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Abstract. Attribute reduction is one important part researched in rough set theory. A reduct from

a decision table is a minimal subset of the conditional attributes which provide the same information

for classification purposes as the entire set of available attributes. The classification task for the

high dimensional decision table could be solved faster if a reduct, instead of the original whole set of

attributes, is used. In this paper, we propose a reduct computing algorithm using attribute clustering.

The proposed algorithm works in three main stages. In the first stage, irrelevant attributes are

eliminated. In the second stage relevant attributes are divided into appropriately selected number of

clusters by Partitioning Around Medoids (PAM) clustering method integrated with a special metric in

attribute space which is the normalized variation of information. In the third stage, the representative

attribute from each cluster is selected that is the most class-related. The selected attributes form the

approximate reduct. The proposed algorithm is implemented and experimented. The experimental

results show that the proposed algorithm is capable of computing approximate reduct with small

size and high classification accuracy, when the number of clusters used to group the attributes is

appropriately selected.

Keywords. Feature selection; Attribute reduction; Attribute clustering; Partitioning Around

Medoids clustering; Normalized Variation of Information; Rough set.

1. INTRODUCTION

Due to the rapid development in today’s technology, the dimensionality of dataset be-
comes larger and larger. In most of applications such as gene data, text categorization,
image retrieval and information retrieval, we often confront with the datasets involving huge
numbers of features (or attributes). This may lead to the fact that the traditional mining
or learning algorithms become slow and cannot process information effectively. One of the
most feasible technique to cope with this problem is feature selection. Generally, feature
selection can be viewed as the process of selecting a subset from the original set of features,
removing as many irrelevant and redundant features as possible to improve the quality of
data and reduce time and space complexity for analysis [4, 9]. This is because firstly irrele-
vant features do not contribute to predictive accuracy. Secondly redundant features do not
redound to getting a better predictor because they provide the most information which is
already present in other feature [4, 9, 23]. Feature selection is considered as NP-hard prob-
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lem, since the number of all subsets 2N grows exponentially with the number of features N .
Several approximation algorithms have been proposed to find the near best feature subset
in a reasonable time. Comprehensive surveys of feature selection algorithms are presented
in [4, 23].

When dealing with high dimensional data (datasets with hundreds or thousands of fea-
tures), many feature selection algorithms can successfully remove irrelevant features but fail
to pull redundant ones out [21, 29]. To overcome this problem, in the last decades some
feature selection algorithms using feature clustering were proposed in both supervised and
unsupervised context [1,5,10,29,35,36]. Note that feature clustering is different from object
clustering, here we are doing clustering for features rather than for objects. Feature cluster-
ing groups features into clusters so that the features within the same cluster are expected to
possess high similarity, but within different clusters possess low similarity.

Clustering based feature selection algorithm follows the straightforward idea. It divides
the initial feature space into a set of groups called clusters. Generally, correlation measures
are used as clustering algorithm metrics which make features of the same group considered as
redundant. This leads to the selection of one feature to represent each cluster. The resulting
feature subset is considered to be relevant and non redundant [36]. However, for this type of
approach, there are two core issues that need to be carefully considered, namely the choice of
a similarity measurement function and a clustering method to use. The similarity function
measures the similarity between two features in the feature space; clustering method collects
features into groups using the selected similarity function.

Recent studies have demonstrated that the algorithms of selecting features through clus-
tering have very important advantages. They can outperform the traditional feature selection
algorithms by reducing the redundancy, reaching a high accuracy and, in some cases, reduc-
ing the calculation time. Besides, they also help users better understand the structure of the
dataset to be analyzed and the relative importance between features [1, 5, 29,35,36].

Rough set theory proposed by [26], is a powerful mathematical tool for dealing with
vague, imprecise, incomplete, and uncertain data. This theory has been successfully applied
in different research fields such as machine learning, expert system, pattern recognition, and
knowledge discovery in databases [26,34]. Feature selection is one important part researched
in rough set theory. In rough set theory, the process of feature subset selection in a decision
table is viewed as reduct computation process. A reduct is a minimal subset of the conditional
attribute set which provide the same information for classification purposes as the entire set
of available attributes. The classification task for the high dimensional dataset could be
solved faster if a minimal reduct, instead of the original whole set of attributes, is used.
However, computing a minimal reducts is an NP-hard problem [28]. Therefore, several
studies on computing approximate reducts have been carried out. An approximate reduct
is a minimal reduct with acceptable errors, but can be found in much shorter time relative
to an exact minimal reduct. Many approaches for computing approximate reducts were
proposed [2, 7, 30,33].

As mentioned above, clustering based feature selection algorithms have many important
advantages. In recent years, some approximate reduct computing algorithms using attribute
clustering have also been proposed by researchers such as Hong et al. [11–15] , Janusz and
Slezak [17,18], Pacheco et al. [25]. In [11,14], the authors built a similarity measure for a pair
of attributes based on the relative dependency. Using this similarity measure, an algorithm
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called Most Neighbors First (MNF) was also proposed to cluster the attributes into a fixed
number of groups. The process starts with randomly selecting k representative attributes as
cluster centers, then the dissimilarity measure is computed between the non-representative
attributes. The non-representative attributes are allocated to their nearest centers and in
the end of the process, the center is updated with the attribute with more neighbours in its
surroundings. One of the big MNF deficiencies is that the convergence of the algorithm is
not assured, in consequence it has to be executed several times to find tendencies or patterns
in the results. Inspired by the MNF algorithm, in [25], the authors presented an approximate
reduct computing technique for fault diagnosis in spur gears.

Attribute clustering is also considered NP-hard procedure, as the majority of feature
selection algorithms, due to the similarity degree must be computed for all the pairs of
attributes in order to arrange the clusters. Furthermore, genetic algorithms have become
increasingly important for researchers in solving difficult problems since they could provide
feasible solutions in a limited amount of time [8]. In [12, 13], the authors thus proposed
a GA-based clustering method for attribute clustering and approximate reduct computing.
Hong et al. [15] continued to improve the performance of the GA-based attribute clustering
process based on the grouping genetic algorithm (GGA). In [17], the authors investigated
methods for attribute clustering and their possible applications to a task of computation of
optimal reducts from decision tables with a large number of attributes. They also proposed
a discernibility-based attribute similarity measure, which is useful for identifying groups of
attributes. In [18], the authors continued the research described in [17], and extended this
work by an in depth investigation of the selected gene-clustering results.

Although clustering-based attribute reduction algorithms have received much attention
in recent times, the number of publications is still relatively limited. In this paper, we
propose a clustering based attribute reduction algorithm for high dimensional decision table.
The proposed algorithm works in three main stages. In the first stage, irrelevant attributes
are eliminated. In the second stage, relevant attributes are divided into a desired number of
clusters by using Partitioning Around Medoids (PAM) clustering method integrated with a
special metric in attribute space which is the normalized variation of information. In the third
stage, the most representative attribute that is the most class-related is selected from each
cluster to form a reduct. The proposed algorithm is implemented and experimented. The
experimental results show that the proposed algorithm is capable of computing approximate
reduct with small size and high classification accuracy when the number of clusters used to
group the attributes is appropriately selected.

The rest of the paper is organized as follows. Section 2 reviews the theory used by our
proposal. Section 3 presents the proposed attribute reduction algorithm. Section 4 describes
and discusses the experimental results. Finally, Section 5 holds the conclusions and directions
for further research.

2. PRELIMINARIES

In this section, we briefly review the theoretical guidelines that support our proposal.
The concept of reducts in information system is first introduced, followed by the concept of
Normalized Variation of Information (NVI), which is a special distance measure on feature
space. Next, the famous clustering algorithm, k-medoids, is described. The contents are
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based on [26], [16] and [20].

2.1. Reducts in decision table

In many information processing systems, a set of objects are typically represented by their
values on a finite set of attributes (features). Such information may be conveniently described
in a tabular form. Each column corresponds to an attribute and each row corresponds to an
object. In rough set theory, such a table is often called an information system.

Formally, an information system is a pair IS = (U,A), where U is a non-empty finite set
of objects, A is a nonempty finite set of attributes, and for every a ∈ A there is a mapping
a : U → Va, where Va denotes the domain of a.

In the rest of this article, unless otherwise stated, we assume that all features in a given
information system are categorical, i.e., that they have a finite and unordered domain.

In an information system IS = (U,A), if some of the attributes are interpreted as out-
comes of classification, then this information system can also be defined as a decision table
by DT = (U,C ∪{d}), where C ∪{d} = A, d /∈ C, C is called the condition attribute set,
while d is called the decision attribute [26].

Given an information system IS = (U,A), with any subset of attributes B ⊆ A, there is
a binary indiscernibility relation IND (B) as follows

IND (B) = {(x, y) ∈ U × U |∀a ∈ B, a (x) = a (y)} . (2.1)

Obviously, IND (B) is an equivalence relation, it partitions U into disjoint blocks (or
equivalence classes), where two objects belong to the same block if they share the same
value for B. Let U/IND (B) or just U/B denote the family of all equivalence classes of
IND (B). For every object x ∈ U , let [x]B denote the equivalence class of relation IND (B)
that contains element x, called the equivalence class of x under relation IND (B).

In a given information system IS = (U,A), let X ⊆ U , B ⊆ A. One can characterize X
by a pair of lower and upper approximation sets which are defined as follows.

B(X) = {x ∈ U |[x]B ⊆ X =
⋃

Xi∈U/B∧Xi ⊆X

Xi}, (2.2)

B(X) = {x ∈ U |[x]B ∩X ̸= ∅} =
⋃

Xi∈U/B∧Xi∩X ̸=∅

Xi. (2.3)

The lower approximation set B(X) contains those objects in U that certainly belong to
X, whereas the upper approximation set B(X) contains those objects in U that possibly
belong to X. Obviously, there is B(X) ⊆ X ⊆ B(X). A set X is said to be definable if
B(X) = B(X), otherwise, X is said to be rough. The difference between B(X) and B(X)
is called the B-boundary region of X, which is denoted as BNB (X) = B(X)−B(X).

For a decision table, the most important task is attribute reduction, which means selecting
or reserving those condition attributes that provide the same information for classification
purposes as the entire set of available attributes. Such subsets are called reducts.

Let DT = (U,C ∪{d}) be a decision table, B ⊆ A. The positive region of the d with
respect to B, denoted by POSB (d), is defined as follows
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POSB(d) =
⋃

X∈U/{d}

B(X). (2.4)

The positive region POSB (d) contains those objects that can be certainly classified to
some decision classes by checking all attributes in B. If POSC (d) = U , then the decision
table DT is consistent, otherwise it is inconsistent.

Let DT = (U,C ∪{d}) be a decision table. A subset R ⊆ C is called a (relative) reduct
of DT if B is a minimal subset of condition attributes such that POSR (d) = POSC (d).

In general, there are plural reducts in a decision table. Over the years, many methods for
computing reducts have been proposed and researched in the rough set community [3,24,28].
Unfortunately, it has been proved that computing all reducts or computing an optimal reduct
(a reduct with the least number of attributes) is an NP-hard problem [28]. In practice, most
of the time only one reduct is required as typically only one subset of features is used to
reduce a decision table. For this reason, many approaches in the literature [1,7,30,33] adopt
a forward greedy algorithm to find a approximate reduct on the basis of various significance
measures of attributes. Two most widely applied attribute significance measures are defined
based on the degree of Pawlak’s dependency defined below and on Shannon conditional
entropy defined in Subsection 2.3.

Given a decision table DT = (U,C ∪{d}), for any B ⊂ C, Pawlak defines the dependency
degree of D on B in DT as follows

γB(d) =
POSB(d)

|U |
. (2.5)

Obviously, there is 0 ≤ γB (d) ≤ 1. If γB (d) = 1, then we say that D depends totally on
B, and if 0 < γB (d) < 1, then we say that d depends on B in a degree γB (d). If γB (d) = 0,
then we say that d does not depend on B.

Given a decision table DT = (U,C ∪{d}), let B ⊆ C. For any a ∈ B, the significance of
attribute a with respect to B and d in DT is defined as follows

SIGγ(a,B, {d}) = γB(d)− γB−{a}(d). (2.6)

SIGγ (a,B, {d}) is the change of the coeficicient γB (d) when removing the attribute a
from B.

The QuickReduct algorithm [19] listed below is a typical algorithm that uses a greedy
search strategy and the above attribute significance measure to find a approximate reduct.
QuickReduct works as follows.

Algorithm 1. QuickReduct algorithm for computing the relative reduct.

inputs: Decision table DT = (U,C ∪{d} , V, f) .
Output: One relative reduct of DT .
Begin

red ← {};
do

T ← red ;
foreach a ∈ C − red

if γred∪{a} (d) > γT (d) ;
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T ← red∪{a} ;
red ← T ;

until γred (d) = γC (d);

return red ;

End;

Wang et al. [31] developed the conditional entropy-based algorithm CEBARKNC for at-
tributes reduction. The structure of the CEBARKNC algorithm is similar to the QuickReduct
algorithm except that the conditional entropy based attribute significance measure is used,
(see Subsection 2.3 for conditional entropy).

2.2. Normalized variation of information

The central idea of our work is to introduce an algorithm for attribute reduction that uses
attribute clustering. So we need a special metric to measure the distance between attributes.
Such a metric would be the normalized variation of information presented below.

Let IS = (U,A) be an information system, attribute X ∈ A. The information system
IS can be viewed as a statistical population and X is a discrete random variable. Suppose
VX = {x1, x2, . . . , xm} , U/IND (X) = {X1, X2, . . . , Xm}. Then the probability distribution
of X can be determined by:

P (X = xi) = P (xi) = |Xi|/|U |, i = 1, ...,m. (2.7)

where | . | denotes the cardinality of a set.

Other related probability distributions can be similarly defined. In particular, P (X,Y )
is the joint probability distribution of X and Y , and P (X|Y ) is the conditional probabil-
ity distribution of X given Y . Let U/IND (X) = {X1, X2, . . . , Xm}, and U/IND (Y ) =
{Y1, Y2, . . . , Yn}, then

P (X = xi, Y = yj) = P (xi, yj) = |Xi ∩Yj | / |U | ,

P (X = xi|Y = yj) = P (xi|yj) = |Xi ∩Yj | / |Yj | ,

with i = 1, . . . ,m, j = 1, . . . , n.

For a given attribute X, (Shannon) entropy of X is an expression [16]:

H(X) = −
m∑
i=1

P (X = xi) log2 P (X = xi), (2.8)

and by the convention 0log20 = 0.

For an attribute X, its entropy H (X) is related to the deviation of the probability dis-
tribution of X from the uniform distribution. A lower entropy suggests that the distribution
is uneven and consequently one may have a better prediction using the value of X. The
attribute entropy H (X) serves as a measure of uncertainty or un-structuredness. An at-
tribute with a larger domain normally divides the database into more smaller classes than
an attribute with a smaller domain, and hence may have a higher entropy value. In fact, the
maximum value of attribute entropy is log |VX | , which depends on the size of VX . On the
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other hand, an attribute with smaller domain, i.e., a lower entropy value, usually divides the
database into a few larger classes.

The notion of entropy may be generalized over two and more attributes, for instance [16]:

H (X,Y ) = −
m∑
i=1

n∑
j=1

P (X = xi, Y = yj) log2P (X = xi, Y = yj) . (2.9)

The conditional entropy H (X|Y ) of X given Y is defined as [16]:

H (X|Y ) = −
n∑

j=1

P (Y = yj)

m∑
i=1

P (X = xi|Y = yj) log2P (X = xi|Y = yj) . (2.10)

Conditional entropy H(X|Y ) quantifies the remaining entropy (i.e., uncertainty) of an
attribute X given that the value of another attribute Y is known. Applying formulas (2.8),
(2.9), and (2.10) we have

H (X|Y ) = H(X,Y )−H(Y ). (2.11)

The mutual information between the two attributes X and Y is defined as [16]:

I (X;Y ) = H (X)−H (X|Y ) = H (Y )−H (Y |X) . (2.12)

Mutual information I (X;Y ) is non-negative and symmetric, i.e., I (X;Y ) ≥ 0 and
I (X;Y ) = I (Y ;X). It measures the information that X and Y share, and it tells us
how much the knowledge on one of the two attributes reduces uncertainty about the other
one.

Symmetric uncertainty of attributes X and Y is defined as [16]:

SU(X,Y ) = 2.
I(X;Y )

H(X) +H(Y )
. (2.13)

Symmetric uncertainty is a measure that allows to quantify the mutual dependence of two
attributes. The numerator is mutual information. This uncertainty has been normalized by
the total uncertainty on the attributes, given by the sum of the entropies H (X) and H (Y ).
Therefore, its values are in the range [0,1]. A value of 1 indicates that knowledge of the value
of either one completely predicts the value of the other and the value 0 reveals that X and
Y are independent.

The normalized variation of information between X and Y is defined by [16]:

NV I(X,Y ) = 1− I(X;Y )

H(X,Y )
=

H(X|Y ) +H(Y |X)

H(X,Y )
. (2.14)

NV I (X,Y ) is a metric on the space of attributes, that is, for any attributes X,Y , and Z it
satisfies

(i) NV I (X,Y ) ≥ 0 and the equality holds iff X = Y,
(ii) NV I (X,Y ) = NV I(Y,X),
(iii) NV I (X,Y ) +NV I (Y, Z) ≥ NV I(X,Z).

Values of NV I (X,Y ) are in the range [0,1]. NV I (X,Y ) is also a universal metric in
that if any other distance measure places X and Y close-by, then the NV I will also judge
them close.

Although the entropy-based measure handles categorical or discrete attributes, they can
deal with continuous features as well if the values are discretized properly in advance [16].
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2.3. k-medoids clustering algorithm

The k-medoids algorithm [20] is a clustering approach related to k-means clustering for
partitioning a dataset into k groups or clusters. In k-medoids clustering, each cluster is
represented by one of the data point in the cluster. These points are named cluster medoids.
The term medoid refers to an object within a cluster for which average distance between it
and all other members of the cluster is minimal. It corresponds to the most centrally located
point in the cluster. These objects (one per cluster) can be considered as a representative
example of the members of that cluster which may be useful in some situations. Recall that,
in k-means clustering, the center of a given cluster is calculated as the mean value of all data
points in the cluster. The k-medoids algorithm can work with any distance matrix and is
less affected by outliers than k-means because it uses medoids as cluster centers instead of
means [20].

The most common k-medoids clustering methods is the PAM algorithm (Partitioning
Around Medoids) [20]. In summary, PAM algorithm proceeds in two phases as follows.

Build phase

1. Randomly select k objects to become the medoids;

2. Assign every object to its closest medoid, then calculate the total cost E for the
resulting cluster configuration by using formula

E =

k∑
i=1

∑
x∈Ci

|x−mi|. (2.15)

where x is an object in cluster Ci, mi is the current medoid of Ci, the absolute value |x−mi|
means the distance between x and mi;

Swap phase

3. For each medoid m

For each non-medoid data point x

swap m and x; compute the total cost E′ of the resulting cluster configuration;

4. if E′ < E, m is replaced by x;

5. Repeat Steps 3-4 until there is no change in the medoids.

The complexity of PAM for each iteration (step 3-4) is O
(
k (n− k)2

)
where n is the

number of objects in dataset, k is number of clusters. Moreover, the PAM algorithm com-
plexity to recalculate the entire cost function is O

(
n2k2

)
[20]. Therefore, the complexity of

the k-medoids approach is in general higher than the k-means approach, but the former can
guarantee that all centers of obtained clusters are objects themselves. This feature is impor-
tant to us, since the attributes are not only clustered but also the representative attribute
of each cluster has to be found. Note that, the goal of this paper is to select attributes using
clustering. An attribute clustering method based on k-medoids, thus, can help us achieve
this purpose.

PAM clustering algorithm is implemented in R programming language. To compute
PAM, we can use the pam() function in the “cluster” package [32]. For PAM algorithm, a
user has to specify k, the number of clusters to find. There is also an enhanced version of
pam(), function pamk() in R package “fpc”. pamk() does not require a user to choose k.



AN EFFECTIVE ALGORITHM FOR COMPUTING REDUCTS 285

Instead, it performs a partitioning around medoids clustering with the number of clusters
estimated by optimum average silhouette width method, described in [27].

Briefly, the average silhouette approach measures the quality of a clustering. That is,
it determines how well each object lies within its cluster. A high average silhouette width
indicates a good clustering. Average silhouette method computes the average silhouette of
observations for different values of k. The optimal number of clusters k is the one that
maximize the average silhouette over a range of possible.

3. PROPOSED METHOD

This section introduces our proposed algorithm for computing an approximate reduct in
a decision table. It is called ACBRC (attribute clustering based reduct computing).

In a decision table, irrelevant attributes that do not contribute to predicting accuracy and
redundant attributes do not redound to better prediction because most of the information
they provide is already in the other attribute. Irrelevant attributes, along with redundant
attributes, severely affect the accuracy of the learning machines [22]. Therefore, attribute
reduction algorithm should be able to identify and remove as much of the irrelevant and
redundant information as possible. Furthermore, good attribute subsets must contain at-
tributes that are close to the decision attribute, but not close to each other. Keeping these in
mind, we propose ACBRC, an attribute clustering based reduct computing algorithm which
can efficiently and effectively deal with both irrelevant and redundant attributes in a decision
table, and give a good approximate reduct.

In order to more precisely introduce the algorithm, we firstly present our definitions.

Definition 3.1. Let DT = (U,C ∪{d}) be a decision table. Attribute clustering in DT
can be defined as the partitioning of the set C of conditional attributes into a collection
CX = {C1, C2, . . . , Ck} of mutually disjoint subsets Ci of C, such that C1 ∪C2 ∪ . . .∪Ck = C,
Ci ̸= ∅, and Ci ∩Cj = ∅, for i ̸= j.

Definition 3.2. Let DT = (U,C ∪{d}) be a decision table, C ∪{d} is the full set of
attributes. The distance between any pair of attributes Xi and Xj (Xi, Xj ∈ C ∪{d} , i ̸= j)
is measured by NV I (Xi, Xj), defined as in (2.14).

Note that for any Xi ∈ C we have 0 ≤ NV I (Xi, d) ≤ 1.

Definition 3.3. The irrelevance between the condition attribute Xi ∈ C and the decision
attribute d is measured by the distance valueNV I (Xi, d). The greater the valueNV I (Xi, d)
is, the lower the relevance between them. If NV I (Xi, d) is greater than a threshold δ = 0.98,
we say that Xi is an irrelevant attribute; otherwise Xi is relevant one.

Definition 3.4. Let G be a cluster of attributes. A feature XR ∈ G is a representative
attribute of the cluster if and only if

XR = arg min
X∈G

NV I (X, d) .

This means XR is the strongest relevant attribute and can act as a relevant attribute for
all attributes in the cluster G.

Using the above definitions, ACBRC algorithm is the process consisting of the two con-
nected parts: irrelevant attribute elimination and redundant attribute removal. The former
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obtains relevant attributes by eliminating irrelevant ones, the latter removes redundant
attributes from relevant ones via choosing representatives from different attribute clusters,
and thus produces the final subset of attributes. Framework of ACBRC is shown inFigure 1.

Figure 1. Framework of the proposed Reduct Computing algorithm ACBRC

ACBRC algorithm consists of three stages.

(1) First, irrelevant attributes are eliminated. For this purpose, the distance NV I (X, d)
is measured between each attribute X and the decision attribute d. We assume that
the greater an attribute has irrelevance value is, the lower its ability to distinguish
between classes. Here, the attribute with irrelevance greater than 0.98 will be removed
from the initial attribute set.

(2) Clustering the relevant attributes using function pamk() in R package “fpc”, integrated
with metric NVI

pamk() is an enhanced version of pam(), which can work with any distance matrix and
does not require a user to choose the number of clusters k. Instead, it performs a PAM
clustering with the number of clusters estimated by optimum average silhouette width
method, described in [27].

(3) Finally, selecting from each cluster the attribute which has the strongest decision-
relevance. This attribute can act as a representative attribute for all attributes in
the cluster. Once a attribute is selected, attributes belonging to the same cluster are
removed. The selected attributes form the approximate reduct.

The main steps of the ACBRC algorithm are as follows.

Algorithm 2 The ACBRC algorithm
inputs: The given decision table DT = (U,C ∪{d}), δ = 0.98 - the irrelevance threshold.
output: Red – approximate attribute reduct.
step 1. Irrelevant attributes elimination.



AN EFFECTIVE ALGORITHM FOR COMPUTING REDUCTS 287

For each X ∈ C compute irrelevance = NV I (X, d). If irrelevance > δ then
CR = C\ {X}.

step 2. Calculate the distance matrix NV I for all attribute pairs.

For each attribute pair Xi and Xj in CR compute

NV I [i, j] = NV I (Xi, Xj) (equation (2.14).

step 3. Using pamk() fuction in R package “fpc” to cluster the attributes in CR.

step 4. for each cluster G do XR = argminX∈GNV I (X, d) . Red = Red∪XR.

4. EXPERIMENTAL RESULTS

The proposed ACBRC attribute reduction algorithm was implemented in R program-
ming language and on a personal computer with Pentium dual core 2.70 GHz CPU and 2.00
GB RAM.

Experimental computations were carried out on 5 benchmark datasets obtained from
UCI repository [6]. The characteristics of these datasets are shown in Table 1. The first
two columns show the names and abbreviations of datasets, the next two columns show the
number of samples and attributes, and the last column shows the number of class labels. All
attributes of the selected datasets are categorical. Thus, discretization is not necessary.

Table 1. Descriptions of datasets in the experiment

Datasets Abbreviations Nr. of
instances

Nr. of
condition
attributes

Nr. of
classes

Chess Chess 3196 36 2
Mushroom Mushroom 8124 22 7
Soybean (small) Soybean 47 35 4
Lung-cancer Lung 32 56 3
Votes Votes 435 16 2

To evaluate the performance of our proposed ACBRC algorithm, we compare it with
QuickReduct and CEBARKNC algorithms, in terms of the number of selected attributes,
and the classification performance.

For comparing the classification performance of ACBRC, QuickReduct and CEBARKNC,
we used C5.0 and Native Bayes, which are two popular classification algorithms and widely
applied in various research fields.

In order to make the best use of the data and obtain stable results, a 3-trials 10-fold cross-
validation strategy is used. That is, for each dataset, each attribute reduction algorithm
and each classification algorithm, the 10-fold cross-validation is repeated 3 times, with each
time, the order of the instances of the dataset is randomized. Randomizing the order of the
instances can help diminish the order effects. For each classification algorithm, we obtain 3-
trials 10-fold classification accuracy for each attribute reduction algorithm and each dataset.
Averaging these accuracies, we obtain mean accuracy of each classification algorithm under
each attribute reduction algorithm and each dataset.
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A. Comparison of number of selected attributes for three attribute reduction algorithms

Table 2 shows the attributes selected by three attribute reduction algorithms - ACBRC,
QuickReduct and CEBARKNC when they are applied for each dataset in Table 1.

Table 2. Selected attributes using three algorithms

Datasets ACBRC QuickReduct CEBARKNC
Chess 7 29 32 8 10 18 33 14

16 21
21 10 29 14 28 1 15 16 6 33
7 35 18 34 11 5 17 23 36 26
20 30 4 24 12 27 25 31 3 9
13

21 10 33 32 6 35 15 1 34 7
16 23 17 4 2 30 5 27 3 9
20 25 31 12 13 24 18 28 26
36

Mushroom 13 20 5 9 15 6 22 11 12 5 1 5 20 22 21
Soybean 22 21 22 1 22 4
Lung 9 48 1 42 7 4 9 43 3 4
Votes 4 12 1 9 14 4 11 16 13 3 2 6 4 11 3 13 16 2 9 15 1

From Table 2, we can see that all three algorithms achieve significant reduction of di-
mensionality by selecting only a small portion of the original attributes. ACBRC generally
obtains the best proportion of selected attributes.

Table 3. Execution time of the proposed algorithms (in sec.)

Datasets ACBRC QuickReduct CEBARKNC
Chess 18.52 28.41 12.82
Mushroom 1.14 2.29 1.11
Soybean 0.64 0.12 0.36
Lung 0.84 0.31 0.44
Votes 0.64 0.73 0.53

From Table 3, we see that the execution time of the three algorithms depends on the
characteristics of each dataset. In general, the execution time of the ACBRC algorithm is
slightly larger than that of the QuickReduct and CEBARKNC algorithms, but the execution
time of ACBRC is acceptable..

B. Evaluation of the classification performance of the ACBRC attribute reduction algorithm

Table 4 shows 95% confidence intervals of 3-trials 10-fold classification accuracy of two
classifiers on 5 datasets without attribute reduction.

Table 4. Classification accuracy without attribute reduction

Datasets C5.0 Bayes
Chess 0.9928 ± 0.0024 0.87868 ± 0.0126
Mushroom 1 0.94088 ± 0.0057
Soybean 0.975 ± 0.049 1
Lung 0.7667 ± 0.1701 0.56667 ± 0.2396
Votes 0.9674 ± 0.0139 0.90465 ± 0.0349

Table 5 shows 95% confidence intervals of 3-trials 10-fold classification accuracy of two
classifiers on 5 datasets after ACBRC attribute reduction algorithm is used.
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Table 5. Classification accuracy using attributes selected by ACBRC

Datasets C5.0 Bayes
Chess 0.9928 ±0.0022 0.8906 ± 0.0129
Mushroom 1 0.9473 ± 0.0031
Soybean 1 1
Lung 0.8 ± 0.1996 0.6 ± 0.2134
Votes 0.9674 ±0.0217 0.9581 ± 0.0164

Generally, for all five datasets, the classification accuracy of attributes selected by ACBRC
is greater than the classification accuracy of the original attributes.

C. Comparison of classification accuracy for three attribute reduction Algorithms

Table 6 and Table 7 show 95% confidence intervals of classification accuracy by 3-trials
10-fold cross-validation when C5.0 and Näıve Bayes classifiers are used for the datasets with
attributes selected by ACBRC, QuickReduct, and CEBARKNC.

Table 6. C5.0 classification accuracy using different attribute reduction algorithms

Datasets ACBRC QuickReduct CEBARKNC
Chess 0.9928 ±0.0022 0.9931 ± 0.0024 0.9937 ± 0.0035
Mushroom 1 1 1
Soybean 1 0.975 ± 0.049 0.975 ± 0.049
Lung 0.8 ± 0.1996 0.8 ±0.1445 0.7667 ± 0.1701
Votes 0.9674 ±0.0217 0.9651 ± 0.014 0.9558 ± 0.0126

From Table 6, we see that for datasets “Soybean”, “Lung”, and “Votes”, C5.0 classifica-
tion accuracy with attributes selected by ACBRC is greater than the classification accuracy
with attributes selected by QuickReduct and CEBARKNC. And for two other datasets, the
classification result after attribute reduction by ACBRC is comparable with the results after
attribute reduction by QuickReduct and CEBARKNC.

Table 7. Bayes classification accuracry using different feature selection methods

Datasets ACBRC QuickReduct CEBARKNC
Chess 0.8906 ± 0.0072 0.8881 ±0.015 0.8947 ± 0.0061
Mushroom 0.9473 ±0.0036 0.982 ±0.0027 0.9807 ± 0.0031
Soybean 1 0.875 ±0.1096 1
Lung 0.5334 ±0.2425 0.4667 ± 0.2789 0.4667 ± 0.2425
Votes 0.9581 ±0.0164 0.9279 ± 0.023 0.9302 ± 0.0192

From Table 7, we see that for all five datasets, the Bayes classification accuracy with
selected attributes by ACBRC is greater than the classification accuracy with attributes
selected by QuickReduct and CEBARKNC.

5. CONCLUSION

In this paper, we have proposed a clustering based attribute reduction algorithm for high
dimensional decision table. The proposed algorithm, called ACBRC, consists of three stages:
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(1) removing irrelevant attributes, (2) clustering the relevant attributes into appropriately
selected number of clusters using Partitioning Around Medoids (PAM) clustering method
integrated with Normalized Variation of Information as distance measure, and (3) selecting
from each cluster the representative attribute which has the strongest relevance. Once an
attribute is selected from a cluster, attributes belonging to the same cluster are removed and
thus the dimensionality of decision table is drastically reduced. Only the selected attributes
form the approximate reduct.

Experimental computations were carried out on five benchmark datasets obtained from
UCI repository. To evaluate the performance of the proposed attribute reduction algorithm,
we compare it with QuickReduct and CEBARKNC algorithms, in terms of the number of
selected attributes, and the classification performance. Generally, ACBRC obtained the
best proportion of selected attributes, the best classification accuracy for C5.0, and Naive
Bayes. The classification accuracy after attribute reduction by ACBRC even outperforms
the classification accuracy using whole dataset in some cases. These experimental results
show that ACBRC is a promising algorithm for attribute reduction.

For the future work, we will attempt to apply the proposed attribute reduction algorithm
to some real application domains with high dimensional datasets like DNA analysis and text
categorization.
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