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Abstract. Finding frequent fuzzy itemsets in operational quantitative databases is a significant

challenge for fuzzy association rule mining in the context of data mining. If frequent fuzzy itemsets

are detected, the decision-making process and formulating strategies in businesses will be made more

precise. Because the characteristic of these data models is a large number of transactions and un-

limited and high-speed productions. This leads to limitations in calculating the support for itemsets

containing fuzzy attributes. As a result, mining using parallel processing techniques has emerged

as a potential solution to the issue of slow availability. This study presents a reinforced technique

for mining frequent fuzzy sets based on cellular learning automata (CLA). The results demonstrate

that frequent set mining can be accomplished with less running time when the proposed method is

compared to iMFFP and NPSFF methods.
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1. INTRODUCTION

Recently, data mining techniques have been designed to obtain useful information from
databases [1, 4, 21]. Depending on the variety of knowledge, data mining methods can be
divided into categories: association rule [1,4,18,21,27], classification [21,36,39,41], clustering
[20, 25, 29], and sequential samples [3, 35]. In particular, association rule mining is crucial
to data mining research. [7, 9, 30]. In the first part of the two-stage procedure known as
association rule mining, frequent itemsets are taken from a given data collection. From the
extracted frequent itemsets, association rules are constructed in the second stage. The main
stage of association rule mining is frequent itemset mining since it takes a lot of effort to locate
frequent itemsets in a data set. Most research in this area has focused on enhancing frequent
itemset mining’s efficiency in terms of time and memory. Previous research has mostly
concentrated on the binary display of transactional data, that is, solely concerned with the
existence or absence of items. However, in practical applications, in addition to attribute
values 0 and 1, the database also contains other properties with quantitative values. Due to

*Corresponding author.
E-mail addresses: thuytrinh85.dtu@gmail.com (T.T.T.Tran); thuannt.it.dtu@gmail.com (T.T.Nguyen);
nlgiang@ioit.ac.vn (G.L. Nguyen); tnchau73@gmail.com (C.N. Truong).

© 2022 Vietnam Academy of Science & Technology

mailto:anonymous@ioit.ac.vn
mailto:anonymous@ioit.ac.vn
mailto:anonymous@ioit.ac.vn
mailto:anonymous@ioit.ac.vn


294 TRINH T.T.TRAN, et al.

its ease of use and resemblance to human inference, fuzzy set theory [22, 40] is being used
in intelligent systems more frequently [32, 34, 38]. Because linguistic representation makes
knowledge simpler for humans to understand, it is widely used. Fuzzy mining algorithms use
membership functions that convert quantitative values into a fuzzy set representing linguistic
values [19]. In the past, Janikow combined symbolic decision trees on rule-based systems
for fuzzy control [23] using fuzzy representation. To extract fuzzy association rules from
quantitative data, Hong et al. suggested a fuzzy mining algorithm in the article [15]. Lin et
al. then proposed a fuzzy FP tree [28] to improve the mining of fuzzy frequent itemsets from
quantitative databases. The multiple fuzzy regular sample tree (MFFP-tree) approaches was
later put out by Hong et al. [17] to gather more information than the fuzzy FP-tree algorithm.
The algorithms for mining frequent fuzzy itemsets that have been developed are then based
on candidate creation, whilst some attempt to make a tree without producing candidates
and then locate frequent fuzzy items by scanning the tree. The CFP (Compact Frequent
Pattern) tree algorithm, as proposed by K. Suriya Prabha and R. Lawrance [31] is used in
the frequent fuzzy itemset mining algorithm. The approach improves the classical FP-tree
to locate fuzzy frequent itemsets from quantitative transactions and constructs a fuzzy CFP-
tree from the quantitative database. The approach suggests creating a small subtree for each
frequent fuzzy item, producing several candidates from the small subtree, and then releasing
the current subtrees to include the fuzzy theory concept into the CFP-tree process. The
performance is superior to other algorithms in terms of execution time, memory usage, and
reduced search space for mining fuzzy frequent items. Time out of the memory area makes
room for the next subtree. In the article [5], frequent itemset mining from various datasets
with fuzzy data is mentioned. To find fuzzy multi-level association rules in a relational
database architecture that can accommodate several tables, the author of the article joins
numerous tables using a star schema. To locate frequently occurring itemsets, the algorithm
uses joins and entities. The conclusions of the paper’s calculations of the support of itemsets
connected to other connections with fuzzy-valued attributes, however, still have significant
limitations.

Mining using parallel processing techniques has emerged as a viable solution to this
issue [2, 8, 16, 26] as a result of the significant growth in computing power that has become
available and the concurrent decline in computational cost over the past two decades. In a
previous study [26], the author integrated individual databases into a common database.
The algorithm then builds each MFFP sub-tree for each sub-database and integrates them
into one. The branches in the sub-MFFP tree are efficiently extracted and integrated into
the iMFFP tree in sequence. The division of the database into sub-databases and then re-
integrated often causes information loss and inconsistent data. Furthermore, constructing
and storing sub-trees is often expensive in memory.

In this strategy, the initial quantitative database is transformed into a fuzzy database in
the preprocessing step. After extracting 1-item fuzzy frequent itemsets from the data set,
the infrequent fuzzy items will be removed. The CA environment will start working after
the preprocessing stage and generate CA cells that match each 1-item frequent fuzzy item.
Each line of data in the compressed database is read and delivered to the cells concurrently,
then they operate in parallel. In this method, LRI mode is used. With this model, there will
be no penalty and no rules for the neighborhood between cells. ICLA refers to the cluster
of cells generated by data set transactions. The proximity list for neighbors is maintained
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by the cells and is updated every time a transaction is received from the environment. As a
final step, each cell checks its list of neighborhoods and cuts out the neighborhoods whose
support is below the user’s minimum threshold. Then each cell collects frequent fuzzy items
sorted by proximity list, sends them into the environment, and so on. With the use of the
neighborhood list in CLA that helps to limit the requested memory consumption.

The remaining sections of this paper are as follows: Related studies are included in
Section 2. The fuzzy frequent itemset mining approach based on cellular learning automata
is described in Section 3. Sections 4 and 5 present, respectively, the experimental result and
the conclusion.

2. RELATED WORKS

2.1. Statement problem

Given a set of items I = {I1, I2, . . . , Im} and a quantitative databaseDQ = {T1, T2, . . . , Tn}.
Let Aj = {Aj1, Aj2, . . . , Ajh} be a fuzzy set. Where f

(i)
j,k is the fuzzy value (given by the

membership function) of Ajk in transaction Ti and Ajk is the element kth in the fuzzy set
Aj of item Ij .

The following formula is used to calculate an item’s fuzzy support

f sup(Ajk) =
1

n

n∑
i=1

f
(i)
j,k . (1)

Assume that a set of fuzzy items A = {A1, A2, . . . , Ap} has a transaction fuzzy value Ti

that is determined by the intersection of the membership values f
(i)
Ak

f
(i)
A =

p
∩

k=1
f
(i)
Ak

. (2)

In this study, the minimum function is used as an intersection operator along with τ
-norm like aτb in a fuzzy set. Consequently, the fuzzy value of A is

f
(i)
A = min f

(i)
Ak

. (3)

where 1 ≤ k ≤ p. The support of fuzzy itemset A = {A1, A2, . . . , Ap} is defined by

f sup(A) =
1

n

n∑
i=1

f
(i)
A (4)

The problem of mining frequent fuzzy itemsets is expressed as: FFIp = {A | sup(A) ≥ δ}
where δ is a minimal fuzzy that aid the threshold known as minsup.

2.2. Cellular learning automata

2.2.1. Learning automata

Learning automata (LA) [13] is an abstract model that discovers the best course of action
from a limited pool of options through repeated interactions with an unknowable random
environment. After assessing the chosen course of action, the environment replies to the LA
with an improved signal. The LA modifies its internal state and chooses the subsequent
action based on the chosen action and the signal it received.
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2.2.2. Cellular learning automata

The Cellular Learning Automata (CLA), which combines CA and LA [6], was developed
by Beigy in 2004. Assigning an auto-learning cell to each cell to modify the state transition
of the related auto-learning cell is the fundamental concept of CLA. The learning automaton
that resides in each cell decides on its action (the cell’s state) at each instant in time based
on the action probability distribution. An auto-learning cell’s immediate surroundings are
other auto-learning cells located inside of nearby cells. The local environment is regarded
as non-stationary because the neighborhood automatons’ action probability distributions
fluctuate as CLA evolves. Similar to CA, CLA runs under local rules. Based on local rules
and the actions chosen by the surrounding auto-learning cell, the reinforcement signal is
sent to the auto-learning cell. The auto-learn then modifies its action probability vector in
accordance with the reinforcement signal it has received. This procedure is repeated until
each cell is in its ideal state. CLA is applied in business related problems such as mining
customer behaviour in shopping activity [10] or for community detection in complex social
networks [24].

2.2.3. Irregular cellular learning automation

The expansion of conventional CLA known as irregular cellular learning automation
(ICLA) [11] does away with the restriction of rectangular grid configurations. Since many
applications, like those involving graphs, wireless sensor networks, and immunological net-
works, cannot be described using standard meshes, such generalization appears to be impor-
tant. Each node in ICLA is a cell with an auto-learner, and the node’s neighbors make up the
cell’s local environment. ICLA is thought of as an undirected graph. ICLA is functionally
similar to CLA despite having an odd structure. ICLA has been discovered to be effective
in a variety of applications [11,12,33].

3. PROPOSED METHOD

In this part, we propose an ICLA-based frequent fuzzy itemset mining technique. In
this strategy, the quantitative database is initially transformed into a fuzzy database by
data preparation. Following the extraction of frequent fuzzy 1-itemsets from the data set,
infrequent fuzzy items will be eliminated. The cellular automata environment will begin
operating following the preprocessing stage and produce cellular automata cells in accordance
with each frequent fuzzy 1-item. The resultant dataset’s rows are read and concurrently
delivered to the cells, who then cooperate with one another in parallel. In this method, the
LRI mode is utilized, which benefits from CLA, where there is no penalty and no regulation
for the neighborhood between cells. The ICLA refers to the cluster of cells produced by
dataset transactions. The proximity list for neighbors is maintained by the cells and is
updated each time a transaction from the environment is received. The last step is for each
cell to check its proximity list and prune the neighborhoods whose support falls below the
minimal user-defined threshold. Then, each cell collects frequent fuzzy objects based on a
proximity list-curated survey, sends them into the environment, and so forth.
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Figure 1: Membership function in the example

3.1. Preprocessing

Assume that there is a quantitative database which has 4 transactions and contains items
A, B, C, D, and E as shown in Table 1, the minimum support is set to 30%.

Table 1: Quantitative dataset

Tid Items
1 (A : 3) (C : 9) (D : 3) (E : 6)
2 (A : 7) (B : 2) (C : 8)
3 (B : 2) (C : 9)
4 (A : 8) (C : 10) (D : 2)
5 (A : 5) (B : 2) (C : 7)
6 (A : 5) (C : 10) (D : 3) (E : 2)
7 (A : 3) (B : 3) (C : 9) (E : 6)
8 (C : 9) (D : 3)

Assume that all of the items in Figure 1 have the same membership function. The items
in this example are represented by the three fuzzy regions Low, Middle, and High. The
membership function in Figure 1 is used to calculate the membership values for each item.

The database after being converted from a quantitative database to a fuzzy database is
shown in Table 2.

3.2. Mining frequent fuzzy 1-itemset

The fuzzy support of each fuzzy item in the transaction is calculated as (Eq.1) and is
checked against the minimum support threshold. The support of fuzzy items is shown in
Table 3.

Fuzzy items with support less than the threshold are removed from the data set. The
remaining items satisfy the minimum support of 30% as shown in Table 4.

In this example, we use 15 fuzzy items, and the minimum support is assumed to be 30%.



298 TRINH T.T.TRAN, et al.

Table 2: database after being converted from quantitative database to fuzzy database

Tid Items

1
(

0.6
A.Low ,

0.4
A.Middle

) (
0.4

C.Middle ,
0.6

C.High

) (
0.6

D.Low ,
0.4

D.Middle

) (
0.2

E.Low ,
0.8

E.Middle

)
2

(
0.8

A.Middle ,
0.2

A.High

) (
0.8

B.Low ,
0.2

B.Middle

) (
0.6

C.Middle ,
0.4

C.High

)
3

(
0.8

B.Low ,
0.2

B.Middle

) (
0.4

C.Middle ,
0.6

C.High

)
4

(
0.6

A.Middle ,
0.4

A.High

) (
0.2

C.Middle ,
0.8

C.High

) (
0.8

D.Low ,
0.2

D.Middle

)
5

(
0.2

A.Low ,
0.8

A.Middle

) (
0.8

B.Low ,
0.2

B.Middle

) (
0.8

C.Middle ,
0.2

C.High

)
6

(
0.2

A.Low ,
0.8

A.Middle

) (
0.2

C.Middle ,
0.8

C.High

) (
0.6

D.Low ,
0.4

D.Middle

) (
0.8

E.Low ,
0.2

E.Middle

)
7

(
0.2

A.Low ,
0.8

A.Middle

) (
0.2

C.Middle ,
0.8

C.High

) (
0.6

D.Low ,
0.4

D.Middle

) (
0.8

E.Low ,
0.2

E.Middle

)
8

(
0.8

B.Low ,
0.2

B.Middle

) (
0.4

C.Middle ,
0.6

C.High

)

Table 3: The support of fuzzy items

Items Support
A.Low 1.6
A.Middle 3.8
A.High 0.6
B.Low 3
B.Middle 1
B.High 0
C.Low 0
C.Middle 3.4
C.High 4.6
D.Low 2.6
D.Middle 1.4
D.High 0
E.Low 1
E.Middle 1.8
E.High 0.2

Therefore, only fuzzy itemset with a value greater than 2.4 are kept and other itemset smaller
than that are discarded. The result is shown in Table 5.

3.3. Compressing and pruning the dataset

We group related transactions together to reduce the need for repetitive procedures. Be-
fore reading the current row and extracting the 1-itemset common fuzzy items and removing
the infrequent fuzzy items from the data set, the compressed dataset is first set to Null.
When the transaction items have been pruned and there are still more than zero items. The
smallest support in the items is added if it is already present in the dataset; otherwise, a
new transaction is established with the initial value being the smallest support in the com-
pressed data set. The remaining items are then supported by the smallest support in each
transaction. Table 6 shows the compressed dataset as a result.
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Table 4: The remaining items satisfy the minimum support of 30%

Items Support
C.High 4.6
A.Middle 3.8
C.Middle 3.4
B.Low 3
D.Low 2.6

Table 5: Database after removing infrequent fuzzy items from transactions

Tid Items Fsupport

1
(

0.6
C.High

) (
0.4

A.Middle

) (
0.4

C.Middle

) (
0.6

D.Low

)
0.4

2
(

0.4
C.High

) (
0.8

A.Middle

) (
0.6

C.Middle

) (
0.8

B.Low

)
0.4

3
(

0.6
C.High

) (
0.4

C.Middle

) (
0.8

B.Low

)
0.4

4
(

0.8
C.High

) (
0.6

A.Middle

) (
0.2

C.Middle

) (
0.8

D.Low

)
0.2

5
(

0.2
C.High

) (
0.8

A.Middle

) (
0.8

C.Middle

) (
0.8

B.Low

)
0.2

6
(

0.8
C.High

) (
0.8

A.Middle

) (
0.2

C.Middle

) (
0.6

D.Low

)
0.2

7
(

0.6
C.High

) (
0.4

A.Middle

) (
0.4

C.Middle

) (
0.6

B.Low

)
0.4

8
(

0.6
C.High

) (
0.4

C.Middle

) (
0.6

D.Low

)
0.4

3.4. Mining frequent fuzzy k-itemsets using CLA

Each cell learning automata will be created according to the frequent fuzzy 1-itemsets.
Because of using ICLA, there is no specific rule in cell’s neighborhoods. The cellular automata
environment reads line by line each transaction in the compressed dataset and sends the
frequent fuzzy 1-itemset to the cells as Figure 2.

After receiving a row containing fuzzy items from the dataset, cells begin their operation
at the same time as others. These cells will update their proximity list depending on the
fuzzy items in the received transaction.

For example, the environment reads the first row which contains C.High, A.Middle,
C.Middle, D.Low, and transfers them to all cells, they process on this fuzzy itemsets. C.High
will recognize A.Middle, C.Middle and D.Low as its neighbors, respectively. It is created
with a fuzzy support value of 0.8. Similar to A.Middle, C.Middle, and D.Low items. Because
B.Low does not exist in the first transaction, it does not have action. The neighbors and
proximity list of each cell are shown in Figure 3.

The cells are read with a support value of 1.0 and the second record of the compressed
dataset, which contains the values C.High, A.Middle, C.Middle, andB.Low is sent to them.
For cell C.High, the neighbors’ reviews of A.Middle, C.Middle, and B.Low are taken into
account. Item B.Low was generated with a value of 1.0 because it wasn’t already present in
the neighborhoods. Existing items gain worth by being added to, increasing their value if
they are existent. In this case, A.Middle and C.Middle already exist in the neighborhood
of C.High, the value of both A.Middle and C.Middle is 1.8. Also, Item D.Low is already
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Table 6: Compressed data

Tid Items Support
1 (C.High) (A.Middle) (C.Middle) (D.Low) 0.8
2 (C.High) (A.Middle) (C.Middle) (B.Low) 1
3 (C.High) (C.Middle) (B.Low) 0.4
8 (C.High) (C.Middle) (D.Low) 0.4

Environment

Cell
C.High

Cell
A.Middle

Cell
C.Middle 

Cell
B.Low

Cell
D.Low

Figure 2: Automata cells according to frequent fuzzy 1-itemset

available in the neighborhood of C.High but not in the second row of the dataset, it remains
in the neighborhood of C.High with the same value as 0.8. Additionally, other cells carry
out these actions concurrently. After processing the second record of the dataset, the created
neighborhoods and the proximity list of cells are displayed in Figure 4.

Similarly, Figures 5, 6 show the generated neighborhoods and the proximity list of cells
after running the third row and the fourth row of the dataset.

Each cell automatically discards its neighbors and the proximities whose fuzzy support
is lower than the minimum threshold in its proximity list when all the transactions in the
compressed dataset are sent to the cells by the environment. A frequent fuzzy 1-itemset is
obtained for each cell. All of the frequently used items might be recovered by combining the
results of each cell. After pruning, the proximity list of cells is shown in Figure 7.

3.5. Describe the Algorithm CLA-Fuzzy mining

A. Data preprocessing (convert quantitative database to fuzzy database)

� Step 1: Implement the improved clustering algorithm EMC.

� Step 2: Implement fuzzy partitioning algorithm.

� Step 3: Perform database compression.

B. Compressed data and processing algorithm

� Step 4: Through the environment will read each record of compressed transaction data
in records 1 and 2.

� Step 5: The environment generates CLA cells by item regularly and performs concur-
rent processing for those cells (only for records 1 and 2). This step to initializes all
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Figure 3: The proximity list of cells after the first row running

items in the transaction and these items will be created corresponding to each cell,
these cell values can be null if not exist in the first transaction.

� Step 6: Browse all cells processed from step 5 and update the number of transactions
again.

� Step 7: The algorithm ends with the result that the frequent itemsets are stored in the
cells and will be mined for different purposes.
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Figure 4: The proximity list of cells after the second row running
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Figure 5: The proximity list of cells after the third row running
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Figure 6: The proximity list of cells after the fourth row running

Figure 7: The proximity list after being pruned with minsup =30%
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Algorithm 1 : Data Preprocessing()

Input:
DQ: Quantitative transaction database;
minsup: Minimum support threshold.

Output:
F1: A set of frequent fuzzy 1-itemset;
Df : Fuzzy dataset after removing infrequent;

1: Execute EMC();
2: Call FuzzyPartition();
3: Transform DQ into Df ;

/* Scan Df to compute the support of each fuzzy item Ajk in Ti as Eq.(1)*/
4: if fsup(Ajk)≥ minsup then
5: Put Ajk in F1

6: end if
7: if Ajk is not in F then
8: Remove Ajk from all Ti (i...n);
9: end if

10: return F1, Df

Algorithm 2 : Data Compression()

Input:
minsup: Minimum support threshold;
F1: A set of frequent fuzzy 1-itemset;
Df : Fuzzy dataset after removing infrequent.

Output:
CDS: Compressed data set above table.

1: for i = 1 to Df do
2: for j = 1 to items do
3: if items(i, j)==Items(i+ 1, j) then
4: Remove(rows(i+ 1));
5: Update;
6: Support(rows(i)+rows(i+ 1));
7: end if
8: end for
9: end for

10: return CDS

Algorithm 3 : CLA Fuzzy Mining()

Input:
minsup: Minimum support threshold;
F1: set of frequent fuzzy 1-itemset;
TDB: Compressed transaction database;
CDS: Compressed data set above table.
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Output:
FFIL: Fuzzy Frequent Itemsets List

1: for i = 1 to CDS do
2: Read transaction from CDS;
3: Transfer transactions to parallel cells;
4: Through new transactions update the list of neighborhoods and neighborhoods of cells;
5: end for
6: Initialize FFIL;
7: for i = 1 to automata cells do
8: Execute the PruneNeighbors() function for cell[j];
9: Execute DFS() function for cells[j];

10: for all anItemset on cell[j].FrequentItemset do
11: if anItemset does not exist in FFIL then
12: FFIL.add (anItemset);
13: else
14: nothing;
15: end if
16: end for
17: end for
18: return (FFIL)

4. EXPERIMENTAL RESULTS

We use the Foodmart, Chess, and Chain store data sets from the frequent itemsets mining
data sets [14] for this experiment. The dataset’s description is displayed in Table 7.

This work introduces the experimental results from the algorithms and compares them to
the outcomes of the NPSFF algorithm [37] and the iMFFP algorithm [26]. The CLA-Fuzzy
Mining algorithm is more effective than the previous two algorithms in terms of process-
ing time and temporary storage memory, according to testing results based on the dataset
presented in Table 7. In this work, the suggested algorithm was tested in an integrated
development environment, along with the earlier algorithms that were compared (IDE) on
Windows 10 x64 machines with an Intel(R) Core(TM) i7-7500U CPU clocked at 2.70GHz,
2.90GHz, or 2.8GHz, and 16GB RAM, JDK8 (the Java Development Kit) and Java Object-
Oriented Programming Language are supported.

Table 7: Testing dataset

Dataset name Transaction Items Size
Chess 3196 175 0.78 M
Foodmart 4141 1559 12.4 M
ChainStore 111,294 46,086 28.17 M

Figure 8 shows that the performance of the proposed algorithm CLA-Fuzzy Mining com-
pared with two algorithms iMFFP and NPSFF performed on all data sets is reduced. The
application of the method eliminates redundant transactions to compress the data set and
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Figure 8: Execution time of algorithms for different data sets

combines with the parallel processing method for cells containing frequent fuzzy itemsets.
Compared to other parallel processing methods, the CLA-Fuzzy Mining technique performs
substantially better thanks to the environment’s automatic updating of information for sur-
rounding cells. On the other hand, the method’s advancement is directly proportional to the
volume of transactions produced after utilizing minsup to drop the dataset.

As per Figure 9, the memory usage of iMFFP and NPSFF is higher than compared to
the CLA-Fuzzy. The procedure of mining fuzzy frequent itemsets based on proximity lists
helps to limit the requested memory usage.

Figure 9: Evaluations of memory usage for different data sets

5. CONCLUSIONS

To mine frequent fuzzy itemsets in transactional databases in the future, many strategies
and methodologies are presented in this work. The created neighbor list for all of each
cell’s neighbors is used in the described CLA-Fuzzy Mining-based frequent fuzzy set mining,
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which subsequently employs this list to mine the frequent fuzzy itemsets. The presentation
technique was evaluated against two previously created techniques (iMFFP, and NPSFF).
According to the experimental findings, our mining method, which is based on CLA-Fuzzy
Mining, outperforms iMFFP and NPSFF on various common data sets. To speed up the
processing time of the method, many approaches are combined, such as fuzzy partitioning
to convert quantitative to fuzzy values and data preprocessing using clustering.
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