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Abstract. Big data processing is attracting the interest of many researchers to process large-scale

datasets and extract useful information for supporting and providing decisions. One of the biggest

challenges is the problem of querying large datasets. It becomes even more complicated with similarity

queries instead of exact match queries. A fuzzy join operation is a typical operation frequently used

in similarity queries and big data analysis, in which similarity functions are the key for all fuzzy join

algorithms. The functions are used to quantify the similarity of two join keys. Currently, there is

very little research on similarity functions for parallel fuzzy joins, thus it poses significant barriers

to the efforts of improving query operations on big data efficiently. As a result, this study overviews

the similarity algorithms for fuzzy joins, in which the data at the join key attributes may have

slight differences within a fuzzy threshold. We analyze six similarity algorithms including Hamming,

Levenshtein, LCS, Jaccard, Jaro, and Jaro - Winkler, to show the difference between these algorithms

through the three criteria: output enrichment, false positives/negatives, and the processing time of

the algorithms. Experiments of fuzzy join algorithms are implemented in the Spark environment, a

popular big data processing platform. The algorithms are divided into two groups for evaluation:

group 1 (Hamming, Levenshtein, and LCS) and group 2 (Jaccard, Jaro, and Jaro - Winkler). For the

former, Levenshtein has an advantage over the other two algorithms in terms of output enrichment,

high accuracy in the result set (false positives/negatives), and acceptable processing time. In the

letter, Jaccard is considered the worst algorithm considering all three criteria mean while Jaro -

Winkler algorithm has more output richness and higher accuracy in the result set. The overview of

the similarity algorithms in this study will help users to choose the most suitable algorithm for their

problems.
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1. INTRODUCTION

Big data analysis is currently attracting the interest of researchers to extract valuable
information from the huge amount of data that is rapidly increasing. The join operation
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between large datasets is a typical operation used frequently in data processing. Join per-
forms the association of data from different datasets according to a key join and returns a
new dataset. Thus, joining two datasets is performed on tuples with the same key value.
However, in practice as well as in science and technology, many concepts are not clearly
defined. The data at the join key attributes may have slight differences, but it is still pos-
sible to ensure the join condition and returns the right results. Fuzzy Join is an operation
that joins different datasets based on a degree of difference in a certain key attribute. Given
two datasets R(Enterprise) and L(Employee) as in Table 1 and 2, the join computation
between the two datasets R ▷◁Ent Add=Emp Add L will return a new dataset O as shown in
Table 3.

Table 1: Dataset R(Enterprise)

Ent Num Ent Name Ent Add

11663 More Power Industries 150 North Michigan Ave

11435 Group Services 605 3rd Acenue

13928 Liberty Trading 300 North Meridian Street

Table 2: Dataset L(Employee)

Emp Num Emp Name Emp Add

10 Catherine Exelby 150 North Michigan Ave

22 Eileen Henderson 605 Third Avenue

65 Jorge Marin 300 North Meridian Street

Table 3: Dataset O = R ▷◁Ent Add=Emp Add L

Ent Num Ent Name Ent Add Emp Num Emp Name Emp Add

11663 More Power Industries 150 North Michigan Ave 10 Catherine Exelby 150 North Michigan Ave

13928 Liberty Trading 300 North Meridian Street 65 Jorge Marin 300 North Meridian Street

The result in Table 3 is the association of two datasets R and L with the join key being the
addresses of the two datasets. However, with the naked eye, one result is missing because
the address “605 Third Avenue” has a little difference in the dataset R. Thus, to have
the desired results, it is necessary to perform a fuzzy join operation that accepts a certain
possibility of variation in the join key.

In the literature, there have been studies examining set-similarity joins (fuzzy joins) on
a single computer [1–5]. Finding pairs of strings with a specific amount of tokens in com-
mon was done using inverted-list-based algorithms proposed in [1]. In [2], a prefix filter was
proposed to reduce the large number of pairs in data cleaning. In [3, 4], the length filter
has been examined. The positional filter and the suffix filter were two additional filters that
were suggested in [5]. Concerning parallel fuzzy joins, there have been some studies using the
popular MapReduce model. Vernica et al. [6] performed set-similarity joins in parallel using
MapReduce. They identified similar records based on string similarity with a set-similarity
function, e.g., Jaccard with a similarity threshold of 0.80. Their approach to Jaccard simi-
larity is known to be good in decreasing the running time when the similarity threshold is
high. Experiments were conducted in Hadoop with two datasets, DBLP (1.2M publications)
and CITESEERX (1.3M publications). Baraglia et al. [7] addressed the similarity self-join
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problem to discover all pairs of objects according to a similarity function. They proposed
two algorithms based on Prefix-Filtering: the first algorithm performed a Prefix-Filtering
in two MapReduce jobs and the second used a remainder file to broadcast data likely to be
used by every reducer. This approach is inspired by an earlier one proposed by Elsayed et.
al. [8]. The authors ran experiments on a 5-node cluster with Hadoop configuration showing
their improvements over the approach in [6]. Afrati et al. [9] evaluated several fuzzy join
algorithms for finding all pairs of elements from an input set that meet a similarity thresh-
old. They proposed to use a single MapReduce job and consider the cost of the algorithms
including the execution cost of the mappers, the execution cost of the reducers, and the
communication cost from the mappers to the reducers. The algorithms were presented in
terms of Hamming distance and then extended to edit distance and Jaccard distance. The
authors showed that non of the algorithm dominates the others when both communication
and reducer costs are considered. Their algorithms came with complete theoretical analysis,
but no experimental evaluation is provided, thus Ben Kimmett et al. [10] computed fuzzy
joins of binary strings using Hamming Distance from the MapReduce algorithms proposed
in [9]. Through experimental results, the authors showed different facets of the algorithms,
and from their practical point of view, some algorithms were almost always preferable to
others. In [11], Ben Kimmett et al. continued to provide an experimental evaluation of the
fuzzy join algorithms proposed in [9] with the more challenging cases of edit and Jaccard
distances. The authors provided details of adaptations needed to implement the algorithms
based on these similarity measures. In [10, 11], the authors used the Hadoop platform for
their experiments.

Das Sarma et al. [12] proposed ClusterJoin to split data into partitions using a set of
strong candidate filters to keep each record distribution in a small number of partitions. The
approach was compared with several similarity join methods with the distance functions of
Euclidean, Cosine, Total Variation, and Jensen Shannon. Deng et al. [13] proposed a scalable
string similarity joins, namely Mass-Join, based on MapReduce to solve the problem of low
pruning power, many dissimilar pairs sharing the same token cannot be pruned. Experiments
were conducted in Hadoop demonstrating both set-based similarity functions and character-
based similarity functions. Their approach got similar results when evaluating the scale-
up on two set-based similarity functions, e.g., Cosine and Jaccard, since the verification
method took little time. Yu et al. [14] provided a survey on string similarity search and
join. The authors presented the problem definitions and discussions on similarity search and
join algorithms with their variants. They discussed the prefixed filtering method based on
the similarity threshold of Jaccard, Cosine, Dice, and Edit distance. No experiment was
provided in this study. Rong et al. [2] introduced FS-Join, a distributed similarity join
algorithm, using a filter-and-verification framework. A new partitioning method was defined
to support efficient string similarity joins. Experiments were set up on a Hadoop cluster
running on the Amazon Elastic Compute Cloud with 11 nodes. Fier et al. [15] gave a survey
on ten distributed set similarity join algorithms based on MapReduce. They performed a
comparative evaluation on twelve datasets of varying sizes and characteristics. The tested
algorithms used Jaccard similarity and were deployed on the same Hadoop cluster.

Yan et al. [16] proposed the Pada-Join algorithm for string similarity join on distributed
systems with Spark. The authors conducted experiments to show performance differences
between string similarity joins on distributed systems and multi-core systems. For rela-
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tively small datasets, running on multi-core systems provides good scalability and avoids the
overhead of network communication. Zhimin Chen et al. [17] described a scale-out fuzzy
join operator that supports customization with a locality-sensitive-hashing based signature
scheme. The evaluation of the design was done on the Azure Databricks version of Spark us-
ing several real-world and synthetic datasets. Through experimental results, they found that
fuzzy join that uses locality-sensitive-hashing signature is significantly faster than a prefix
filtering based technique and in case the broadcast fuzzy join is applicable, it is faster than
the shuffle version. Tran Thi-To-Quyen et al. [18] proposed to integrate the Bloom filter in
fuzzy joins to support fast similarity queries in reducing redundant data. The approach was
done by maintaining a bit matrix, with a small false positive rate, and zero false negative
rate. They provided experiments showing that the fuzzy filter join can eliminate redundant
data, reduce computation costs, and avoid duplicate outputs.

In this study, we will give an overview of the similarity algorithms for join computation on
large-scale datasets. The six algorithms considered in this study are Hamming, Levenshtein,
LCS, Jaccard, Jaro, and Jaro - Winkler, which have been proposed for a long time. These are
the basic and extensive similarity algorithms that are still used in many recent studies such
as natural language processing [19–21], image processing [22], recommendation systems [23],
and data clustering [24]. The algorithms are also used in recent research on fuzzy joins
[9, 12, 13]. Basic algorithms are always necessary as long as they are extensive and effective
in use. Thus, we present the fuzzy join calculation based on the similarity algorithms in a
systematic manner and provide experiments for evaluation and comparison in a new platform
of big data processing. Detailed descriptions of the six algorithms are presented along with
the experiments implemented on Apache Spark. The three criteria used to evaluate these
algorithms are output enrichment, false positives/negatives, and processing time. Based on
the overview of the algorithms, depending on the desired fuzzy thresholds, users will choose
the algorithms to suit their requirements. The arrangement of the paper is as follows. Section
2 presents the theoretical background related to the MapReduce model, Spark platform, and
fuzzy join computation on a big data processing platform. Section 3 shows the six similarity
algorithms that can be used in fuzzy join computation. We present the experiments in section
4 and conclude the paper in section 5.

2. BACKGROUND

In this chapter, we will describe the theoretical background of the MapReduce model,
the Apache Spark platform, and the implementation of fuzzy join.

2.1. MapReduce

MapReduce [25] is a programming model providing an efficient data flow engine to im-
prove the performance of data processing in a cluster environment. The model was developed
and had been successfully used at Google for many different purposes. The motivation was to
distribute computations across hundreds or thousands of machines to finish in a reasonable
amount of time but hide the messy details of parallelization, fault tolerance, data distribu-
tion, and load balancing in a library. Two main functions in the programming paradigm are
map and reduce. Mapping uses the input data to produce a set of intermediate key/value
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pairs and reducing merges the intermediate values associating with a key to produce the
results.

2.2. Apache spark

Apache Spark [26] is a large-scale data processing framework that can quickly perform
task processing on big datasets, and can also distribute computation across multiple com-
puters. Spark is compatible with multiple distributed file systems such as Hadoop HDFS1,
Cassandra2, Hbase3, and Amazon S34. It allows the division of tasks into smaller pieces and
runs in memory on different computing nodes to exploit the fast processing speed. Spark
Core is the main component of Spark that supports the most basic functions such as schedul-
ing tasks, managing memory, and error recovery. It provides concise and consistent APIs in
Scala, Java, and Python.

A resilient distributed dataset (RDD) is a fundamental data structure of Spark. It is a
fault-tolerant collection of elements partitioned across the nodes of the cluster that can be
operated in parallel. RDDs support two types of operations: transformation and action. A
transformation generates new RDDs from existing RDDs and an action returns a value after
running a computation on RDDs. The RDDs will be recalculated every time a related action
is performed, thus, an important capability of Spark is persisting (or caching) the RDDs in
memory or on disk across operations. This is a key tool for iterative algorithms and fast
interactive use. The RDDs will only calculate once and reuse in other actions. Spark uses a
concept called “storage level” to manage the places where we can persist RDDs (on disk or
in memory).

2.3. Fuzzy join

Fuzzy join (or set-similarity join) is a powerful operation that matches records in the
input datasets with a given similarity function. Given two input datasets R and L, the
fuzzy join operation will return all output records combining x ∈ R and y ∈ L such that
sim(x, y) >= θ, where sim is a similarity function and θ is a user-specified threshold. Com-
monly used similarity functions include Hamming, Levenshtein, Longest common sequence
(LCS), Jaccard, Jaro, Jaro - Winkler, etc. Given the two input datasets R and L (as in
Table 4), the fuzzy join operation with a similarity threshold of 1 provides the result set
presented in Table 5.

In Table 5, the result set consists of 5 records, in which the records in line 1, line 4, and
line 5 are the results of the correct match join operation. The remaining two records are
the results of a fuzzy join with a threshold of 1. When performing the fuzzy join of two
datasets based on the MapReduce model, the map phase will divide the input datasets of R
and L for the mappers to process (Figure 1). As an example, the datasets are divided among
four mappers, in which Mapper1 is assumed to process the first two records of dataset R,
Mapper2 handles the remaining two records of dataset R, Mapper3 handles two records of
dataset L, and Mapper4 processes a remaining record of dataset L. Then tuples with the

1https://hadoop.apache.org
2https://cassandra.apache.org
3https://hbase.apache.org
4https://aws.amazon.com/s3/
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Table 4: Dataset R and L

R L

Join key R Value R Join key L Value L

CS1 HC 1 CS1 HC A

CS2 HC 2 CS2 HC B

CS1 KT 3 CS1 KT C

CS2 QL 4

Table 5: Join results of R and L with a fuzzy threshold of 1

Join key R Value R Join key L Value L

CS1 HC 1 CS1 HC A

CS2 HC 2 CS1 HC A

CS1 HC 1 CS2 HC B

CS2 HC 2 CS2 HC B

CS1 KT 3 CS1 KT C

same join key will be sorted and shuffled to the same reducer before performing the join
computation, and the results are returned after performing the join at the Reducers.

Figure 1: Fuzzy join based on MapReduce model

The implementation of Fuzzy Join in Spark is to use similarity algorithms to check the
similarity between the join keys in two input datasets. Based on this similarity, the join
keys are compared with a given fuzzy threshold to determine whether a join operation on
the two data records can be performed. The fuzzy join process between two datasets in
Spark is depicted schematically in Figure 2. The input data come from HDFS consisting
of two datasets R and L. We generate two RDDs, rddDictionaryL, and rddDictionaryR
corresponding with the two datasets. These RDDs contain strings of the join key field in the
two input datasets (duplicates are removed). The next task is to create a listLibL of all data
contained in the rddDictionaryL. The key/value pairs for R (rddFuzzyKeyR) are generated
from rddDictionaryR and listLibL. Each key in the pairs will be checked for similarity with
the keys in listLibL through a FuzzyGenerate function. A mapFuzzyKeyR aggregates all
values of the same key from rddFuzzyKeyR. Then, we generate Lpairs and Rpairs from
dataset L and mapFuzzyKeyR, respectively. Finally, the fuzzy join operation between Lpairs
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and Rpairs will be done and stored results on HDFS. The difference between the similarity
algorithms is only shown when generating rddFuzzyKeyR by the FuzzyGenerate function.

Figure 2: Fuzzy join schema in Spark

3. SIMILARITY ALGORITHMS

3.1. Hamming distance

Hamming distance [27] is named after the American mathematician Richard Hamming,
who introduced the basic concept of Hamming codes, error detection, and correction codes
in 1950 [28]. Hamming distance is frequently used in telecommunications to estimate faults
by counting the amount of flipped bits in a binary word of a particular length. In fuzzy joins,
Hamming distance has been used in several studies [3, 9, 14]. Let d be Hamming Distance
between two strings of equal length, d will be the number of symbols in equivalent positions
with different values of the two strings. Assuming there are two strings S1= “010101” and
S2= “010010”, we have d = 3 since the different symbols in the two strings are at positions
4, 5, and 6. The Hamming distance algorithm is presented in Algorithm 1.

The first thing to do is to convert the two strings to the same uppercase or lowercase and
if the two strings have different lengths, they will need to be returned in the same length for
comparison. Check the symbols in the corresponding positions of the two strings in turn,
if the symbols are different, the value of d will be increased. In the end, the value of d
received will be the Hamming Distance between the two strings. The algorithm performs
two main tasks: checking the length of two strings and calculating the Hamming distance.
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Algorithm 1 Hamming distance

Input: Two strings S1 and S2

Output: Hamming distance d

1: S1.toUpperCase();
2: S2.toUpperCase();
3: while |S1|! = |S2| do
4: if (|S1| < |S2|) then
5: S1 += ‘ ’;
6: else
7: S2 += ‘ ’;
8: int d = 0;
9: for all String i : S1 do

10: if S1[i]! = S2[i] then
11: d++;
12: return d;

Checking the length of two strings in the worst case, i.e. one of the strings is empty, then
the complexity, in this case, is O(|S1|) or O(|S2|). Calculating the Hamming distance of two
strings with the same length has a complexity of O(max(|S1|, |S2|)), thus the complexity for
the whole algorithm will be O(max(|S1|, |S2|).

3.2. Levenshtein distance

The Levenshtein distance (or Edit distance) [29] is named after the Russian scientist
Vladimir Levenshtein, who coined the concept in 1965. It is used in calculating the sim-
ilarities and differences between two strings in the problem of constructing optimal codes
capable of correcting deletions, insertions, and reversals. The distance measures how much a
string need to the altered to become another string. It is used in the field of natural language
processing [21, 30] and in the field of parallel fuzzy joins [9, 14]. The Levenshtein distance
between two strings S1 and S2 is the minimum number of steps that turn S1 into S2 through
three transformations: delete a symbol, add a symbol, and replace one symbol with another.
The Levenshtein distance algorithm is presented in Algorithm 2.

Suppose n is the length of S1 and m is the length of S2, let F [i][j] is the minimum number
of transformations to make the string consist of i first symbols of S1 (S1[1], S1[2], ..., S1[i])
into a string consisting of j first symbols of S2 (S2[1], S2[2], ..., S2[j]).

• In case S1[n] == S2[m] (Figure 3a), we only need to convert S1[1], S1[2], ..., S1[n − 1]
into S2[1], S2[2], ..., S2[m− 1]. The value of F will be F [n][m] = F [n− 1][m− 1].

• In case S1[n]! = S2[m], we need to use one of the three transformations at position
S1[n].

– Insertion of S2[m] into the position after n of S1 (Figure 3b). At this time,
F [n][m] will be equal to 1 (for the insertion) plus the number of transformations
of the sequence S1[1], S1[2], ..., S1[n] into the sequence S2[1], S2[2], ..., S2[m − 1]:
F [n][m] = 1 + F [n][m− 1].



SIMILARITY ALGORITHMS FOR FUZZY JOIN COMPUTATION 109

Algorithm 2 Levenshtein distance

Input: Two strings S1 and S2

Output: Levenshtein distance F [|S1|][|S2|]
1: S1.toUpperCase();
2: S2.toUpperCase();
3: for (int i = 0; i < |S1|; i++) do
4: F [i][0] = i;
5: for (int j = 0; j < |S2|; j ++) do
6: F [0][j] = j;
7: for (int i = 0; i < |S1|; i++) do
8: for (int j = 0; j < |S2|; j ++) do
9: if (S1[i] == S2[i]) then

10: F [i][j] = F [i− 1][j − 1];
11: else
12: F [i][j] = min(F [i− 1][j], F [i][j − 1], F [i− 1][j − 1]) + 1;
13: return F [|S1|][|S2|];

– Replacement of S1[n] by S2[m] (Figure 3c). At this time, F [n][m] will be equal
to 1 (for the replacement) plus the number of transformations of the sequence
S1[1], S1[2], ..., S1[n − 1] into the sequence S2[1], S2[2], ..., S2[m − 1]: F [n][m] =
1 + F [n− 1][m− 1].

– Deletion of S1[n] (Figure 3d). At this time, F [n][m] will be equal to 1 (for the dele-
tion) plus the number of transformations of the sequence S1[1], S1[2], ..., S1[n−1]
into the sequence S2[1], S2[2], ..., S2[m]: F [n][m] = 1 + F [n− 1][m].

– Since F [n][m] must be as small as possible, in this case, F [n][m] = min(F [n][m−
1], F [n− 1][m− 1], F [n− 1][m]) + 1.

(a) Illustration of S1 and S2 (b) Insertion of S2[m]

(c) Replacement of S1[n] (d) Deletion of S1[n]

Figure 3: Illustration of transformations in Levenshtein distance

The calculation of F [i][j] is done by two nested for loops, thus the complexity for this task
is O(|S1|∗|S2|). The complexity of the whole Levenshtein distance algorithm is O(|S1|∗|S2|).
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3.3. Longest common subsequence (LCS)

The longest common subsequence (LCS) [31] of two or more strings is a useful measure
of their similarity. LCS is used to calculate the similarity between texts [32], codes [33], and
certain users in social media [34] to accelerate the similarity join. String S is the longest
common subsequence (LCS) of strings S1 and S2 if S is a subsequence of S1 and also a
subsequence of S2 of maximal length, i.e., there is no common subsequence of S1 and S2

that has greater length. Suppose n is the length of S1 andm is the length of S2, if the last two
characters of the two strings are equal S1[n] = S2[m], then that is also the last character of
S. The remainder of S will be the longest common substring of S1[1], S1[2], ..., S1[n− 1] and
S2[1], S2[2], ..., S2[m−1]. If the last two characters of S1 and S2 are different, then one of them
does not belong to S (possibly both). Assuming S1[n] /∈ S, S will be the longest common
subsequence of two strings S1[1], S1[2], ..., S1[n− 1] and S2[1], S2[2], ..., S2[m] . Conversely, if
S2[m] /∈ S, then S will be the longest common subsequence of two strings S1[1], S1[2], ..., S1[n]
and S2[1], S2[2], ..., S2[m− 1]. Let F [i][j] be the length of the subsequence S considering the
ith element in S1 and the jth element in S2, we define d as the difference between two strings
S1 and S2 as follows:

• If S1[i] == S2[j] then F [i][j] = F [i− 1][j − 1] + 1.

• If S1[i]! = S2[j] then F [i][j] = max(F [i− 1][j], F [i][j − 1]).

• d = max(|S1|, |S2|)− F [n][m].

Algorithm 3 Longest common subsequence (LCS)

Input: Two strings S1 and S2

Output: Longest common subsequence (LCS) d

1: S1.toUpperCase();
2: S2.toUpperCase();
3: for (int i = 0; i < |S1|; i++) do
4: F [i][0] = 0;
5: for (int j = 0; j < |S2|; j ++) do
6: F [0][j] = 0;
7: for (int i = 0; i < |S1|; i++) do
8: for (int j = 0; j < |S2|; j ++) do
9: if (S1[i] == S2[i]) then

10: F [i][j] = F [i− 1][j − 1] + 1;
11: else
12: F [i][j] = max(F [i− 1][j], F [i][j − 1]);
13: int d = max(|S1|, |S2|)− F [|S1|][|S2|];
14: return d;

The algorithm to calculate two strings similarity based on LCS is presented in Algorithm
3. The complexity to calculate the length of the longest common substring is O(|S1|∗|S2|) and
the complexity to calculate the difference between two strings is O(1). Thus, the complexity
of the algorithm is O(|S1| ∗ |S2|).
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3.4. Jaccard distance

Jaccard similarity [35] was proposed by Jaccard Paul in 1901, a French professor of
Botany. This is a measure that emphasizes the similarity between finite sample sets and is
defined as the size of the intersection divided by the size of the combination of the sample sets.
The distance is commonly used in the problem of fuzzy joins as appearing in [6,9,11,13–15].
The Jaccard similarity is defined as in equation 1. For example, given the two strings
S1 = “Bahamas” and S2 = “Panama”, the Jaccard similarity of the two strings is 0.4 as in
equation (1).

J(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

=
|S1 ∩ S2|

|S1|+ |S2| − |S1 ∩ S2|
. (1)

Algorithm 4 Jaccard distance

Input: Two strings S1 and S2

Output: Jaccard similarity d

1: S1.toUpperCase();
2: S2.toUpperCase();
3: String str1 = new HashSet <>();
4: String str2 = new HashSet <>();
5: for (int i = 0; i < |S1|; i++) do
6: str1+ = S1[i];
7: for (int j = 0; j < |S2|; j ++) do
8: str2+ = S2[j];
9: int mergeNum = 0;

10: int commonNum = 0;
11: for all (char ch1 : str1) do
12: for all (char ch2 : str2) do
13: if (ch1 == ch2) then
14: commonNum++;
15: mergeNum = |str1|+ |str2| − 2 ∗ commonNum;
16: double d = commonNum/mergeNum;
17: return d;

To calculate the Jaccard index, we need to find the intersection of the two strings S1 and
S2. We use HashSets to hold the unique elements of each string. Through these HashSets,
we will find the same elements of the two strings, and the union is calculated as the sum of
the two strings’ size minus the intersection found. The Jaccard index algorithm is presented
in Algorithm 4 and the complexity for calculating the Jaccard index is O(|S1| ∗ |S2|).

3.5. Jaro similarity

Jaro similarity [36] was introduced in 1989 by Matthew A. Jaro, an American mathe-
matician. This is a measure of the similarity of two strings with a value between 0 and 1,
the higher the value, the more similar the strings are. If the measured value is 0, then the
two strings have no similarities, and if it is 1, the two strings are exactly the same. Jaro
distance has been used in the field of natural language processing [37–39]. Suppose d is the
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Jaro similarity between two strings S1 and S2, d is calculated by equation 2, in which, m is
the number of coincident characters and t is half the number of transpositions (changing the
position of matching characters in two sequences). The coincident characters do not need to
be in the same position in both strings, they just need to be the same and not far apart by
maxdist as in equation (3)

d =

0 if m = 0
1

3
(
m

|S1|
+

m

|S2|
+

m− t

m
) otherwise,

(2)

maxdist = [
max(|S1|, |S2|)

2
]− 1. (3)

Algorithm 5 Jaro similarity

Input: Two strings S1 and S2

Output: Jaro similarity d

1: S1.toUpperCase();
2: S2.toUpperCase();
3: if (S1 == S2) then
4: return 1.0;
5: int maxdist = max(|S1|, |S2|)/2− 1;
6: int m = 0;
7: for (int i = 0; i < |S1|; i++) do
8: for (int j = max(0, i−maxdist); j < min(|S2|, i+maxdist+ 1); i++) do
9: if (S1[i] == S2[i] AND matchS2[j] == 0 ) then

10: matchS1[i] = 1;
11: matchS2[j] = 1;
12: m++;
13: break;
14: if (m == 0) then
15: return 0.0;
16: int t = 0;
17: int point = 0;
18: for (int i = 0; i < |S1|; i++) do
19: if (hashS1[i] == 1) then
20: while (matchS2[point] == 0) do
21: point++;
22: if (S1[i]! = S2[point++]) then
23: t++;
24: t/ = 2;
25: double d = ((m/|S1|) + (m/|S2|) + ((m− t)/m))/3.0;
26: return d;

To calculate d, we need to count the number of coincident characters of the two strings
and calculate maxdist, which is the maximum allowed distance between the coincident char-
acters in the two strings. The two lists matchS1 and matchS2 are used to mark coincident
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characters in two strings, if matchS1[i] == 1, then the ith character in S1 is the coincident
character and if matchS1[i] == 0, then the ith character is not a coincident character. To
mark the coincident characters on the lists, we check the match between the characters in
S1 with the characters in S2 such that the distance between them does not exceed maxdist.
During the marking process, we will count the number of coincident characters between the
two strings. The counting of transpositions is done by checking the lists and counting the
number of coincident characters in different positions in S1 and S2. Then, t will be half of
the number of characters found. The Jaro similarity algorithm is presented in algorithm 5.
In the algorithm, counting the number of coincident characters in two strings (in the worst
case) has a complexity of O(|S1| ∗ |S2|), and counting the number of moves also falls in the
range O(|S1| ∗ |S2|). Thus, the complexity of the Jaro similarity algorithm is O(|S1| ∗ |S2|).

3.6. Jaro - Winkler similarity

Jaro - Winkler similarity [40] is a modification of Jaro similarity proposed by William
E. Winkler in 1990. The metric takes the Jaro similarity and increases the score if the
characters at the start of both strings are the same. This modification helps Jaro-Winkler
to be widely used in the field of string similarity search over its predecessor. The use of the
Jaro-Winkler similarity search has been shown in [41–44]. Jaro Winkler similarity is defined
as in equation 4, in which, dj is the Jaro similarity, p is the scaling factor (0.1 by default),
and l is the length of the common prefix at the start of the string (max of 4 characters).

d = dj + l ∗ p ∗ (1− dj). (4)

Algorithm 6 Jaro - Winkler similarity

Input: Two strings S1 and S2

Output: Jaro - Winkler similarity d

1: S1.toUpperCase();
2: S2.toUpperCase();
3: double p = 0.1;
4: double dj = JaroSimilarity(S1, S2);
5: double d = dj ;
6: if (dj > 0.7) then
7: int l = 0;
8: for (int i = 0; i < min(|S1|, |S2|); i++) do
9: if (S1[i] == S2[i]) then

10: l ++;
11: else
12: break;
13: l = min(l, 4);
14: d = dj + l ∗ p ∗ (1− dj);
15: return d;

Jaro - Winkler similarity is only effective when the Jaro similarity (dj) reaches a certain
threshold. Based on the value of dj , we will find the common prefix length at the beginning of
each string. In the algorithm, the Jaro similarity calculation has a complexity of O(|S1|∗|S2|)
while the Jaro - Winkler similarity calculation has a complexity of O(min(|S1|, |S2|)). Thus,
the complexity for the whole Jaro - Winkler similarity algorithm is O(|S1| ∗ |S2|).



114 ANH CANG PHAN et al.

4. EXPERIMENTS

4.1. Installation environment and data description

The experiments are conducted on a cluster of 9 computers (1 master and 8 computing
nodes). Each computer uses Ubuntu 20.04 LTS operating system and is configured with
4 CPUs, 32GB RAM, and 70GB HDD. The environment is installed with the following
software: Java 1.8, Hadoop 3.2.2, and Spark 3.2.0. Spark is configured to run in master
mode with 8 executors, in which each executor has 3 CPUs and 30GB RAM. HDFS is
configured to store input and output data.

The datasets used to run the experiments are standard data generated by the Purdue
MapReduce Benchmarks Suite [45]. The datasets are all stored as plain text files, each line
has more than one field separated by commas. The join key is the first column of both
datasets. The number of records and the size of the datasets are described in Table 6.

Table 6: Experimental datasets

Test
Dataset L Dataset R

Size Num record Size Num record

1 512MB 1,341,628 512MB 1,341,283

2 2GB 5,366,662 1GB 2,681,966

3 3GB 8,049,298 2GB 5,364,698

4 3GB 8,049,298 4GB 10,730,763

5 6GB 16,098,601 4GB 10,730,763

Experiments are conducted with six algorithms including Hamming, Levenshtein, LCS,
Jaccard, Jaro, and Jaro - Winkler. At first, we join two datasets in the experiments with a
distance of zero and the result is the same number of output records in all algorithms. This
is done to ensure the correctness of the installed algorithms.

4.2. Results

First of all, in terms of the complexity of algorithms, Hamming’s algorithm has the low-
est complexity (O(max(|S1|, |S2|))) compared to the remaining algorithms (O(|S1| ∗ |S2|)).
However, when performing joins between large datasets in a distributed computing environ-
ment, the number of string pairs is very large, thus relying on the complexity of algorithms
for performing fuzzy joins is not enough. Besides, since the algorithms are performed on
different definitions of the similarity distance between two strings, the determination of a
join will depend on the fuzzy threshold. Therefore, we will evaluate similarity algorithms
for fuzzy joins based on the following criteria: output enrichment, number of false positives
and false negatives generated in the result sets, and processing time of each algorithm. In
this section, we will divide the algorithms into two groups to facilitate comparison. Group 1
includes Hamming, Levenshtein, and LCS (fuzzy threshold is 0 for exact match). Group 2
includes Jaccard, Jaro, and Jaro - Winkler (fuzzy threshold is 1 for exact match).
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4.2.1. Output enrichment

The evaluation of the output enrichment is based on the number of output records gen-
erated in the result set.

(a) d <= 1 (b) d <= 2

(c) d <= 3

Figure 4: Number of output records for Hamming, Levenshtein, and LCS

Figure 4 presents the number of output records for algorithms in group 1 with the fuzzy
threshold of 1, 2, and 3. With the fuzzy threshold of 1 (Figure 4a), the three algorithms
in group 1 provide almost the same number of output records. Specifically, the number of
records in the result set of Hamming and Levenshtein algorithms is the same in all testing
datasets. Meanwhile, the number of records in the result set generated by the LCS algo-
rithm is greater than those of the other two algorithms of the same group (Test 1: 320,305
records greater, Test 2: 2,589,272 records greater, Test 3: 500,763 records greater, Test 4:
8,444,040 records greater, and Test 5: 3,358,843 records greater). With the fuzzy threshold
of 2 (Figure 4b), the number of output records increases quite a lot compared to the join
result with a fuzzy threshold of 1. Output enrichment between the algorithms is shown
more clearly, especially with the LCS algorithm. The number of output records in both
Hamming and Levenshtein algorithms is almost equal, in which the Levenshtein algorithm
has a number of output records slightly greater than that of the Hamming algorithm. The
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algorithm that generates the greatest result set is the LCS algorithm and the larger the in-
put datasets, the more records are generated in the result set (Test 3: more than Hamming
1,246,598,801 records and more than Levenshtein 1,253,795,848 records; Test 4, more than
Hamming 2,497.614,463 records and more than Levenshtein 2,483,669,378 records). How-
ever, when running the LCS algorithm with Test 5, the LCS has a memory overflow because
too much data is generated. Thus, in terms of output enrichment, LCS gives the best results
with a fuzzy threshold of 2. With the fuzzy threshold of 3 (Figure 4c), the join computa-
tion can only be done on two algorithms, Hamming and Levenshtein. In all Test cases, the
number of records obtained in the result set of the Levenshtein algorithm is larger than that
of the Hamming algorithm. The difference is more pronounced when running with large
input datasets (Test 3: more than Hamming 355,399,953 records, and Test 4: more than
Hamming 709,149,035 records). However, with Test 5, the Levenshtein algorithm failed due
to memory overflow. Thus, with the fuzzy threshold of 1, 2, and 3, the LCS algorithm has
the best output enrichment performance, followed by the Levenshtein algorithm and finally
the Hamming algorithm.

(a) d >= 0.99 (b) d >= 0.98

(c) d >= 0.97

Figure 5: Number of output records for Jaccard, Jaro, and Jaro - Winkler

Figure 5 presents the number of output records for algorithms in group 2 (Jaccard, Jaro,
and Jaro - Winkler) with the fuzzy threshold is 0.99, 0.98, and 0.97. As shown in Figure 5a,
with a fuzzy threshold of 0.99, the data received in the result set of the three algorithms in
group 2 are equal. With a fuzzy threshold of 0.98 (Figure 5b), the number of output records
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of the three algorithms has a difference but is not significant. With a fuzzy threshold of 0.97
(Figure 5c), the output enrichment is shown more clearly. However, the result set of Jaccard
remains unchanged compared to the join computation with a fuzzy threshold of 0.98 and 0.99.
The Jaro - Winkler algorithm has a clear difference compared to the other two algorithms,
which is evident in Test 4 of 145,930,361 records more than Jaro and 151,801,312 records
more than Jaccard and Test 5 of 278,269,366 records more than Jaro and 290,981,928 records
more than Jaccard. Thus, in the second group of algorithms, the Jaro - Winkler algorithm
has the best output enrichment performance, followed by the Jaro algorithm and finally the
Jaccard algorithm.

4.2.2. False positives and false negatives

False positive is an incorrect record in the result set that is generated from the join
operation between two rows in the two input datasets. In contrast, false negatives are two
lines in the input data set that can produce a join result but are not included in the result
set (missing correct data). Thus, to check the number of false positives and false negatives
generated by the algorithms, we run experiments on small datasets to facilitate checking the
results and comparing.

Table 7: Test 6

Dataset R Dataset L

150 North Michigan Ave 150 North Michigan Ave

605 3rd Acenue 605 Third Avenue

300 North Meridian Street 300 North Meridian Street

400 High St SE 400 High Street S.E

2203 Rowan Street 2203 Rowen St

Table 7 presents the two datasets R and L in Test 6. As can be seen, the best result
set of the fuzzy join computation should include 5 records. To receive this result (without
false positive and false negative), we need different fuzzy thresholds in the six algorithms
(Table 8). The fuzzy threshold will be set to be the same for two groups of algorithms
to compare the number of false positives and false negatives received. With group 1 of
Hamming, Levenshtein, and LCS, the fuzzy threshold is 5 and the fuzzy threshold will be
0.91 for group 2. At this moment, experimental results show that when the algorithms
run on the same fuzzy threshold, there are differences in the result set. Specifically, the
Hamming, Jaccard, and Jaro algorithms have 2 false negatives in the result set and no false
positives. These algorithms have not met the desired result set requirements. The remaining
algorithms return a result set that completely matches the requirement and does not return
false negatives/positives. That means that Levenshtein, LCS, and Jaro - Winkler return a
better result set when joining datasets on the same fuzzy threshold (compared to the same
group of algorithms).

We conduct another experiment on Test 7 (Table 9). At this time, the fuzzy threshold
between the corresponding lines in the two datasets R and L are also presented. In Table 9,
the highlighted rows are the correct join results while the remaining rows are false positives.
For each pair in the two datasets R and L, the similarity distance is calculated with the six
algorithms. Determining the fuzzy threshold for these algorithms is difficult since the data
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Table 8: Results of join computation in Test 6

Algorithms Num records False positives False negative Fuzzy threshold

Hamming 5 0 0 <=12

Levenshtein 5 0 0 <=5

LCS 5 0 0 <=5

Jaccard 5 0 0 >=0.625

Jaro 5 0 0 >=0.8574

Jaro - Winkler 5 0 0 >=0.9144

Hamming 3 0 2 <=5

Levenshtein 5 0 0 <=5

LCS 5 0 0 <=5

Jaccard 3 0 2 >=0.91

Jaro 3 0 2 >=0.91

Jaro - Winkler 5 0 0 >=0.91

in the two datasets have a huge difference. For example, with Hamming algorithm, if the
fuzzy threshold is 28, it will ensure to provide all expected results, but will generate the false
positives of 8; and if the fuzzy threshold is 11, it will produce 4 false positives and 2 false
negatives.

Table 9: Test 7

Records in R Records in L
Fuzzy threshold

Hamming Levenshtein LCS Jaccard Jaro Jaro - Winkler

Antigua and Antigua & 11 3 3 0.9090 0.8444 0.9066

Bahamas Panama 3 3 3 0.2857 0.7460 0.7460

Bosnia and Herzegovi na Bosnia & Herzegov ina 15 3 3 0.8666 0.8413 0.9048

Cabo Verde Cape Verde 2 2 2 0.7 0.7416 0.7933

Central African Republic Central African Rep. 5 5 5 0.7857 0.9138 0.9483

China including Hong Kong Hong Kong 22 16 16 0.5 0.5244 0.5244

Congo Tonga 2 2 2 0.5 0.7333 0.7333

Cook Islands (NZ) Cook Islands 4 5 5 0.7692 0.9019 0.9411

Côte d’Ivoire Cote d’Ivoire 1 1 1 0.9090 0.9487 0.9538

Federated States of Micronesia United States 28 20 20 0.5714 0.5675 0.5675

Gambia Zambia 1 1 1 0.6666 0.8888 0.8888

Myanmar/ Burma Panama 11 8 8 0.3333 0.5747 0.5747

North Macedonia New Caledonia 14 6 6 0.5714 0.7641 0.7876

Saint Kitts and Nevis Saint Kitts & Nevis 9 3 3 0.8181 0.9348 0.9609

South Sudan South Korea 5 5 4 0.5833 0.7575 0.8545

São Tomé and Pŕıncipe Sao Tome & Principe 14 6 6 0.7058 0.7325 0.7593

Timor- Leste Sierra Leone 10 7 7 0.5 0.5237 0.5237

Trinidad and Tobago Trinidad & Tobago 10 3 3 0.9090 0.8756 0.9254

Vatican City State Vatican 9 11 11 0.6 0.7962 0.8777

An experiment is conducted on Test 7 with the selection of the fuzzy threshold for each
algorithm so that the number of false negatives generated in the result set is zero. The results
of the experiment are shown in Table 10. The Hamming and Jaccard algorithms have a high
number of false positives in the result set and a high fuzzy threshold (false positives is 6,
a fuzzy threshold of 15 for Hamming and 0.5 for Jaccard). The remaining algorithms have
lower fuzzy thresholds and fewer false positives in the result set. Thus, in considering false
positives/negatives in the result set, the Hamming and Jaccard algorithms are somewhat
less advantageous than the remaining algorithms.
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Table 10: Results of join computation in Test 7

Algorithms Num records False positives False negative Fuzzy threshold

Hamming 17 6 0 <=15

Levenshtein 15 4 0 <=6

LCS 15 4 0 <=6

Jaccard 17 6 0 >=0.5

Jaro 15 4 0 >=0.7325

Jaro - Winkler 15 4 0 >=0.7333

4.2.3. Processing time

Figure 6 shows the processing time of the join computation based on the first group of
algorithms (Hamming, Levenshtein, and LCS). The join computation is done with the fuzzy
threshold of 1, 2, and 3. The processing time is proportional to the size of the two input
datasets, and the larger the input datasets, the higher the processing time difference of the
algorithms. With a fuzzy threshold of 1, the Hamming algorithm on Test 1 needs to run in
1.5 minutes while the Levenshtein algorithm executes in 11 minutes and the LCS algorithm
runs in 22 minutes. With Test 5, the Hamming algorithm executes in 17 minutes while the
Levenshtein algorithm runs in 84 minutes and the LCS algorithm runs in 102 minutes. The
Levenshtein algorithm is more than 5 times slower than Hamming and the LCS algorithm
is more than 6 times slower than Hamming. The similarity algorithms for join computation
with a fuzzy threshold of 2 tend to be the same as with a fuzzy threshold of 1, in which LCS
continues to be the algorithm with the longest processing time. With a fuzzy threshold of 3,
the Hamming algorithm continues to give a much better running time than the Levenshtein
algorithm. Thus, in all Test cases and with 3 fuzzy thresholds, Hamming has the least
running time, followed by Levenshtein and finally LCS.

Figure 7 shows the processing time of the join computation based on the second group
of algorithms (Jaccard, Jaro, and Jaro - Winkler). The join computation is done with the
fuzzy threshold of 0.99, 0.98, and 0.97. The processing time of the algorithms with fuzzy
thresholds of 0.99, 0.98, and 0.97 does not change significantly. Jaccard has a very slow
processing time in all Test cases, about 4 times slower than the other two algorithms. With
all three fuzzy thresholds, the processing time of this algorithm is almost unchanged. The
Jaro algorithm has the least processing time, followed by the Jaro -Winkler algorithm. With
a fuzzy threshold of 0.99, the processing time of the two algorithms is almost equal. With
the fuzzy thresholds of 0.98 and 0.97, the difference between the processing time of the two
algorithms is not significant. Thus, in the second group of algorithms, the two algorithms
Jaro and Jaro - Winkler have the best processing time and the Jaccard algorithm has the
worst running time.

4.2.4. Comparison

A brief comparison of the algorithms is presented in Table 11. This comparison depends
on three criteria: output enrichment, false positives/negatives, and processing time.

Among the algorithms belonging to the first group, the Levenshtein algorithm has an
advantage over the other two algorithms. This algorithm has high accuracy in the result
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(a) d <= 1 (b) d <= 2

(c) d <= 3

Figure 6: Processing time (minutes) of Hamming, Levenshtein, and LCS

Table 11: Comparison of the six algorithms

Algorithms False positives/negatives Output enrichment Processing time

Hamming Much Little Fast

Levenshtein Little Average Acceptable

LCS Little Much Slow

Jaccard Much Little Very slow

Jaro Little Average Pretty fast

Jaro - Winkler Little (Less than Jaro) Average (more than Jaro) Pretty fast (slower than Jaro)

set, runs with large input datasets, and has a good output enrichment performance and an
acceptable processing time. The Hamming algorithm has a fast processing time and can
run with large input datasets, but it has limited output richness and a lack of accuracy in
the result set. The LCS algorithm has high accuracy in the result set and a good output
enrichment performance, but the processing time is very slow and it can work with small
input datasets. In group 2, the Jaccard algorithm is considered the worst algorithm in all
aspects. It has a very slow processing time and limited output richness on the same fuzzy
thresholds. The result set of this algorithm has not had high accuracy. The Jaro algorithm
has a faster running time and the Jaro - Winkler algorithm has more output richness and
higher accuracy. However, the difference between these two algorithms is not much. Thus,
considering all three criteria, in group 1, the priority order of algorithms is arranged as
follows: Levenshtein algorithm, followed by Hamming algorithm, and finally LCS algorithm.
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(a) d >= 0.99 (b) d >= 0.98

(c) d >= 0.97

Figure 7: Processing time (minutes) of Jaccard, Jaro, and Jaro - Winkler

Similarly in the second group, the priority order of algorithms are arranged as follows: the
Jaro - Winkler algorithm, followed by the Jaro algorithm, and finally the Jaccard algorithm.
Depending on each criterion, users will choose a suitable algorithm for fuzzy join on large
datasets.

5. CONCLUSION

In this study, we present an overview of similarity algorithms that can be used in fuzzy
join operations (Hamming, Levenshtein, LCS, Jaccard, Jaro, and Jaro - Winkler). These
algorithms are used to check the similarity between two strings so that comparing the join
keys will yield results within the desired fuzzy threshold. We implement the experiments
on the Apache Spark platform and use the Puma benchmark datasets in fuzzy join compu-
tation. The evaluation of algorithms is based on several criteria: output enrichment, false
positives/negatives, and the processing time of the algorithms. Based on these criteria, Lev-
enshtein and Jaro - Winkler are two algorithms that can be prioritized over the rest. Both
two algorithms work with large input datasets, have higher accuracy in the result set, have a
short processing time, and have a relative output richness. Depending on the desired fuzzy
thresholds, users will choose the algorithms to suit their requirements. The study described
similarity algorithms for fuzzy join and presented experiments installed in the Spark envi-
ronment. We give three criteria to evaluate algorithms to help users choose the suitable
algorithm when performing fuzzy join on large datasets. The performance of similarity be-
tween the two strings in this study considers the character sequence. It can be extended by
looking at the word sequence, and even at the semantic level.
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