Journal of Computer Science and Cybernetics, V.89, N.1 (2023), 79-99
DOI no 10.15625/1813-9663 /17591

LSTM-BASED SERVER AND ROUTE SELECTION IN
DISTRIBUTED AND HETEROGENEOUS SDN NETWORK

NAM-THANG HOANG'2, VAN TONG?, HAI-ANH TRAN?*
CONG-SON DUONG!, TRAN-LE-TUAN NGUYEN!

L Faculty of Information Technology, Hanoi University of Civil Engineering (HUCE), Ha
Noi, Viet Nam
2School of Information and Communication Technology (SOICT), Hanoi University of
Science and Technology (HUST), Ha Noi, Viet Nam

; Crossref

Abstract. Nowadays, Software-defined Networking (SDN) is increasingly being deployed in net-
work systems and by network operators due to its benefits, such as automation leading to excellent
reliability, more efficient network management, cost-savings, and faster scalability. The most common
deployment architecture for SDN is a distributed system consisting of many independent domains,
each controlled by an SDN controller. One of the well-known applications in SDN is server selection
and routing. However, deploying server and route selection in distributed and heterogeneous SDN
networks faces two issues. Firstly, the lack of global views of the entire system is due to the absence of
standardized inter-communication between SDN domains for the distributed and heterogeneous SDN
network. To address this issue, this paper utilizes our previous work, the open East-West interface
SINA, to adaptively ensure network state consistency in a multi-domain SDN networks. Secondly,
selecting the path for packet transmission based solely on the current network states of a local SDN
domain is ineffective since the system cannot respond to unexpected changes in the network state.
Predicting the link cost of the entire routing path is necessary. Therefore, this paper proposes an
LSTM-based link cost prediction for the server and route selection mechanism in a distributed and
heterogeneous SDN network. The experimental results demonstrate that our proposal improves link
utilization, packet loss rate, response time, and overhead by up to 15%, 10%, 14%, and 25% respec-
tively to benchmarks.

Keywords. SDN, Inter-SDN domain, LSTM, network state prediction, QoS, server and route
selection algorithm.

1. INTRODUCTION

Since its appearance, the Software-defined Network (SDN) network model has shown
its outstanding benefits, such as the ability to re-route networks on the fly, offering real-
time visibility to the whole system, providing the real-time ability to automatically re-route
or to stand-up new functions and routes without adding any new hardware. With these
benefits, in recent times, many organizations have researched and deployed SDN on their

*Corresponding author.
E-mail addresses: thanghn@huce.edu.vn(N.-T.H.); duongcongson0lgmail.com(C.-S.D);
tuan158764@huce.edu.vn(T.-L.T.N.);

(©) 2023 Vietnam Academy of Science & Technology

mailto:thanghn@huce.edu.vn
mailto:duongcongson01gmail.com
mailto:tuan1553564@huce.edu.vn

80 NAM-THANG HOANG et.al

systems, such as Google, NTT (Japan), and Orange (France). The most common deployed
architecture is the distributed architecture with multiple domains, each controlled by an
SDN controller. One of the implementations that has attracted the most attention from
network operators and the research community is server and route selection (SARS) in
such distributed and heterogeneous network systems. The participation of many domains
represents the distribution, and the heterogeneity is represented by the difference in the type
of SDN controllers and the different policies in each domain. However, this implementation
is facing two serious problems as follows.

Firstly, each domain has only its network state information. The SARS mechanism will
only be effective if one domain has the network state information of others. The cause of this
problem is the need for cross-domain communication. The fact is that there has yet to be an
interface that makes it possible for different SDN controllers to communicate with each other.
To solve this issue, this paper implements the Knowledge-Defined Network framework (KDN)
[8] using our previous work, the East-West interface SINA [10], at the control plane, allowing
the controllers to exchange network state information and guaranteeing the consistency of
network state information across SDN domains.

Secondly, SARS is not efficient based solely on the current state of the network. A path
chosen in the current state is not necessarily a good solution for future states. Traditional
Open Shortest Path First (OSPF) often selects paths based on min hop counts. Therefore,
many links can be under-utilized while others need to be more utilized, which can cause
a reduction in the efficiency in using the network’s resources, Quality of Service (QoS),
and waste network resources. Akyildiz et al. [1] proposed a QoS-based framework to select
servers and routes. However, this study only considered the current network state, which
might need more information to optimize the long-term network performance. Consequently,
many recent studies use ML algorithms to solve this problem [16]. For example, Sowmya
Sanagavarapu et al. [20] introduced SDPredictNet with a neural network to predict future
network states for routing. However, it is only implemented on small-scale intra-SDN do-
mains. To overcome this second limitation and deploy the SDN network as a large-scale
distributed network with multi-controllers, this article proposes an LSTM-based link cost
prediction mechanism to enhance the performance and accuracy of the SARS solution in
using our previous work, the East-West interface SINA [10].

Our contributions are summarized as follows:

e The KDN architecture is deployed with three planes: the data plane, the control plane,
and the knowledge plane. In the control plane, our previous work, SINA [10], is de-
ployed to guarantee the network state consistency in the distributed and heterogeneous
inter-SDN domains network. SINA allows network state sharing between different SDN
controllers in order to provide a global view of the network to distributed controllers in
each domain. At the top of the knowledge plane, a SARS mechanism is implemented
after having a global view of the network.

e Based on the KDN architecture, the link cost prediction mechanism is developed using
Long Short-Term Memory Network (LSTM) to optimize our SARS. The objective of
using LSTM is to discover the non-linear nature and uncertainty of traffic flows. It
can take advantage of historical traffic parameters instead of considering only current
network states. The predicted link cost consists of several network metrics: delay,
packet loss, link overhead, and link utilization.

LSTM-BASED SERVER AND ROUTE SELECTION 81

The outline of this paper is structured as follows. In Section 2, some related works are
presented. In Section 3, the KDN architecture is briefly introduced. Section 4 is devoted to
the SARS framework. In Section 5, the LSTM model is sketched and described. In Section
6, some experiments are conducted to verify the effectiveness of our link cost prediction and
SARS methods. The conclusion and future work are discussed in Section 7.

2. RELATED WORK

Regarding studies using prediction-based routing mechanisms, Sowmya Sanagavarapu
et al. [20] presented the SDPredictNet, a framework including LSTM and artificial neural
network (ANN) to solve the route prediction problem. The aim of using LSTM and ANN
is to help update the flow table for routing, with the delay being reduced after recognizing
congested areas in the networks. In this SDPredictNet framework, the traffic features are
captured by the LSTM model before these features are fed into the ANN model to recommend
the path for future packets at the given instant. To illustrate, the authors use the iperf tool
to generate data and obtain traffic parameters (jitter, packet loss rate, transferred data
size, throughput). Given (n—1) packet parameters, the LSTM attempts to forecast the
nth packet’s parameters. Then, the ANN tries to map a sequence of predicted packets’
parameters to the output switches with two values (0 or 1). The final path is determined
by taking the sequence of switches labeled as 1. The results show that the RMSE metrics
and accuracy of an SDPredictNet framework achieve a 0.07 score and 99.88%, respectively.
Despite that, SDPredictNet is only implemented on a small-scale network with seven switches
and eight hosts.

In addition to that, Long Jiang et al. [13] proposed a two-phase routing mechanism to
predict link quality in an SDN-based ad hoc network. In the first phase, XGBoost - a library
that uses an ensemble of decision trees to generate predictive models, is used for the leaf
node score’s optimization of each decision tree before forecasting the future link quality. In
the second phase, a minimum cost tree method generates routes with the highest packet
delivery ratio (PDR). The experimental results indicate that the proposed algorithm records
an improvement in PDR, throughput, and delay compared to existing routing mechanisms.

Furthermore, Long Jiang et al. [12] focused on a routing optimization problem to satisfy
the user’s QoS in the SDN-based mobile ad hoc network. In the first stage, they use a
wavelet neural network (WNN) to forecast the following timestamp link quality values. After
obtaining the future link quality values, during the second stage, the routing problem is
formulated as the binary knapsack problem, where the differential search (DS), a type of
meta-heuristic optimization algorithm, is used to generate feasible solutions. The numerical
results suggest that their proposal achieves high throughput and low packet loss rates with
reduced delay.

Wu et al. [22] introduced ATER (Artificial Intelligence Enabled Routing), based on an
ANN network, to predict traffic congestion before making route decisions. AIER is known to
solve the inadequacy of learning capacity from precedent experiences to prevent inefficient
route selection by the dynamic routing mechanism of the SDN controller. There are three
primary phases in AIER: 1) ATER collects the training data, traffic flows in the network, and
its label. The label can be either 1 (congestion) or 0 otherwise. For example, the transmitted
data between host two and destination three is 55M which is labeled as 1 (congestion); 2) the

82 NAM-THANG HOANG et.al

ANN model is trained before being deployed on the control plane; 3) the AIER can choose
an appropriate path to avoid congestion using the Dijkstra algorithm. The simulation results
demonstrate that the ATER framework significantly outperforms static and dynamic routing
mechanisms regarding average throughput, packet delay, and packet loss. Nevertheless, the
simulated topology does not have the characteristics of the real-world network, with only
five switches and four hosts.

Abdelhadi Azzouni et al. [3] proposed NeuRoute, a routing framework based on a neural
network to optimize the network throughput. NeuRoute aims to outperform the traditional
routing algorithm in the SDN controller in terms of computational complexity; at every
round, it uses the predicted link loads as input before performing the graph search to find
the optimal paths. It has two main core blocks: the first block to predict the traffic matrix
and the second block for traffic routing. The former is an LSTM which attempts to predict
the traffic matrix, which is then used in the next step. The latter is a feed-forward network
responsible for selecting optimal paths using the predicted traffic matrix from the previous
step. The experiments reveal that NeuRoute’s performance is well improved. However, the
authors only use a small-scale topology with small databases comprising 10000 samples,
which might suffer the overfitting problem.

Regarding the traffic matrix prediction problem, Jitendra Bhatia et al. [7] introduced
the SDVN architecture (Software-defined Vehicular Networks) based on a neuron network
to model the traffic flows efficiently in urban areas. The most prominent feature of the
SDVN architecture is to use the LSTM network to capture and learn the non-linear nature
of the traffic flow. This architecture integrates SDN into the cloud to optimize computa-
tional expenses and storage efficiencies. The architecture comprises two significant phases:
detecting the congestion-sensitive spots and forecasting the traffic congestion trends. During
the first phase, the K-means algorithm is utilized to detect the congestion spots. In the next
phase, the LSTM network is utilized to learn the traffic flows behaviors of such areas before
deployment for the future traffic density prediction of each spot. In the evaluation phase,
it is shown that the LSTM achieves stunning results with 97% accuracy in traffic density
prediction.

Moreover, Azzouni et al. [4] proposed the NeuTM framework using a deep neural network
to predict the traffic matrix. Specifically, they take advantage of the LSTM network as it
is suitable for learning from data and classifying time series with time intervals of unknown
size. The traffic matrix is a two-dimensional matrix where its (7, j) elements capture the
amount of traffic transmitted from node i to node j in a network. As a result, network
operators know how traffic flows through their network and can make wise decisions on
network and resource management. In the NeuTM framework, Azzouni and his associate
apply a sliding window technique for mapping the input-output pairs to feed the LSTM
network. They deploy NeuTM in a GEANT topology, including 23 nodes and 38 links with
a POX controller. The experimental results show that their model’s accuracy and prediction
measurements outperform traditional methods with better learning of non-linear patterns.

To conclude this section, all of the mentioned above studies utilized Machine Learning
techniques to leverage their works with the improvement in throughput, delay, and better
execution time; therefore, this motivates us to take advantage of the Machine Learning
technique in terms of predicting future network states so that our route and server selection
mechanism can quickly react to the upcoming network state changes.

LSTM-BASED SERVER AND ROUTE SELECTION 83
3. IMPLEMENTATION OF KNOWLEDGE-DEFINED NETWORK

This section describes the implementation of the KDN architecture (Figure 1). KDN
aims to make the distributed large-scale network system more autonomous and smarter with
the ability to share knowledge across multi-domains. KDN contains three layers: the data
plane, the control plane, and the knowledge plane. The communication between these layers
is performed via Northbound and Southbound API.

" Knowledge plane
Data processing Application

1/ Control plane East-West
: Consistency interface Consistency
Machine Learning g “ Machine Learning g
: o H]
Data collection Data collection

Data plane

"""""""""""""""""""""""" s outhboundimerface‘
('7 777 =~

Figure 1: Knowledge-defined heterogeneous architecture

The data plane comprises OpenFlow-enable switches and other network devices to ac-
complish instructions from the control plane (e.g., forwarding, dropping packets, etc.).

The control plane includes multiple heterogeneous distributed controllers. In this paper,
two widely known SDN controller platforms are deployed: ONOS [5] and RYU [2]. ONOS
(Open Network Operating System), written by a JAVA programming language, is designed as
a distributed system with high scalability. RYU is an open-source SDN controller written in
Python. Due to its simplicity, it can be customized to implement various SDN applications.
Due to its flexibility to support multiple protocols such as OpenFlow, Netconf, OF-config,
RYU can be used in various types of networks and applications.

In our previous work, SINA [10] - a type of East-West interface, was proposed and
standardized with a consistency mechanism to allow cross-domain communication and in-
formation consistency among heterogeneous controllers. The multiple distributed controllers
can share the states with others through SINA after collecting their network states. However,
when the communication ability in the distributed system improves significantly, problems
regarding security and reliability may arise. In a multi-threading system like SDN, there is
still a risk of data leakage when SDN controllers exchange their states. To overcome this
limitation, each SDN controller should retain its data and exchange its knowledge. An ML
model in each SDN domain produces the knowledge. As a result, this idea might prevent the
raw data leakage problem. Then, the consistency mechanism can be used to guarantee the
consistency of knowledge among multiple controllers with reasonable communication costs.

The East-West interface SINA is considered a communication bridge. It guarantees

84 NAM-THANG HOANG et.al

consistency with two main components: REST API modules and the listener. The latter is
to listen to the local knowledge generated from a machine learning model before notifying
them of other SDN domains. The former enables other SDN controllers to update the
propagated knowledge based on the REST API platform.

In addition, the consistency mechanism is implemented to ensure that the knowledge
of distributed SDNs is consistent. It includes two major parts: quorum replication and
reinforcement-learning techniques. For example, let us denote N, N,, and N,, as the total
number of controllers, the number of reads and write operations, respectively. If there is
new-found knowledge in one SDN domain, the local controller sends them to N, other
controllers. On the other hand, when a local controller performs the read operation, it gets
knowledge from N, other controllers. When N,,+ N, > N is satisfied, this is called the strong
consistency mechanism. This mechanism ensures that the knowledge of multiple controllers
is consistent at the cost of more communication operations. Based on the reinforcement
learning algorithm - a type of strategy that learns a set of actions (read and write operations)
from getting feedback from the environment, our consistency mechanism can adaptively
select N, and N, ensuring N,, + N,, < N, and maintaining the balance between controllers
communication overhead and the network state consistency.

The knowledge layer gets all distributed knowledge from multiple SDN domains into
storage (or database) before being processed for various applications and services. In this
paper, the SARS application is taken into consideration.

SDN Domain
API N Server and Route | <

. [Selection Application '
1) Rule updating J Listener
! | Processing 6; Routing —— -~ T 14
(©) Knowledge o Consistency :
updating o
® 1)
pub | . .
: Machine Learning
(12):
* fa
@ Network
pub monitoring
@4 | T
(10)

[Core Service]
| Control Plane

Figure 2: The data flow of the SARS application

Figure 2 demonstrates how data flows through various modules in the SARS application.
Firstly, the forwarding rules from other SDN domains are sent to the rule updating module
of the current domain before they are passed into the core service (flow 1, 2). At the same
time, the current domain also received the network data (QoS metrics) from other domains
via the knowledge updating module before these metrics are stored in the local database via
a queue message (flow 3, 4, 5). The data can now be retrieved by the SARS application for
analyzing the relationship of the traffic and making the server and routing selection (flow
6, 7). The resulting rules are then transferred into the core service and other SDN domains’
API (flow 8, 9).

LSTM-BASED SERVER AND ROUTE SELECTION 85

One note-worthy observation of Figure 2 is the presence of the listener component that
includes the consistency, machine learning, and network monitoring modules. The network
monitoring module captures the QoS metrics sent by the controller every 3 seconds (flow
10). The machine learning module then discovers these QoS parameters for finding valuable
knowledge and features (flow 11). This knowledge can now be sent to the message queue
(flow 12) or to the consistency module, where local knowledge is broadcasted to other SDN
domains.

To conclude, this section has illustrated the knowledge-defined heterogeneous network
architecture and the data flow of the SARS application. In the next section, the algorithm
for selecting a route and server in the SARS application is explained in great detail.

4. SERVER AND ROUTE SELECTION FRAMEWORK

This section depicts the SARS application in the inter-SDN domains network, which is
illustrated in Figure 3. In this network, let denote N = {n;|i = 1,2,...,n} as the set of
domains, C' = {¢;|i = 1,2,...,n} as the set of controllers. When traffic and services are
requested from hosts to servers, the network data are generated from these connections and
collected by each domain controller. The QoS data from a sub-domain are then stored in
the local database and analyzed before being broadcasted among N — 1 other domains. This
is when the SARS application combines multiple knowledge from every individual domain
to make the server and routing decisions that optimize the network performance.

Domain 1 I Domain 2 Domain N
|
Server and Route : Server and Route Server and Route
application] application application
|
|

Consistency Consistency Consistency

=

Machine Learning L
;0

Machine Learning Machine Learning

=]

I

I

! .

I T 0

1 H
Data collection : Data collection 1 Data collection

S 1

I

I

I

I

EastrWest !
interfface

; Controller ----- Controller-Switch —— Switch-Switch

- -~ Data Flow

@ Switch <= Controller-Controller —— Switch-Host

Figure 3: Inter-SDN domains network with KDN architecture

4.1. Problem formalization

The SARS problem in SDN inter-domain can be formalized as follows. The whole network
topology is denoted as an undirected weighted graph G = (V, E), where:

e G =G1UG2UG3U...UG; with Gj is the graph of ith domain in the whole distributed
network.

o V ={v1,va,...,u,} is the set of switches.

86 NAM-THANG HOANG et.al

e £ ={ej,ea,...,em} is the set of links with each link being assigned a link cost LC;.
e H ={hy,hs,...,hy,} is the set of hosts.
e S = {s1,89,...,8,} is the set of servers with each server being assigned a server cost
SC;.
Mathematically given:

e Input: host h; € H, switch v; € V, linke; € E, (i =1,2,..n),5 = (1,2,...,m)

e Output: a server s and a path p = {(vi,v2), (v2,v3),...(vp—1,vp)} With vy = h and
vp =8

The objective is to consider the trade-off between the server cost (SC') and the path cost
(PC). Therefore, the problem can be stated as choosing a path p* in all available paths to
minimize the total cost function (7'C'), which is a combination of SC' and PC

TC(SC, PC) = a- SC + 8- PC, (1)
p* =min{TC | p € Py}, (2)
P

where o and 3 are proportional coefficients and P, is all available paths from host s to
server d. It is undeniable that link cost LC's plays an essential role in constructing the path
cost function PC. To ensure flow requirements, the following constraints are taken into
account

> @B < by, (3)

keF
Z z;j LCsj < oy, (4)

(i,j)€E
where F' is the set of unidirectional flows, x;; is a binary coefficient; equal to 1 if a path is
going through the link (7, j) and equal to 0 otherwise, fj is the bandwidth of flow k, b;; is

the available bandwidth between switch ¢ and j, o is the maximum requested cost of flow
k, and LC;; is the cost of the link between switch ¢ and j. Besides,

o 1 if flow k uses link (3, j)
" 0 otherwise.

Constraint (3) ensures that the bandwidth capacity for a link (7, j) is enough for every
flow going through that link. Constraint (4) guarantees that the cost of all the selected links
(i,7) does not surpass the maximum acceptable cost for the flow k.

4.2. Link cost prediction

This section presents the overview of the process of creating the LSTM-based link cost
prediction model (LCP) as depicted in Figure 4. This process has four stages: data collection,
preprocessing, construction, and model deployment.

In the first stage (data collection), the network traffic is obtained once every three seconds
at the data layer. Depending on a specific application, a wide range of features of packets can
be extracted, such as the number of bytes sent, the number of bytes received, the network
protocol used, and others. In this paper, four selected features of the SARS problem are

LSTM-BASED SERVER AND ROUTE SELECTION 87

—
Delay @
-
Filling missing
EEEEE—
Link values
Utilization
o » o Link Cost
P v o i Predictor
Overhead Data
- .
Normalization
EE—
Packet Loss @
-
Link Cost Output
Data collection Data Preprocessin . utpu
P 8 Prediction Model

Figure 4: The process of building pretrained LSTM-based link cost prediction model

delay, link utilization, link overhead, and packet loss rate. These QoS metrics are crucial
factors in estimating the network’s overall performance and services. The collected original
network traffic is then processed in the second stage (data preprocessing), which uses various
techniques such as filling in missing values or data normalization. The mean interpolation
method is used to fill in the missing values of the QoS data in this paper. Moreover, the
data normalization operation is applied to map the QoS data range to the range [0, 1], which
aims to reduce the impact of imbalanced data units (too large or too small). However, this
transformation can be quite sensitive to outlier values.

In the third stage, the LCP model is constructed by the LSTM networks and fully
connected neural networks (FNN). To be more specific, the transformed QoS features already
obtained in the second stage is to flow through the multi-layer LSTMs before entering the
multi-layer FNNs. The LSTMs will learn the long-term non-linear relationship between our
target-link cost values and time-series QoS metrics. On the other hand, the FNNs apply
various linear transformations to learn the matrix weights that can predict future link cost
values. The predicted links’ costs are then moved into a new stage: the SARS mechanism.

4.3. Server and route selection mechanism

This section depicts the SARS algorithm by the following ideas: The first is balancing the
link traffic distribution, and the second is distributing the load equally among the servers.
Therefore, the total cost includes the path and server costs.

To find the path cost, the LC values are predicted by our LCP models (as explained in
Section 5) in multiple SDN domains. Then, the path cost is determined by the sum of all
the LC' values of the crossed links over the path p

PC(p) =Y LC;. (5)

1EP

To estimate the server cost (SC), use Eq. (6) where ST is the current server traffic (e.g.,

88 NAM-THANG HOANG et.al

bytes/s, etc.) and SB is the server bandwidth capacity

ST
=35 (6)
As mentioned in Subsection 4.1, the proposed total cost T'C can be reached by taking a
linear combination (weighted sum) of the SC and PC
TC(SC,PC)=a-SC+p3-PC. (7)
It is worth mentioning that the sum of o and [equals one, and these coefficients represent
the importance of SC and PC.

SC(s)

Algorithm 1 QoS-based SARS algorithm
Input: Graph G = (V, E), set N of SDN domains, set C' of controllers, set DB of databases,
set M of LCP models
Output: Server s € S and Path p = {(v1,v2), (v2,v3),...(Vp—1,0p) }
1: In every time period:
2: for each SDN domain in N domains do
3: Predict link cost values using the LCP model
4: Compute SC values using (6)
5: end for
6: if (a new server connection is requested) then
7. Get predicted link costs from the set of local databases using a consistency mechanism
8: for each server s € S do
9: Compute PC values using (5)
10: Compute T'C' value using (7)
11: end for
12: Choose path p, server s that minimizes T'C' value
13: for each controller ¢ € C' do

14: Insert forwarding rules to OpenFlow switches for the selected path
15: end for
16: end if

The proposed SARS algorithm is depicted in Algorithm 1. The algorithm’s first loop
ranges over the SDN domains, which predict their links and server costs using the already
pre-trained deep learning LCP model. It is important to note that each domain would have
its own LCP model, which is explained in Subsection 5.3. When a new server connection is
requested, the application pulls these predicted values from a local database with a global
view of all knowledge among multiple SDNs using the ACM (as explained in Section 3).
Then, the algorithm’s second loop iterates over servers and finds each server’s shortest path
by calculating its path cost and total cost. Next, the path p and server s are chosen with
minimum 7'C' value. This is when traffic flows are installed to the switches in the selected
path p. Next section will discuss how the LSTM is trained to predict link cost values.

5. LSTM-BASED LINK COST PREDICTION MECHANISM

The proposed LSTM-based link cost prediction mechanism is presented in this section.
The objective is to predict link cost values for the SARS mechanism.

LSTM-BASED SERVER AND ROUTE SELECTION 89

5.1. Data collection

This module is used to collect the network features generated from the traffic flows of
communication between hosts and servers in the SDN inter-domains. Four features, which
include delay (DL), link utilization (LU), packet loss rates (PLR) and link overhead (LO),
are extracted in each SDN domain, thanks to the API PortStatistics [17]. Using the Round
Robin algorithm [14], each server is selected following a circular queue.

Having collected data, we can consider a training set D = {(z1,41), ..., (x7,y7r)} consist-
ing of T inputs z; € R* and corresponding link cost y; € R, t = 1,2,...,7. Each z; can be
treated as a 4-dimensional feature vector of an edge e;_; at time ¢. For example, an edge
ei—j can have a vector z; = (0.5,0.2,0.3,0.4), where its dimensions are DL, LU, PLR and
LO. According to [18], LO can be calculated as in Eq. (8)

(ByteSent + ByteReceived) — ByteThreshold (8)
ByteT hreshold ’
The relationship between the feature vector x; and the link cost y; is defined as

LO =

Yt = TDelayt * ADelay + X LinkUtilization_t * ®LinkUtilization
+ T PpacketLossRate-t * “PacketLossRate

+ T LinkOver Head-t * ®LinkOver Head (9)

where the sum of QDelay, XLinkUtilizations PacketLossRate> and A LinkOver Head is equal to 1.

5.2. Data preprocessing

In this module, the QoS parameters are captured at the data link layer to build the real
dataset within approximately 38 hours. Table 1 describes the number of samples in 18 SDN
domains.

Firstly, the noise values generated by the monitoring tools (e.g., link layer discovery
protocol) are removed from each of the 18 datasets. After that, the links’ features are scaled
between 0 and 1 [6] via the normalization technique (Eq. 10) to decrease the range of large
input values. This technique increases the speed at which the model is trained by decreasing
the time required to converge to the local minima [20]

> X — Xmin
X = X X (10)

5.3. LSTM-based link cost prediction

This section presents the detail of LSTM-based link cost prediction. Figure 5 depicts
the two main phases of the LCP module: the training and testing phases. The LCP module
takes collected features from the previous data collection and data preprocessing modules as
input to the deep learning algorithm.

In Table 1, each row of the table represents a dataset in a specific domain. Each dataset
in each domain is then split into three sets: the training, the validation, and the testing sets,
with a percentage of 70%, 15%, and 15%, respectively. This means that during the training
phase, 18 domains would train their own dataset independently in order to generate 18 LCP
models for the testing phase. In the testing phases, if any links belong to a specific domain,
their LC values would be predicted by the LCP model from that domain. The LC' values

NAM-THANG HOANG et.al

Table 1: The number of samples in each SDN domain

‘ Ip of SDN domain ‘ SDN controller platform ‘ Number of samples

10.20.0.200 onos 182 990
10.20.0.206 onos 185 592
10.20.0.207 onos 141 275
10.20.0.208 onos 163 191
10.20.0.209 onos 146 592
10.20.0.211 onos 174 510
10.20.0.212 ryu 169 058
10.20.0.213 ryu 179 679
10.20.0.214 ryu 145 609
10.20.0.215 ryu 166 987
10.20.0.216 ryu 155 307
10.20.0.217 ryu 173 008
10.20.0.218 ryu 157 134
10.20.0.219 onos 148 007
10.20.0.220 onos 158 085
10.20.0.221 onos 155 963
10.20.0.222 onos 184 028
10.20.0.223 onos 152 734

Dataset in each SDN domain

75% Training 15% Testing

QoS
data

Data Collection
and Preprocessing

Data Collection
and Preprocessing

Feature
S
'
. Model
Deep Learning | "7, | 1 op \odel
algorithm

— T~

Link Cost Link Cost
predictor 1 ----- Predictor N

Figure 5: The deep learning-based link cost prediction method

LSTM-BASED SERVER AND ROUTE SELECTION 91

5x128
vector

5x 64
vector

5x32
vector

—+ Dense

32 neurons

1x32
vector

1x8
vector

1x1
vector

Output
ey Dense mmp P

| [STM [===ppi LSTM =Pt [LSTM —_—

Dense

64 units
Rel.U

128 units
Rel.U

32 units 8 neurons 1 neurons

ReLU

5x4
feature vector

Figure 6: Architecture of the deep learning-based link cost prediction model

are predicted from the history of QoS parameters that include delay, link utilization, link
overhead, and packet loss rate. Now, moving on to the architecture of an LCP model, it is
described in Figure 6 and contains two essential layers:

LSTM layer: There are three LSTM layers in this architecture. The first one receives
the input as a 5 x 4 feature vector where the first dimension is the number of time_steps,
and the second dimension is the number of features (DL, LU, PLR, and OH). It is worth
mentioning that the time_steps is selected after the overall performance of the LCP model
is assessed. The output of this layer is a 5 x 128-dimensional vector (or time_steps X
LSTM neurons dimensional space). In the second LSTM layer, the 5 x 128-dimensional
vector from the previous step is regarded as an input, generating a 5 X 64-dimensional
vector. Likewise, the third LSTM layer gets the 5 x 64-dimensional vector and produces a
5 x 32-dimensional vector as an output.

ReLU activation function: Each output vector from each LSTM layer is passed into
a ReLU activation function. The ReLU maps every element of a 5 x n-dimensional vector
into new values as given by the following Eq. (11)

1 if z <0,
x pr
/(@) {x otherwise.

Dense layer: There are three dense layers (or fully connected layers) with 32, 8, and
1 neurons. In summary, Table 2 succinctly describes the neural network-based link cost
prediction model’s dimension.

(11)

Table 2: Dimension of the neural network-based link cost prediction model

‘ Layer ‘ Input space ‘ Output space ‘ Activation ‘

LSTM 5 x4 5 x 128 ReLU
LSTM 5 x 128 5 x 64 ReLU
LSTM 5 x 64 5 x 32 ReLU
Dense 5 x 32 1 x 32
Dense 1 x 32 1x8
Dense 1 x8 1x1

In the testing phase, features are collected and pre-processed before being fed into the
LCP model to predict the link costs.

92 NAM-THANG HOANG et.al

6. EXPERIMENTAL RESULTS

6.1. Experimental setup

According to the experiments, a distributed system is implemented with one master and
18 slave machines. The master machine is a Dell PowerEdge R840 with 32 GB memory.
The server and route applications are implemented on this machine to make the routing and
server selection decisions. The remaining 18 slave machines include 8 RYU controllers and
10 ONOS controllers in charge of collecting network states, predicting LC's, and exchanging
predicted values with one another. Mininet [11] is used to emulate the network topology.
Such a large-scale topology is a Viatel Europe [15] containing 92 switches and 18 replica
servers.

To verify the scalability of inter-SDN domains with KDN architecture, the large Viatel
Europe topology is divided into 18 subdomains, where each of which is controlled by one
SDN controller. To assess the performance of the LCP model, the topology is configured as
a dynamic network. In this case, after a random time, denoted as RT', the state of links is
changed based on a probability value. The network traffic generator used in this paper is
the simple HTTP server [23], which generates files of different sizes [10, 60] MB.

‘ Dynamic network ‘ Parameter ‘
Link Random Delay [25, 50, 75, 100, 125]ms
Switch Random Loss [0.1, 1, 2, 5]%
Bandwidth 100MB
Traffic generation tool Simple HTTP server
Traffic range [10, 60] MB

Table 3: Dynamic network configurations

6.2. Tuning hyperparameters of the link cost prediction model

This section depicts the process of tuning hyperparameters for our LCP model compared
with other network architectures. As mentioned in Subsection 5.2, each SDN domain has its
dataset comprising roughly 150 000 samples. The obtained dataset from these 18 domains
can go up to more than 2.7 billion samples. With the explosion of the amount of data, the
traditional centralized ML model might not be feasible as it requires intensively increasing
computation time and enormous resources (e.g., high-performance GPU, expensive special-
ized hardware, etc.) [21]. To overcome this limitation, this paper takes advantage of the
distributed training approach where each SDN domain trains its own data.

It has been demonstrated across numerous tasks that stacked LSTMs can outperform
single-layer networks [19]. Therefore, this paper exploits this characteristic by stacking
multiple LSTM, dense layers, and LSTM units. However, as the number of stacks increases,
the training costs can rise quickly.

To verify the performance of the proposed LSTM network in link cost prediction, the
mean squared error (MSE) is chosen in this phase Eq.(12)

LSTM-BASED SERVER AND ROUTE SELECTION 93

64(LSTM)-32(LSTM)-8(Dense)-1(Dense)

~ %= 64(LSTM)-64(LSTM)-32(LSTM)-8

1.4- —e— 128(LSTM)-64(LSTM)-32(Dense)-8(De
: —#— 128(LSTM)-64(LSTM)-32(LSTM)-32(D

5 1.0-
g Early S ing
o Renean
5 08- avoid overfitting
=
o
w1
g 06
=

0.4-

0.2-

0.0-

0 50 100 150 200 250 300
Epochs

Figure 7: Effect of LSTM architecture on convergence in learning

1 n
MSE == (4: — vy 12
@ D) (12)
Figure 7 illustrates the 18 SDN domains’ average MSE loss with different LSTM architec-
tures according to [7]. It can be observed that over the period shown, a dense neural network
offers a better learning capability than a spare one. One note-worthy observation is that the
MSE error of the “128(LSTM)-64(LSTM)-32(LSTM)-32(Dense)-8(Dense)-1(Dense)” neural
network architecture used in all 18 domains was the lowest during most of the given epochs.
After 150 epochs, it converged to a global minimum, achieving approximately 1.8 - 1077,
which was much lower than other networks, which all achieved more than 2.4 -1077. As a
result, the early stopping technique is used to hinder it from overfitting.

6.3. Benchmarks

This paper proposes and re-implements some server and route selection techniques from
[9] as benchmark algorithms in order to compare their performances with our proposal (Algo-
rithm 1). These techniques are round robin with strong consistency (RR-WSC), QoS-based
algorithm with strong consistency (QSARSA-WSC), link cost prediction with strong consis-
tency (LCP-WSC), and QoS-based algorithm with adaptive consistency (QSARSA-WAC),
all of which will be depicted in the following sections.

6.3.1. Benchmarks with strong consistency

RR-WSC: According to [9], the RR-WSC benchmark selects servers following a circular
queue. Moreover, it is fixed with two parameters N, and N,, as 1 and 18, respectively. As

94 NAM-THANG HOANG et.al

detailed in Section 3, this strong consistency mechanism guarantees information consistency
across 18 domains at the expense of extra communication overhead.

QSARSA-WSC: This benchmark is based on a similar strong consistency mechanism to
RR-WSC. The only difference is that QSARSA-WSC selects paths using Dijkstra’s algorithm
with real-time link cost values. These values can be estimated using Eq. (9).

LCP-WSC: In this case, LCP-WSC works on LSTM models that are already trained
to predict the link cost values. However, it uses a strong consistency mechanism rather than
an adaptive one.

6.3.2. Benchmark with adaptive consistency

QSARSA-WAC: This benchmark has the same path selecion mechanism with the sec-
ond benchmark QSARSA-WSC. However, it takes advantage of an adaptive consistency
mechanism with N, and N,, being adaptively updated according to the state of a network.
As a result, this mechanism helps the network become more consistent across multi-domains
in QoS data but with less communication overhead.

6.4. Performance analysis

The experiments and numerical results are illustrated in this section to evaluate our
proposal’s performance against benchmarks.

Average Link Utilization (%)
0.8-

0.7

0.6

0.5

0.4
0.3-
0.2-
0.1-
0.0-

RR-WSC QSARSA-WSC QSARSA-WAC LCP-WSC Proposal

Average Link Utilization (%)

Figure 8: Comparison of Average Link Utilization between the proposal and benchmark methods

6.4.1. Comparing the QoS performance

According to Figure 8 and Figure 9, our proposal ranked in third place on the PLR
and ALU charts. Regarding algorithms that use the adaptive consistency mechanism, our

LSTM-BASED SERVER AND ROUTE SELECTION 95

Packet Loss Rate (%)
25-
20-
o
<
o 15-
151
-4
2
Q
)
210-
Q
<
o
5 I I
0-
RR-WSC QSARSA-WSC QSARSA-WAC LCP-WSC Proposal

Figure 9: Comparison of Packet Loss Rate (%) between the proposal and benchmark methods

proposal achieved 11% of PLR and 46% of ALU. These results were slightly higher than
those of the QSARSA-WAC algorithm which obtained around 9% of PLR and 43% of PLR.

The QSARSA-WSC and LCP-WSC algorithms that use the strong consistency mecha-
nism, had a better QoS performance than other algorithms, with a PLR of each under 10%
and ALU above 50%. It is striking that the RR-WSC is the only algorithm that obtained the
highest PLR (22%) and the lowest ALU (31%). In summary, RR-WSC has proven ineffective
with the worst case of PLR and ALU metrics because it only selects servers without consider-
ing the network state. Compared to the RR-WSC, the QSARSA-WSC and QSARSA-WAC
calculate link cost values every ten time-steps, producing better QoS performance. However,
they do not take full advantage of all the past knowledge and still require high processing
time. By contrast, in using an LSTM model, our proposed algorithm exploits all the past
knowledge.

6.4.2. Comparing the response time and overhead

In this phase, an SLA threshold is set up at approximately 170,000 ns. This threshold
is an upper bound to estimate the servers’ response time using different tested algorithms.
From Figure 10, by the end of the period, it can be observed that our proposal achieved the
lowest servers’ response time (approximately 60,000 ns). The RR-WSC algorithm attained
the highest response time (around 170,000 ns).

During the first phase (the first 5000s), our proposal and LCP-WSC algorithms, which
exploited the LSTM model, obtained a better server response time than their counterparts.
The proposal and LCP-WSC curves dropped below the SLA line, from 170,000 ns to just
under 160,000 ns each. On the other hand, RR-WSC, QSARSA-WSC, and QSARSA-WAC
were all higher than the SLA threshold (all above 170,000 ns).

96

NAM-THANG HOANG et.al

led

25.0-

22.5-

20.0-

17.5-

15.0-

Response Time (ns)

12.5-
10.0-
7.5-

5.0- '
0.00

025

Response Time (ns)

050 0.75 1.00

Time (seconds)

\\.//‘/l

Response time gy - @
“Threshold ‘.‘,7 L @ -@

125

150

O RrRr-wsC

QSARSA-WSC

QSARSA-WAC
LCP-WSC
Proposal

175

Figure 10: Comparison of Response Time between the proposal and benchmark methods

During the remaining phase (from 5000s onwards), the RR-WSC was the only algorithm
to reach a plateau, varying 160,000 ns and 170,000 ns. At the same time, all other algorithms

decreased significantly. Our proposal ended up at the bottom place of the graph.

Table 4: Comparison of average response time and average link overhead between proposal and

In summary, for the SARS problem, the response time is the most important aspect in
many online services (e.g., file sharing, online gaming, video streaming, etc.) [24]. Also, the
overhead metric Eq. (8) is considered as the excessive network traffic factor on links. There-
fore, Table 4 illustrates all our experiments’ average response time and link overhead. In
Table 4, the third and fifth columns compare the difference between our proposal and bench-
marks regarding average response time and overhead metrics. Our proposal outperforms the
LCP-WSC with the average response time and overhead at 14% and 25%, respectively.

benchmarks.
Benchmark Response Improvemept of Overhead Improvement of
time (ns) | response time overhead

RR-WSC 177,282 38% 0.70 5%

QSARSA-WSC | 150,737 27% 0.40 57%

QSARSA-WAC | 152,897 28% 0.35 51%
LCP-WSC 128,000 14% 0.23 25%

Our proposal | 110,089 - 0.17 -

LSTM-BASED SERVER AND ROUTE SELECTION 97
7. CONCLUSIONS

This paper proposes an LSTM-based approach for selecting servers and routes in a dis-
tributed SDN network to enhance long-term network operation with high QoS. Our approach
addresses the single point of failure issue in intra-SDN domains by introducing KDN. Addi-
tionally, our proposed server and route selection method exploits link cost values predicted by
a Long Short-Term Memory network (LSTM) to collaborate and share predicted knowledge
among multiple domains before selecting a server and route. The objective is to efficiently
utilize links and prevent bottlenecks. Simulation results indicate that the LSTM predicts
link cost parameters with a low MSE of approximately 1.8-10~7. Furthermore, our proposal
significantly improves link utilization, packet loss, response time, and overhead, by 15%,
10%, 14%, and 25%, respectively, compared to benchmarks.

Our work has two limitations. Firstly, there is a possibility of an imbalanced dataset
situation, where the sample size in one domain can be significantly larger than in other do-
mains (e.g., new domains), which might prevent the model from learning knowledge across
multiple network domains. Additionally, our route and selection mechanism is not adap-
tive in complex environments because routing decisions cannot be updated if unexpected
congestion occurs during the routing process.

However, these limitations present opportunities for future research. To address the first
limitation, we plan to explore Transfer Learning (TL), which transfers already learned knowl-
edge from one domain to other data-hungry domains. To deal with the second limitation, we
aim to study various evolutionary algorithms (e.g., genetic, ant-colony techniques, etc.) with
multi-intelligent agents to make our server and route selection mechanism more adaptive in
stochastic environments.

ACKNOWLEDGMENT

This research is funded by Vietnam National Foundation for Science and Technology
Development (NAFOSTED) under grant number 102.02-2019.314

REFERENCES

[1] H. A. Akyildiz, I. Hokelek, M. Ileri, E. Saygun, and H. A. Cirpan, “Joint server and route selection
in SDN networks,” in 2017 IEEE International Black Sea Conference on Communications and
Networking (BlackSeaCom), 2017, pp. 1-5.

[2] S. Asadollahi, B. Goswami, and M. Sameer, “Ryu controller’s scalability experiment on soft-
ware defined networks,” in 2018 IEEE International Conference on Current Trends in Advanced
Computing (ICCTAC), 2018, pp. 1-5.

[3] A. Azzouni, R. Boutaba, and G. Pujolle, “Neuroute: Predictive dynamic routing for software-
defined networks,” in 2017 13th International Conference on Network and Service Management
(CNSM), 2017, pp. 1-6.

4] A. Azzouni and G. Pujolle, “NeuTM: A neural network-based framework for traffic matrix
]
prediction in SDN,” in NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management
Symposium, 2018, pp. 1-5.

98

[5]

[10]

[11]

[14]

[15]

[16]

[17]

[18]

[19]

NAM-THANG HOANG et.al

P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B. O’Connor,
P. Radoslavov, W. Snow et al., “ONOS: Towards an open, distributed SDN OS,” in Proceedings
of the Third Workshop on Hot Topics in Software Defined Networking, 2014, pp. 1-6.

S. Bhanja and A. Das, “Impact of data normalization on deep neural network for time series
forecasting,” 2018. [Online]. Available: https://arxiv.org/abs/1812.05519

J. Bhatia, R. Dave, H. Bhayani, S. Tanwar, and A. Nayyar, “SDN-based real-time urban traffic
analysis in VANET environment,” Computer Communications, vol. 149, pp. 162-175, 2020.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/S0140366419308916

D. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wroclawski, “A knowledge plane for the
internet,” in Proceedings of the 2003 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, 2003, pp. 3-10.

N.-T. Hoang, C.-S. Duong, T.-L.-T. Nguyen, V. Tong, and H. A. Tran, “Knowledge-defined
heterogeneous network: Use-case of qos-based server and route selection in large-scale network,”
in Proceedings of the 11th International Symposium on Information and Communication Tech-
nology, 2022, pp. 150-157.

N.-T. Hoang, H.-N. Nguyen, H.-A. Tran, and S. Souihi, “A novel adaptive east-west interface
for a heterogeneous and distributed sdn network,” FElectronics, vol. 11, no. 7, 2022. [Online].
Available: https://www.mdpi.com/2079-9292/11/7/975

R. Jawaharan, P. M. Mohan, T. Das, and M. Gurusamy, “Empirical evaluation of SDN controllers
using mininet/wireshark and comparison with Cbench,” in 2018 27th International Conference
on Computer Communication and Networks (ICCCN), 2018, pp. 1-2.

L. Jiang, W. Xia, F. Yan, L. Shen, Y. Zhang, and Y. Gao, “QoS-aware Routing Optimization
Algorithm using Differential Search in SDN-based MANETS,” in 2021 IEEE Global Communi-
cations Conference (GLOBECOM), 2021, pp. 1-6.

L. Jiang, W. Xia, Y. Zheng, F. Yan, L. Shen, Y. Zhang, and X. Yang, “QoS sensitive routing
algorithm with link quality prediction in SDN-based Ad Hoc networks,” in 2020 International
Conference on Wireless Communications and Signal Processing (WCSP), 2020, pp. 1188-1193.

S. Kaur, K. Kumar, J. Singh, and N. S. Ghumman, “Round-robin based load balancing in soft-
ware defined networking,” in 2015 2nd International Conference on Computing for Sustainable
Global Development (INDIACom), 2015, pp. 2136-2139.

S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The internet topology
z00,” IEEE Journal on Selected Areas in Communications, vol. 29, no. 9, pp. 1765-1775, 2011.

H. Li, Y. Govind, S. Mudgal, T. Rekatsinas, and A. Doan, “Deep learning for semantic matching:
A survey,” Journal of Computer Science and Cybernetics, vol. 37, no. 4, pp. 365-402, 2021.

ONOS. (2021) Portstatistics api. [Online]. Available: https://api.onosproject.org/1.12.0/org/
onosproject/net /device/PortStatistics.html

S. Patil, “Load balancing approach for finding best path in SDN,” in 2018 International Con-
ference on Inventive Research in Computing Applications (ICIRCA), 2018, pp. 612-616.

A. Sahar and D. Han, “An LSTM-based indoor positioning method using Wi-Fi signals,” in
Proceedings of the 2nd International Conference on Vision, Image and Signal Processing, 2018,

pp. 1-5.

https://arxiv.org/abs/1812.05519
https://www.sciencedirect.com/science/article/pii/S0140366419308916
https://www.mdpi.com/2079-9292/11/7/975
https://api.onosproject.org/1.12.0/org/onosproject/net/device/PortStatistics.html
https://api.onosproject.org/1.12.0/org/onosproject/net/device/PortStatistics.html

[20]

[21]

[22]

LSTM-BASED SERVER AND ROUTE SELECTION 99

S. Sanagavarapu and S. Sridhar, “Sdpredictnet-a topology based sdn neural routing framework
with traffic prediction analysis,” in 2021 IEEFE 11th Annual Computing and Communication
Workshop and Conference (CCWC), 2021, pp. 0264-0272.

J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and J. S. Rellermeyer, “A
survey on distributed machine learning,” ACM Computing Surveys (CSUR), vol. 53, no. 2, pp.
1-33, 2020.

Y.-J. Wu, P.-C. Hwang, W.-S. Hwang, and M.-H. Cheng, “Artificial intelligence enabled routing
in software defined networking,” Applied Sciences, vol. 10, no. 18, 2020. [Online]. Available:
https://www.mdpi.com/2076-3417/10/18 /6564

Y. Xie, “Servr: A simple http server to serve static files or dynamic documents,” R Package
Version 0.4, vol. 1, 2016.

H. Zhong, Y. Fang, and J. Cui, “Reprint of LBBSRT: An efficient SDN load balancing scheme

based on server response time,” Future Generation Computer Systems, vol. 80, pp. 409-416,
2018.

Received on October 16, 2022

Accepted on February 09, 2023

https://www.mdpi.com/2076-3417/10/18/6564

	INTRODUCTION
	RELATED WORK
	IMPLEMENTATION OF KNOWLEDGE-DEFINED NETWORK
	SERVER AND ROUTE SELECTION FRAMEWORK
	Problem formalization
	Link cost prediction
	Server and route selection mechanism

	LSTM-BASED LINK COST PREDICTION MECHANISM
	Data collection
	Data preprocessing
	LSTM-based link cost prediction

	EXPERIMENTAL RESULTS
	Experimental setup
	Tuning hyperparameters of the link cost prediction model
	Benchmarks
	Benchmarks with strong consistency
	Benchmark with adaptive consistency

	Performance analysis
	Comparing the QoS performance
	Comparing the response time and overhead

	CONCLUSIONS

