset) is used for ML model. A localization function during training attempts
to learn the mapping between real-time RSS value and device/user locations by training
dataset. In the testing phase, the ML model uses the trained localization function to predict
the real-time locations of devices based on RSS measurements.

In this research, we propose a new training model combining algorithms in two phases.
The first phase consists of n different models with their training dataset and generates n
corresponding prediction models. The combination model in the second phase continues to
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Figure 2: The basic process of ML-based indoor localization using Wi-Fi RSS fingerprints

train based on the results of the first phase and gives the final prediction. Our proposed
model is shown in Figure 3.

Figure 3: Proposed combined model

Figure 4: Combination process of the models

The two-phase training model is shown in Figure 4, where Ŷ1 Ŷ2, ..., and Ŷn are the
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prediction results of the n models in the first phase, Ŷf is the final result of the second phase.
The detailed training of the model is shown in Algorithm 2. Algorithm 2 has computational
complexity O (∥Di∥ ×m× n).

Algorithm 2 Two-phase combined training algorithm

Input: D ← {xi, yi}m1 ,xi ⊂ X , yi ⊂ Y. Where X is the set of features, Y is the set of labels,
m is the number of rows in the dataset

Output: Ŷf
Step 1:

1: Initialize {M1,M2, ...,Mn}; ▷ n machine learning algorithms for the first phase
2: Divide D into subsets Split the subsets {D1,D2, ...,Dn,Dn+1} ; ▷ n+ 1 subdataset of D
3: D′ ← ∅; ▷ training dataset of second phase

Step 2: Training using algorithms in the first phase
4: for i = 1 to n do
5:

(
Xtrain

i , ytraini , Xtest
i , ytesti

)
← Di ; ▷ Split training and test datasets

6: Model0i ← train
(
Mi,

(
Xtrain

i , ytraini

))
; ▷ Modeling by Mi

7: Ŷi ←Model0i (X
test
i ); ▷ Predicted results by Model0i

8: D′
i ←

(
Xtest

i , Ŷi

)
; ▷ Data is combined for the Second phase

9: D′ ← D′ ∪ D′
i;

10: end for
Step 3: Training using the algorithm in the second phase

11: Initialize: MCombine;
12: Model1 ← train (MCombine,D′); ▷ The Second phase is trained the model
13: Ŷf ←Model1 (Dn+1); ▷ Predicted results by Model1

The algorithms used in the combined models during the first phase are selected from
those tested in the independent models. The test results are used for two tasks: selecting
the best algorithms for the first phase of the combined model and comparing the results of
the independent models with the combined model. The algorithm selection phase is called
the “start-up phase”. In the second phase, the regression model is chosen in such a way that
the prediction results of the separate models in the first phase are combined to get the final
prediction.

In experiments, the proposed model is used to solve two problems: predicting floors and
estimating longitude and latitude. To solve these problems, we build two combined models:
a classification model to predict floors and a regression model to estimate longitude and
latitude.

4. EXPERIMENTS, RESULTS, AND EVALUATIONS

4.1. Data preprocessing

The dataset contains many important features, however, as the purpose of the problem is
to identify building, floor, and location, other unimportant features such as SpaceID, Relative
Position, UserID, PhoneID, and Timestamp will be excluded. The remaining features to
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be used include WAP01, WAP02,..., WAP520, LONGITUDE, LATITUDE, FLOOR, and
BUILDINGID.

4.2. Evaluation metrics

Classification model. Classifiers attempt to predict the probability of discrete outcomes (in
this research it is the floor). Out of many ways to measure classification performance, in our
research, we use Accuracy, Precision, Recall, and F1-score metrics.

� Accuracy: Accuracy measures how often the classifier correctly predicts and is defined
as

Accuracy =
TP + TN

TP + TN + FP + FN
. (8)

� Precision: Precision explains how many of the correctly predicted cases actually turned
out to be positive and is defined as Eq. (9)

Precision =
TP

TP + FP
. (9)

� Recall: Recall explains how many of the actual positive cases we were able to predict
correctly with our model and is defined as Eq. (10)

ReCall =
TP

TP + FN
. (10)

� F1-Score: The F1 score is a single evaluation metric that aims to account for and
optimize both precision and recall. It is defined as the harmonic mean of precision and
recall. A model will have a high F1 score if both precision and recall are high. The F1
score is computed as Eq. (11)

F1 = 2
Precision.Recall

Precision+Recall
, (11)

where TP, TN, FP , and FN are collected from the confusion matrix. They are defined as
follows:

� True Positive (TP ): number of samples in the class “true floor” correctly classified as
“true floor”.

� True Negative (TN): the number of samples in the class “not true floor” correctly
classified as “not true floor”.

� False Positive (FP ): number of samples in the class “not true floor” incorrectly clas-
sified as “true floor”.

� False Negative (FN): the number of samples in the class “true floor” incorrectly
classified as “not true floor”.
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In this dataset, the classification problem belongs to the type of multi-class classifier.
The macro average metric is used since the macro average is a good measure in case of
predicting class well. Macro average calculates metrics for individual classes, then computes
their average values regardless of the overall size. We calculate the macro average metric for
Precision, Recall, and F1-score. Therefore, in the result section, the Precision, Recall, and
F1-score metrics for each class are detailed by class. Then, we display their macro average
values alongside the accuracy metric.

Regression model. Evaluating the performance of a regression model requires an approach
and metrics different from which are used to evaluate a classification model. The regres-
sion model estimates continuous values (in this research they are longitudes and latitudes).
Therefore, regression performance metrics quantify how close the model predictions are to
actual (true) values. The used regression performance metrics are as follows:

� R2 − Score evaluates the performance of a regression-based machine learning model
defined as Eq. (12)

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − yi)
2
, (12)

where yi is either the actual latitude or longitude value, ŷi is either the estimated
latitude or longitude value, yi is the average value.

� MSE (Mean Squared Error): MSE measures the average of the squared difference
between predictions and actual output values and is defined as Eq. (13)

MSE =

∑n
i=1(yi − ŷi)

2

N
, (13)

where yi is either the actual latitude or longitude value, ŷi is either the estimated
latitude or longitude value, and N is the total number of samples.

� MAE (Mean Absolute Error): MAE measures the absolute error between predicted
and actual values and is defined as Eq. (14)

MAE =

∑n
i=1 |yi − ŷi|

N
, (14)

where yi is either the actual latitude or longitude value, ŷi is either the estimated
latitude or longitude value, and N is the total number of samples.

4.3. Building the classification model used to predict the building-floor

4.3.1. Start-up phase

Hyperparameter optimization is an important process for high performance machine
learning models. Optuna [39] is a popular Python library for hyperparameter optimization
that supports many optimization algorithms. The models are evaluated based on the follow-
ing metrics: Accuracy, Balanced Accuracy, ROC AUC, and F1 Score. Accordingly, several
classifiers are selected for classification with a building-floor dataset such as LogisticRegres-
sion (LR), LinearDiscriminantAnalysis (LDA), KNeighborsClassifier (KNN), Classification
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Figure 5: Process of the independent models

and Regression Tree (CART), GaussianNB (NB), and Support vector machine (SVM). The
independent models are implemented as shown in Figure 5.

Results and evaluations of the independent models

The classification results of each model according to the precision and recall metrics are
shown in Tables 1a and 1b. The F1-score metric can be seen in Table 2, in which ‘Bx y’
represents the building x and the floor y. Figures 6a, 6b, and 6c show the comparison charts
of Precision, Recall, and F1-Score metrics presented in Table 1 and 2. These graphs demon-
strate that the LR, KNN, and SVM algorithms produce superior results to the remaining
algorithms.

Table 1: Precision and Recall metrics of the independent models used to predict the building-
floor

(a) Precision metric

Floor LR LDA KNN CART NB SVM

B0 0 97.49 94.06 93.81 95.61 56.66 98.51

B0 1 95.93 94.50 96.58 96.60 30.93 98.32

B0 2 94.12 94.12 98.19 94.74 82.22 97.90

B0 3 96.25 96.27 96.32 96.99 80.00 98.11

B1 0 97.06 94.72 97.82 98.89 59.91 98.51

B1 1 97.63 91.37 100.00 95.79 57.40 98.43

B1 2 97.03 92.00 99.63 97.74 90.70 98.18

B1 3 93.00 95.08 94.15 92.46 68.58 95.43

B2 0 98.97 98.97 98.48 99.74 56.80 99.49

B2 1 98.08 94.33 99.51 96.91 86.76 99.28

B2 2 96.88 93.56 98.71 95.48 44.00 99.06

B2 3 97.56 95.53 98.33 97.38 93.88 99.07

B2 4 96.08 92.90 98.73 96.18 20.24 99.35

(b) Recall metric

Floor LR LDA KNN CART NB SVM

B0 0 96.04 94.06 97.52 97.03 99.01 98.02

B0 1 94.65 91.97 94.31 94.98 54.52 97.99

B0 2 95.10 95.10 94.76 94.41 12.94 97.90

B0 3 97.72 98.10 99.62 98.10 38.02 98.86

B1 0 98.14 93.31 100.00 99.63 98.88 98.51

B1 1 97.24 91.73 97.24 98.43 50.39 98.43

B1 2 96.67 93.70 98.89 95.93 28.89 99.63

B1 3 96.37 90.16 100.00 95.34 80.31 97.41

B2 0 97.23 96.47 98.24 97.48 100.00 97.48

B2 1 97.37 95.23 97.37 97.37 14.08 98.57

B2 2 97.79 96.21 96.21 93.38 34.70 99.37

B2 3 97.74 96.43 99.62 97.74 8.650 99.81

B2 4 94.84 92.90 100.00 97.42 99.35 98.06

The macro averages and accuracy metrics of the independent models are shown in Table
3. The improved classification performance of the independent models more specifically
displayed in Figure 7. In which, Figure 7a is a comparison chart of macro average Precision,
macro average Recall, macro average F1-Score, and Accuracy metrics presented in Table 3.
Figure 7b is an image from the system showing the comparison of the independent models.
They all make it more evident that LR, KNN, and SVM algorithms produce better results
than the remaining algorithms. The metrics of the two algorithms SVM and KNN are all
greater than 97% and surpass those of the other algorithms. Although the metrics of LR
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Table 2: F1-score metric of the independent models used to predict the building-floor

Floor LR LDA KNN CART NB SVM

B0 0 96.76 94.06 95.63 96.31 72.07 98.26

B0 1 95.29 93.22 95.43 95.78 39.47 98.16

B0 2 94.61 94.61 96.44 94.57 22.36 97.90

B0 3 96.98 97.18 97.94 97.54 51.55 98.48

B1 0 97.60 94.01 98.90 99.26 74.61 98.51

B1 1 97.44 91.55 98.60 97.09 53.67 98.43

B1 2 96.85 92.84 99.26 96.82 43.82 98.90

B1 3 94.66 92.55 96.98 93.88 73.99 96.41

B2 0 98.09 97.70 98.36 98.60 72.45 98.47

B2 1 97.72 94.77 98.43 97.14 24.23 98.92

B2 2 97.33 94.87 97.44 94.42 38.80 99.21

B2 3 97.65 95.98 98.97 97.56 15.83 99.44

B2 4 95.45 92.90 99.36 96.79 33.62 98.70

(a) Precision metric com-
parison

(b) Recall metric compar-
ison

(c) F1-Score metric compari-
son

Figure 6: Evaluation metrics comparison of the independent models used to predict the floor

and CART are approximatelly the same, we only select one algorithm. Despite having lower
recall metrics than the CART algorithm (96.69% vs 96.71%), the LR algorithm’s F1-Score is
higher (96.71% vs 96.60%), which proves that the LR model is better. Therefore, we select
LR.

Table 3: Macro averages and accuracy metrics of the independent models used to predict
the building-floor

SVM KNN LR CART LDA NB

Macro averages-Precision 98.43 97.71 96.62 96.50 94.42 63.70

Macro averages-Recall 98.47 97.98 96.69 96.71 94.26 55.37

Macro averages-F1 score 98.45 97.83 96.65 96.60 94.33 47.42

Accuracy 98.57 97.93 96.86 96.76 94.66 49.09

Time (s) 7.95 0.04 3.19 0.47 1.21 0.67

Finally, we choose three algorithms with the best results which are LR, KNN, and SVM
for the first phase of the combined model. In the second phase, we choose the Logistic
Regression algorithm.
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(a) Comparison of the macro averages and Ac-
curacy metrics

(b) Accuracy comparison of the independent
models used to predict the floor

Figure 7: Classification performance comparison of the independent models used to predict
the building-floor

4.3.2. Combined model used to predict the building-floor

(a) Structure of the combined model
(b) Combination process of the classification
models

Figure 8: The combined model to predict the building-floor

Figure 8 shows our combined model to predict the buildings - floors, in which Figure 8a
shows a combined model of classification algorithms used to predict the buildings - floors.
First, the feature reduction algorithm is applied. Then, the model is trained by the three
algorithms LR, KNN, and SVM in the first phase, and it continues to be trained by the
Logistic Regression algorithm in the second phase.

Figure 8b shows in detail the combination process of the algorithms used for floor pre-
diction, where Ŷ1 Ŷ2, and Ŷ3 are the prediction results of the three models in the first phase,
Ŷf is the result of the second phase (final predictions).
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4.4. Building the regression model used to estimate latitude

4.4.1. Start-up phase

Similar to the selection of machine learning algorithms to classify building floors, Op-
tuna [39] is also used to select regression models in the prediction of datasets by latitudes.
The models are evaluated based on the following metrics: Accuracy, Balanced Accuracy,
ROC AUC, and F1 Score, selected some of the best models: Support vector machine, Extra-
TreeRegressor (ExtraTree), GradientBoostingRegressor (GB), KNeighborsRegressor (KNN),
RandomForestRegressor (RF), and LGBMRegressor (LGBM) to choose the optimal ones for
the first phase of the combined model as shown in Figure 9.

Figure 9: Process of the regression independent models

Results and evaluations of the independent models
The test results are shown in Table 4.

Table 4: Performance of the independent models used to estimate latitude

SVM
Regressor

ExtraTree
Regressor

GB
Regressor

KNN
Regressor

RF
Regressor

LGBM
Regressor

R2-Score(%) 96.1 98.6 95.5 99.3 99.4 98.8
MSE(m) 175.2 54.4 200.5 31.03 24.8 52.2
MAE(m) 8.32 2.75 10.50 2.55 2.18 4.61
Time(s) 66.35 0.38 9.5 0.027 37.8 0.32

According to this result, the four regression algorithms ExtraTree, KNN, RF, and LGBM,
which have R2-Score results of 98.6%, 99.3%, 99.4%, and 98.8%, respectively, are superior
to the SVM and the GB algorithms. In addition, they have significantly better MAE and
MSE scores. As a result, in the combined models used to estimate longitude and latitude, we
choose ExtraTree, KNN, RF, and LGBM algorithms for the first phase and Linear Regression
algorithm for the second phase.

4.4.2. Combined model used to estimate latitude

The combined model for latitude estimation is shown in Figure 10. Figure 10a shows the
model structure. In the first phase, after preprocessing the training dataset, the model is
trained by the ExtraTree, KNN, RF, and LGBM regression algorithms.

The model continues to be trained by the Linear Regression regression algorithm in the
second phase according to the process shown in algorithm 2. Figure 10b shows in detail the
combination process of the regression algorithm, where Ŷ1, Ŷ2,Ŷ3, and Ŷ4 are the training
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results (estimation results) of the four models in the first phase, and Ŷf is the result of the
second phase (final estimates).

(a) Structure of the combined model
(b) Combination process of the regression
models

Figure 10: The latitude estimation combined model

4.5. Building the regression model used to estimate longitude

4.5.1. Start-up phase

In the same way in Optuna [39], we test the independent algorithms SVM, ExtraTree,
GB, KNN, RF, and LGBM regarding the model used to estimate the longitude shown in
Figure 9.

Results and evaluations of the independent models

The test results are shown in Table 5. The R2-Score results for all of the algorithms
ExtraTree, KNN, RF, and LGBM are greater than 99% while those for the two algorithms
SVM and GB are just close to 97%. SVM and GB have very big MSE metrics, compared
with the remaining algorithms that have the metrics less than 3 times. Moreover, the MAE
metrics of SVM and GB are roughly 3 to 8 times greater than those of other algorithms.
Consequently, in the combined model used to estimate longitude we choose ExtraTree, KNN,
RF, and LGBM regression algorithms for the first phase, and Linear Regression algorithm
for the second phase

Table 5: Performance of the independent models used to estimate longitude

SVM
Regressor

ExtraTree
Regressor

GB
Regressor

KNN
Regressor

RF
Regressor

LGBM
Regressor

R2-Score(%) 96.94 99.30 96.7 99.49 99.606 99.2

MSE(m) 477.36 109.4 509.3 79.39 61.5 112.4

MAE(m) 13.85 3.62 16.02 3.25 2.72 5.99

Time(s) 59.11 0.35 9.63 0.027 34.3 0.32
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4.5.2. Combined model used to estimate longitude

The algorithms selected at the “startup” phase are the ones used in the regression model
to estimate the latitude. Therefore, the combined model using the latitude estimate in Figure
10 is also used to estimate the longitude.

4.6. Results and evaluations of combined models

In this section, we present the experimental results as well as the evaluations of the
combined models that we have proposed. These results have been compared with those of
independent models.

In the floor prediction model, the training dataset is

D={RSS1, RSS2, .., RSS520, f loor, buildingID}m1 ,

where m is the total number of data lines and where X={RSS1, RSS2, .., RSS520}m1 ,
Y={floor, buildingID}m1 . The training data set is randomly divided into four parts X1,
X2, X3, and X4. X1 to X3 are used for the three algorithms in the first phase, and X4 is
used for the algorithm in the second phase. The training data used for the longitude and
latitude estimation model is defined as Eq. (15)

D = {RSS1, RSS2, .., RSS520, longtitude, latitude}m1 , (15)

where X = {RSS1, RSS2, .., RSS520}m1 }, and Y = {longtitude, latitude}m1 . Similar to the
floor prediction model, the training data of the latitude and longitude estimation model is
randomly divided into five parts, four parts for the first phase and the rest for the second
phase.

4.6.1. Hyperparameter tuning with grid search for building-floor classifier mod-
els and longitude, latitude regression models

When working on datasets and using Machine Learning models, it is difficult to know
which set of hyperparameters will yield the best results. To get the best set of hyperparam-
eters, we can use Grid Search [40] then pass all combinations of hyperparameters into the
model one by one and check the results. In the end, we get the best result in the model.
Hyperparametric model is a property of the model that is outside the model and its value
cannot be estimated from the data. The value of the hyperparameter must be set before
the learning process. For example, c in Support Vector Machines, k in k-Nearest Neighbors,
number of hidden layers in Neural Networks. In contrast, some parameters are internal
features of the model, and their values can be estimated from the data. For example, the
beta of a logistic/linear regression or a support vector in a Support Vector Machine. Some
important parameters in parameter editing with GridSearchCV are defined as:

� Estimator: This is the model we want to use in GridSearchCV.

� Param grid: Dictionary or list of model or function parameters for GridSearchCV to
choose the best one.

� Scoring: A measure that evaluates the performance of the model to decide the best
hyperparameter, if not specified, it will use the estimator score.
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� CV: An integer value, as it represents the number of splits required for cross-validation.
By default, it is set to 5.

� n jobs: Number of jobs to be run in parallel, -1 indicates all processor usage.

The results that GridSearchCV determines can be considered the best based on the pa-
rameters set into the “param grid” to create a combination of parameters that improves
the performance of the model. Table 11 and Table 12 in the Appendix are the model and
hyperparameter tuning for the building-floor classifiers and the longitude-latitude regressors.

4.6.2. Results and evaluations of the classification model used to predict the
building-floor

The results of the combined model are shown in Tables 6 and 7. Table 6 shows the results
of Precision, Recall, and F1-score metrics. Table 7 shows the values of the metrics: macro
average Precision, macro average Recall, macro average F1-score, and Accuracy. Figure 11
shows the performance comparison of the combined models with the independent models.
The results show that the combined model performs better, having better metrics than the
independent model of the LR, KNN, and SVM algorithms.

Table 6: Precision, Recall, and F1-score metrics of the combined model used to predict the
building-floor

Floor Precision Recall F1-score

B0 0 98.51 98.51 98.51

B0 1 98.65 97.66 98.15

B0 2 97.55 97.55 97.55

B0 3 97.74 98.86 98.30

B1 0 98.53 99.63 99.08

B1 1 98.81 98.43 98.62

B1 2 98.89 98.89 98.89

B1 3 99.46 95.85 97.63

B2 0 98.02 100.00 99.00

B2 1 99.76 98.33 99.04

B2 2 98.73 98.42 98.58

B2 3 99.25 99.81 99.53

B2 4 99.36 100.00 99.68

Table 7: Macro averages and accuracy metrics of the combined model used to predict the
building-floor

Macro avg
Precision

Macro avg
Recall

Macro avg
F1-Score

Accuracy Time(s)

Combined
model

98.71 98.61 98.66 98.73 99.31

Results and evaluation without using the feature reduction method

We also experimented with the floor prediction combined model without using the feature
reduction method that we proposed. The results of the model in cases of using and not
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Figure 11: Performance comparison of the combined model with the independent models
used to predict the building-floor

using the feature reduction methods have been summarized in Table 8. This shows that
when preprocessing the dataset by the method of feature reduction, the accuracy slightly
increases and the execution time decreases. Thus, the feature reduction method, which we
have proposed, is also beneficial.

Table 8: Combined model in cases of using and not using feature reduction method

Model precision recall f1-score accuracy Time(s)

Combined model with
feature reduction method

98.71% 98.61% 98.66% 98.73% 99.31

Combined model without
feature reduction method

98.22% 97.13% 97.67% 98.24% 118.56

4.6.3. Results and evaluations of the regression model used to estimate latitude

Table 9 shows the performance of the combined model used to estimate latitude. Figure
12 is the performance comparison of the combined model with the independent models. The
comparison results show R2 metric of the combined model is higher than the independent
models (figure 12a); MSE and MAE metrics (figures 12b,12c) of the combined model is lower
than the independent models.
In summary, the combined model has higher performance and more accurate latitude esti-
mates than the independent models.

Table 9: Performance of the combined model used to estimate latitude

R2-Score(%) MSE(m) MAE(m) Time(s)
Combined model 99.52 21.66 1.95 170.82

4.6.4. Results and evaluations of the regression model used to estimate longi-
tude

The combined model results used to estimate longitude are shown in Table 10. The
combined model has the R2 metric of 99,621%, the MSE metric of 59.32m, and the MAE
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(a) Comparison of the R2 met-
ric

(b) Comparison of the MSE
metric

(c) Comparison of the MAE
metric

Figure 12: Performance comparison between the combined model and the independent mod-
els used to estimate latitude.

metric of 2.7m, which are better than those of the independent models. The performance
comparison of the combined model and the independent models used to estimate longitude
are shown in Figure 13. The detailed comparisons are shown in Figures 13a, 13b, and 13c.
It is once again confirmed that the combined model performs better than the independent
models.

Table 10: Performance of the combined model used to estimate longitude

R2-Score(%) MSE(m) MAE(m) Time(s)

Combined model 99.621 59.32 2.70 165.00

(a) Comparison of the R2 met-
ric

(b) Comparison of the MSE
metric

(c) Comparison of the MAE
metric

Figure 13: Performance comparison between the combined model and the independent mod-
els used to estimate longitude.

In conclusion, across all tests the combined model we propose has high performance and
accuracy in floor prediction and location estimation. The test results of the combined model
are better than the independent models.

4.7. Evaluation of the positioning accuracy in the testing phase

Figure 14 shows how models performed with localizing targets for PhoneID=14. This
image shows the result of location accuracy in terms of longitude and latitude at three
buildings. When the user moves, the time is recorded, and the corresponding latitude and
longitude values are also recorded, Figure 15 shows the results of the location accuracy in
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longitude and latitude according to this movement. The green color represents the estimated
location. The orange color represents the actual location. The color positions indicate a close
match between the estimated position and the actual position. These images confirm the
accuracy of our proposed model.

Figure 14: Test results with the phoneID=14

Figure 15: Test results by time with the phoneID=14

4.8. Evaluation of the results between the proposed model and other models
on the same UJIIndoorLoc dataset

The algorithms of other studies are numbered according to the reference number for the
purpose of comparison.
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4.8.1. Evaluation of the floor prediction results

Figure 16 shows the floor prediction results of our proposed model and other studies.
Accordingly, our model has superior accuracy than majority of other models. The results of
the study in [38] were better than ours. The distinction is that the authors of that study
divided the training dataset into two datasets (training and testing) in an 80/20 ratio and
their goal was room-level positioning. As a result, the training datasets of our study and
theirs include different amounts of samples and distinct purposes, making the conclusions of
the comparison analysis just relative.

Figure 16: Comparison of the floor prediction results of the proposed model with other
models.

4.8.2. Evaluation of the results of longitude and latitude estimates

In our study, the latitude and longitude of the user’s location are estimated. To compare
our findings with those of other studies, we thus refer to estimates for latitude and longitude.
The positioning performance between our proposed model and other models is shown in
Figure 17. In which, Figure 17a shows the accuracy comparison, and Figure 17b shows
the MAE comparison between the models. Noted that one of these models is taken from
the study [36] in which the authors used the Error* Metric meaning “the highest mean
positioning accuracy”. The charts in Figure 17 show that our model has better results than
other studies. Noticeably, the accuracy by the position of our proposed model is higher than
that of the study in [38].

5. CONCLUSION

In this study, we have proposed a machine learning model that combines algorithms in
two phases. From this proposed model, we built a floor prediction model as well as longitude
and latitude estimation models.

As a result, the performance and accuracy of all three models are higher than those of
the independent models. Majority of other models built on the same datasets have lower
performance and accuracy when compared with our models. We have also proposed a feature
reduction method for the classification problem. The running duration of our models is a
drawback because they are a combination of numerous methods. However, since the models
are used during the training phase, this is not a major issue. Our models, otherwise, have a
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(a) Comparison of the accuracy (b) Comparison of the MAE

Figure 17: Performance comparison of location positioning between the proposed model and
other models.

lot of potential for improvement because all of the algorithms we used are traditional machine
learning algorithms, which can be replaced by deep learning algorithms in the future, and
to evaluate the model’s performance, we will additionally test it on several datasets. At the
same time, we also evaluate the feature reduction method for its ability to increase accuracy
when using it.

APPENDIX

The hyperparameter tuning using scikit-learn’s GridSearchCV [40] runs through all the
different parameters fed into the parameter grid and generates the best combination of
parameters, based on the selected scoring metric (accuracy, f1, etc.). However, one limitation
that GridSearchCV is the best parameter is limited and takes a long time. The “best”
parameters that GridSearchCV defines are technically the best that can be generated, but
only using those that you have included in your parameter grid.

Example using Support Vector Machine as a Machine Learning model to use Grid-
SearchCV. The first define the parameters of the model passed into GridSearchCV to get
the best parameters. So we create a parameter dictionary consisting of ‘C’ or ‘gamma’.

from s k l e a rn . svm import SVC

from s k l e a rn . mode l s e l e c t i on import GridSearchCV

svm = SVC()

# defining parameter range
parameters = { ‘C ’ : [ 0 . 1 , 1 , 1 0 , 1 0 0 , 1 0 0 0 ] , ‘ gamma ’ : [ 1 , 0 . 1 , 0 . 01 ,

0 . 001 , . 0 0 0 1 ] , ‘ k e rne l ’ : [ ‘ r b f ’ ]}
grid SVM = GridSearchCV ( es t imator = svm , param grid = parameters ,

cv = 2 , n jobs==1)

# f i t t i n g the model for grid search
grid SVM . f i t ( X train , y t r a i n b f )

# print best parameter a f ter tuning
print ( g r id . best params )
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Table 11: Optimal parameters for building - floor classification using GridSearchCV

Building - Floor Classifier

Model grid params Estimator Model
model tuned-
hyperparameters

best params

SVM

param grid =
{‘C’: [0.1, 1, 10, 100, 1000],
‘gamma’: [1, 0.1, 0.01,
0.001, 0.0001],
‘kernel’: [ ‘rbf’]}

svm = SVC()

grid svm =
GridSearchCV(
estimator = svm,
param grid =
param grid,
cv = 2,n jobs = -1)

{ ‘C’: 100,
‘gamma’: 0.1,
‘kernel’: ‘rbf’}

KNeighbors
Classifier

k range =
list(range(1, 31))
param grid =
dict(n neighbors=k range)

knn =
KNeighborsClassifier()

grid knn =
GridSearchCV(
estimator = knn,
param grid=
param grid,cv = 10,
scoring= ‘accuracy’,
return train score =
False,verbose = 1)

{ ‘n neighbors’:1}

Logistic
Regression

param grid =
‘C’:np.logspace(-3,3,7),
‘penalty’:[ ‘l1’, ‘l2’]}

logreg =
LogisticRegression()

grid logreg =
GridSearchCV(
estimator= logreg,
param grid =
param grid, cv = 10)

{ ‘C’: 10.0,
‘penalty’: ‘l2’}

Table 12: Optimal parameters for Longitute - Latitude Regression using GridSearchCV

LONGITUDE

Model grid params model
model &
tuned-

hyperparameters
best params

ExtraTrees
Regressor

param grid={
‘max features’:
range(50,401,50) }

extreg=
ExtraTrees
Regressor()

grid extree =
GridSearchCV(
estimator = extreg,
param grid = param grid,
scoring=‘r2’,
cv=5 )

{‘max features’: 100}

KNeighbors
Regressor

param grid= {
‘n neighbors’:
range(1, 20)}

knnreg =
KNeighbors
Regressor()

grid knnreg =
GridSearchCV(
estimator= knnreg,
param grid = param grid,
scoring=
‘neg mean squared error’,
cv=10)

n neighbors=4

RandomForest
Regressor

param grid = [{
‘RF max depth’:
[8, 12, 16],
‘RF min samples
split’:
[12, 16, 20],
‘RF criterion’:
‘gini’, ‘entropy’]}]

rfreg =
RandomForest
Regressor()

grid rfreg =
GridSearchCV(
estimator= rfreg,
param grid= param grid,
cv=5,
n jobs=-1,
verbose=2)

{‘max depth’: 100,
‘max features’: 3,
‘min samples leaf’: 1,
‘n estimators’: 600}

LGBM
Regressor

param grid = {
‘num leaves’:
[31, 127],
‘feature fraction’:
[0.5, 1.0],
‘bagging fraction’:
[0.75, 0.95],
‘reg alpha’:
[0.1, 0.5]}

lgb reg =
lgb.LGBM
Regressor()

grid lgbreg =
GridSearchCV(
estimator=lgb reg,
param grid=param grid,
cv=10)

{‘bagging fraction’: 0.75,
‘feature fraction’: 0.5,
‘num leaves’: 127,
‘reg alpha’: 0.5}
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