
Journal of Computer Science and Cybernetics, V.38, N.4 (2022), 311–326

DOI no. 10.15625/1813-9663/38/4/16873

AN IN-DEPTH EVALUATION OF FREQUENCY-AWARE
SCHEDULER FOR IMPROVING USER EXPERIENCE ON

MOBILE DEVICES

GIANG SON TRAN1,∗, AXEL CARLIER2, DANIEL HAGIMONT2

1ICTLab, University of Science and Technology of Hanoi, Vietnam Academy of Science
and Technology, Ha Noi, Viet Nam

2University of Toulouse, 2 rue Charles Camichel B.P. 7122, 31071 Toulouse Cedex 7, France

Abstract. Mobile devices are more and more invading our daily life. Users of such devices expect

to have a good experience, mainly linked with performance. However, higher performance also means

a reduction in battery life, negatively contributing to the overall user experience. A common way to

balance this performance-battery trade-off is to reduce CPU frequency when underload with Dynamic

Voltage and Frequency Scaling. In a previous work, we introduced a Frequency Aware Completely Fair

Scheduler (called FA-CFS), which helps reduce battery consumption and increase the smoothness of

mobile interface browsing. However, the current evaluation of FA-CFS model is only at quantitative

results of power consumption rather than user experience on using their mobile device. In this

paper, we perform an in-depth evaluation of the FA-CFS model, both quantitative results for system

performance evaluation and qualitative results for user experience on mobile device usage. The

experiments show that FA-CFS can reduce the rate of interface frame time peaks by up to 40% in

terms of quantitative results and obtains a quantifiable impact on the quality of user experience with

a quicker, more responsive interface.

Keywords. User experience; Mobile systems; Process scheduler; Dynamic frequency.

1. INTRODUCTION

Computing technology has advanced so rapidly that mobile devices are naturally consid-
ered essential to every person. Every daily activity can be performed anytime, anywhere,
with mobile devices, such as surfing the web or organizing events. Due to this convenience,
people tend to use their mobile devices instead of their computers. Modern mobile CPUs,
originally started as embedded processors, now evolve to near desktop-class multi-core pro-
cessors [1], usually included with other components like modems, graphic and audio pro-
cessors in a System-on-Chip model. This architecture aims to meet the increasingly high
demand of users.

On the other hand, users’ energy consumption is getting more concern when using mobile
devices. Mobile devices’ battery autonomy is an essential criterion when customers choose
phones to buy [2]. Due to this critical role of energy consumption, operating systems running

*Corresponding author.
E-mail addresses: tran-giang.son@usth.edu.vn (G.S. Tran); axel.carlier@enseeiht.fr (A. Carlier);
daniel.hagimont@enseeiht.fr (D. Hagimont).

© 2022 Vietnam Academy of Science & Technology

tran-giang.son@usth.edu.vn
axel.carlier@enseeiht.fr
daniel.hagimont@enseeiht.fr

312 GIANG SON TRAN, AXEL CARLIER, DANIEL HAGIMONT

on mobile devices need to minimize power consumption. One popular method is dynamically
adjusting the CPU frequency and voltage at runtime. This mechanism is called Dynamic
Voltage and Frequency Scaling (DVFS). A CPU governor [3] in the operating system kernel is
responsible for managing DVFS based on the required workload: it increases CPU frequency
when the workload is high to meet this demand and vice versa.

Currently, the governor does not cooperate with the scheduler, a component in the kernel
to orchestrate tasks running simultaneously. The default scheduler in Linux, Completely
Fair Scheduler (CFS), uses time slice estimation to select running tasks. In our previous
work [4], we proposed an extended version of CFS, called Frequency-Aware Completely Fair
Scheduler (FA-CFS), which rebalances the workload time slice according to the differences
in frequency. Through the experiments, we showed that the FA-CFS model helps reduce
power consumption and increase the smoothness when using mobile devices. However, our
previous evaluation of the FA-CFS model was only performed to assess quantitative results
on power consumption, and we did not consider the qualitative results of user experience
when using the enhanced FA-CFS scheduler on mobile devices.

In this paper, to tackle the missing evaluation on user experience, we perform an in-depth
evaluation of FA-CFS in terms of (1) quantitative results for system performance evaluation
and (2) qualitative results for user experience when using mobile devices with FA-CFS. Our
contributions to this evaluation are three folds:

� More experiments are performed on more mid-range mobile devices to evaluate the
effectiveness of FA-CFS for reducing power consumption and increasing the smoothness
of using mobile devices.

� More analyses are provided to clarify the helpfulness of FA-CFS for reducing power
consumption and increasing the smoothness of using mobile devices.

� New experiment scenarios are performed to evaluate the qualitative results of user
experience on mobile devices running with FA-CFS.

The remainder of this paper is organized as follows. Section 2 discusses related works
regarding energy-aware schedulers and CPU allocation. Section 3 introduces the principle
and algorithm of the frequency-aware scheduler. We detail our experiments with an in-depth
analysis of quantitative results in Section 4 and qualitative results in Section 5. Section 6
concludes our paper and presents possible perspectives.

2. RELATED WORKS

CPU is among the most power-hungry components in any device, including smartphones.
Many research works have been dedicated to analyzing power consumption and optimizing
the operating system scheduler to increase the time between battery charges.

A detailed power consumption analysis of different mobile phone components is evaluated
and presented by Carroll et al. in [5]. The authors developed an energy model for a mobile
device and measured power breakdown in various states in this work. In suspended and
idle states, the CPU consumption is the 2nd and the 3rd most power-hungry component,
respectively, below the GSM module and screen. Similarly, Nguyen et al. [6] categorize
different offloading-based approaches to reduce CPU power consumption in a mobile phone.

AN IN-DEPTH EVALUATION OF FREQUENCY-AWARE SCHEDULER 313

This method is essential in minimizing power consumption since a mobile CPU is much
slower when compared with a desktop- or server-class counterpart. However, this approach
needs to balance the trade-off between reduced CPU energy with increased data transmission
power.

Using DVFS to reduce CPU consumption is another popular operating system-level ap-
proach. Annamalai et al. [7] proposed a method to reduce energy per instruction (or in-
crease energy efficiency) for asymmetric multi-core systems using dynamic resource alloca-
tion and DVFS. Asymmetric multi-processor is widely used in many modern mobile CPU
architectures. The authors achieved 17.9% energy per instruction reduction compared to
the baseline heterogeneous multi-core system. Another work by Zhu et al. [8] proposed
non-work-conserving scheduling to exploit discounted energy consumption in mobile phones,
especially those with CPUs of various micro-architectures. This work claims that schedul-
ing background tasks to low-utilized cores when these cores are enabled will benefit energy
efficiency. The evaluation shows that this method can reduce up to 63% of energy with a
negligible performance impact.

At the software level, several works attempted to provide energy optimization methods at
compilation and runtime. Choi et al. [9] proposed an energy-aware framework by adapting
Dynamic Power Management and DVFS policies with the required workload. This work
achieved 22% to 79% power reduction while insignificantly affecting the workloads. In their
recent work [10], Sheng et al. proposed an optimization method at the compilation stage
for heterogeneous multi-core systems, which is important since almost every modern mobile
phone has multiple core CPUs. This work extends the C language to support the source-to-
source compiler, enabling source code optimization techniques for multi-core systems.

To optimize user experience, Kumar et al. [11] summarize different approaches for bal-
ancing the trade-off between energy and performance on a smartphone. The authors claim
that energy response, performance, and dynamic user behavior are still open problems in
the research domain. Little work has been done to level energy reduction and user experi-
ence, therefore it is inadequate to compare combination work with other methods. DVFS
techniques can also be applied for this balance, as in our previous work [4].

3. METHODOLOGY

In this section, based on CFS, we present the FA-CFS model which we proposed in our
previous work [4] in order to improve performance of mobile system.

3.1. CFS Model

Completely Fair Scheduler (CFS) is the default scheduler in Linux used to calculate time
slices for running tasks in multi-core mobile systems. Firstly, we present the principle of CFS
scheduling model and its performance penalties when taking into account core frequency
changes.

Let W be a workload executed in a single thread and can be considered several CPU
cycles required to perform a task. A workload is measured as a multiplication of speed and
time. In the simplest case, if this workload is scheduled on a single-core CPU with constant

314 GIANG SON TRAN, AXEL CARLIER, DANIEL HAGIMONT

frequency f (approximately a proportional to the number of instructions per second), we
have

W = f × T, (1)

where T is the total time (in seconds) of execution.

In the default Linux kernel, the governor can adjust the frequency on one core after every
sampling time τi (itself composed of CFS time slices).

Within each τi, the scheduler spends a little CPU time (ζi) for accounting and select-
ing the next scheduled thread after each time slice. This time can be considered as the
performance overhead of the process scheduler. Therefore, T in equation (1) becomes

T =
n∑

i=1

(τi + ζi), (2)

where n is the total number of sampling times during the execution duration.

The CPU frequency f is calculated by the governor at runtime based on the total work-
load of the core and is different for each τi. With the consideration of the overhead of T in
equation (2) and the fluctuation of f in each time slice, W in equation (1) becomes

W =
n∑

i=1

fi × (τi + ζi), (3)

where fmin ≤ fi ≤ fmax is the CPU frequency at sampling time τi.

In the Linux kernel, the governor’s sampling time is calculated as a multiple of the CFS
scheduler’s time slice Si: τi = π × Si, where Si is dynamically estimated at runtime by CFS
model. Thus, we have

W =
n∑

i=1

fi × (π × Si + ζi). (4)

Taken into consideration that mobile processors are multi-core with N cores (N > 1),
the running thread of the workload W can be migrated from the currently scheduled core
jth (having frequency f j

i) to the actual working core kth (having frequency fk
i), and i, k ∈

[0, N −1]. In CFS model, a thread migration with the frequency change does not change the
value of the time slice Si, but cause a performance penalty δi, which is the difference between
the workload at the current core jth (calculated as f j

i × (π × Si + ζji)) and the workload at
the actual working core kth (calculated as fk

i × (π× Si + ζki)). Consequently, the formula to
compute the performance penalty δi is as follows

δi = (f j
i − fk

i)× π × Si + f j
i × ζji − fk

i × ζki . (5)

Since the amount of work (frequency × time) for accounting and scheduling can be
considered as a constant between sampling intervals in CFS [12], we have f j

i × ζji ≈ fk
i × ζki .

As a result, equation (5) can be simplified as

δi = (f j
i − fk

i)× π × Si. (6)

a All the equations below are theoretical and approximation of the reality.

AN IN-DEPTH EVALUATION OF FREQUENCY-AWARE SCHEDULER 315

In the workload duration, the total performance penalty ∆ (in terms of the amount of
work) is defined as

∆ =
n∑

i=1

δi =
n∑

i=1

((f j
i − fk

i)× π × Si). (7)

Since the total penalty in equation (7) affects performance of the mobile system, it is
important to reduce it as much as possible. In the next section, we will present an extension
of CFS model, called Frequency-Aware CFS (FA-CFS), which we proposes in our previous
work [4] in order to minimize this penalty.

3.2. FA-CFS Model

In our FA-CFS model, we introduce a new method to calculate the time slice Si when a
thread migration with the frequency change happens. Unlike CFS keeping the value of Si

unchanged in a migration between frequency changes, our method modifies the value of the
time slice Si to S

′
i for the actual working core frequency. When applying this modification

into the equation (6), the performance penalty δi becomes

δi = f j
i × π × Si − fk

i × π × S
′
i . (8)

Since we want to minimize the total performance penalty, we compute the value of S
′
i

such that δi = 0, therefore

f j
i × π × Si − fk

i × π × S
′
i = 0. (9)

Sovling the equation (9), we have

S
′
i =

f j
i

fk
i

× Si. (10)

Using the equation (10) to calculate the time slice at the actual working core when a
thread migration with the frequency change occurs, our FA-CFS model minimizes the perfor-
mance penalty δi and therefore minimizes the total performance penalty ∆ in equation (7).

3.3. Integration inside Android / Linux Kernel

We implemented our proposed frequency-aware scheduler in the Linux environment,
where our model acts as a frequency-aware extension to the CFS scheduler (see Figure 1).
We use the CPUFreq interface to call the governor for collecting CPU frequencies. The
CPUFreq interface exports kernel-wide functions to provide CPU frequency knowledge to
other components inside the kernel. Notable functions include:

� cpufreq_get provides the current frequency of a specific CPU / core.

� cpufreq_get_max provides the maximum frequency of a specific CPU / core.

� cpufreq_get_policy returns the current policy (containing the governor’s name with
a pair of configured minimum/maximum frequencies).

Having extracted frequencies, we implement our proposed algorithm, which adjusts weights
and time slices in Linux’s CFS according to the core frequencies.

316 GIANG SON TRAN, AXEL CARLIER, DANIEL HAGIMONT

CPU Hardware

FA-CFS

CPUFreq Interfaces

Governors

CPUFreq Drivers

Powersave

PerformanceOndemand

UserspaceCore

Fair Share
Accounting

Real Time Tasks
Accounting

Group Accounting Debug / Statistics

Figure 1: Implementation inside Linux Kernel.

4. SYSTEM PERFORMANCE EVALUATION

This section presents the responsiveness improvement for user interaction provided by
our FA-CFS scheduler. We show this enhancement by comparing FA-CFS with the original
CFS scheduler. We first describe the experiment’s setting, its results, and then our analysis.

4.1. Experimental setup

Interface frame time measurement
The principal metric to evaluate our improvements in FA-CFS is interface frame time.

We choose to measure frame time since it is essential in providing responsiveness for the
user interface. A fully rendered frame is passed through a set of steps in Android rendering
pipelines: execute the issued layout commands (te), process the swapping buffers (tp), prepare
the texture and finally (tt) draw the content to the screen (td). Time for rendering each user
interface frame tf is accumulated from each of the above times

tf = te + tp + tt + td. (11)

Evaluation scenario
Our evaluation considers a popular scenario where users browse an online news website

using smartphones and tablets. In the experiment, we choose http://bbc.com as the target
website due to its popularity. Since we want to compare the efficiency of our FA-CFS with
CFS, we ask all users to browse this news website sequentially using both of the schedulers.
We measure the interface frame times generated by user interactions during browsing sessions
in both steps.

A browsing session in our experiment includes: (1) the user starts the stock browser,
(2) he types the URL http://bbc.com, (3) he waits for page load, (4) he scrolls up and
down as soon as one or more parts of the page content appears. The user can click on

http://bbc.com
http://bbc.com

AN IN-DEPTH EVALUATION OF FREQUENCY-AWARE SCHEDULER 317

any link on the page to navigate to another page (of the same BBC website) and repeat
the last two steps (3) and (4). Each user session is limited to 100 seconds. In this scenario,
there are three different workload types, generated by the UI thread (rendering and handling
interaction), background network threads (to fetch data from the remote server), and the
browser engine (in charge of parsing HTML and processing JavaScript with Chromium’s V8
JavaScript engine). We clear the browser cache before starting each experiment session to
avoid preloaded images.

Technical choices

Table 1: Hardware specifications of devices

Mobile Phone Tablet

LG Nexus 4 Xiaomi Redmi Note 4X Asus Nexus 7 Wifi
Samsung Galaxy Tab

A6 10.1

Chipset
Qualcomm Snapdragon

S4 Pro
Qualcomm Snapdragon

625
Nvidia Tegra 3 Samsung Exynos 7870

CPU
Quad-core 1.5 GHz

Krait
Octa-core 2.0 GHz

Cortex-A53
Quad-core 1.2 GHz

Cortex-A9
Octa-core 1.6 GHz

Cortex-A53

GPU Adreno 320 Adreno 506 ULP GeForce Mali-T830 MP2

Memory 2GB RAM 3GB RAM 1GB RAM 2GB RAM

Screen 720x1280 4.7” 1080x1920 5.5” 800x1280 7” 1200x1920 10.1”

On the hardware side, our experiments are performed on two categories of mid-range
Android devices: mobile phones (LG Nexus 4 and Xiaomi Redmi Note 4X) and tablets (Asus
Nexus 7 Wifi and Samsung Galaxy Tab A6) (see Table 1). We would like to investigate the
impact of our scheduler’s improvement on different types of devices.

On the software side, we build from source an aftermarket open-source operating system
called LineageOS, based on the Android Open Source Project (AOSP). We decided to build
LineageOS from its source because of the ability to customize the Linux kernel and flash
(or install) the kernel and the whole operating system into our devices. We use the last
LineageOS version supported by all devices to implement our model. The Linux kernel
version included in LineageOS for each device is as follows:

� LG Nexus 4: 3.14.0

� Xiaomi Redmi Note 4X: 3.18.24

� Asus Nexus 7 Wifi: 3.4.113

� Samsung Galaxy Tab A6 10.1: 3.18.14

We use an Android’s developer option called “Profile GPU rendering” to monitor and
gather interface frame times during the experiments. We then use Android’s integrated
“dumpsys” tool on the devices to collect statistical information with a USB cable, including
the monitored interface frame time components (execute, process, prepare and draw).

4.2. Experimental results

Interface frame time peaks

318 GIANG SON TRAN, AXEL CARLIER, DANIEL HAGIMONT

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250

T
im

e
(m

s
)

Frame

Time frame with user interaction

Draw
Prepare
Process
Execute

16.6ms (60fps) limit

High frame times, unresponsive user interface
Frame time peaks

Figure 2: Interface frame time peaks on the Galaxy Tab A6 with CFS scheduler and Inter-
active governor.

0

1

10

100

1000

 0 5 10 15 20 25 30 35 40

N
u

m
b
e

r
o
f
F

ra
m

e
s

Frame Time (ms)

Figure 3: Frame time distribution of CFS on Samsung Galaxy Tab A6

Figure 2 shows a set of captured frame times extracted from one user session on the
Galaxy Tab A6 using CFS and interactive governor. It can be depicted from this figure that
frame times during this session are not stabilized but generally are smaller than the optimal
16.6ms. In the first part of this session (frame 0 - 90), frame times were relatively high because
the web browser needs to perform three tasks at the same time: fetching web content from
remote servers, parsing partial contents (HTML, CSS) as they arrive, executing JavaScript
and rendering them (text with fonts, decoding and displaying images) to the screen. The
rendering thread is not provided with enough computational power because the background
threads overload the CPU. Thus, the UI thread struggles to maintain an optimal frame time.
Since frame 100, page fetching and HTML parsing tasks have finished, but very high frame
times exist. Some even exceeded 40ms (around frame 150-155).

These peaks (or spikes) cause “micro stuttering,” a term that indicates irregular delays
between rendered frames [13]. Micro stuttering decreases the responsiveness of the user
interface, even though the average frame rate is high enough. These high frame time peaks
can be explained as a consequence of CPU core frequency changes or thread migration among
cores (with different frequencies).

AN IN-DEPTH EVALUATION OF FREQUENCY-AWARE SCHEDULER 319

0

1

10

100

1000

 0 5 10 15 20 25 30 35 40

N
u

m
b

e
r

o
f
F

ra
m

e
s

Frame Time (ms)

Figure 4: Frame time distribution of FA-CFS on Samsung Galaxy Tab A6

Frame time distribution

Due to the fine-grain nature of frame time (in milliseconds), we use a more statistical
metric frame time distribution in the second step of our evaluation. We set up our experiment
on a user session with the Samsung Galaxy Tab A6. During user interactions, we gather
approximately 2200 frame times (around 90 seconds of browsing BBC website) of CFS and
FA-CFS with the interactive governor, representing them as histograms in Figures 3 and 4,
respectively.

It can be depicted from Figure 3 that CFS causes micro stuttering with frames longer
than 16.6ms. Some frames take even more than 38ms (21.4ms longer than the 16.6ms limit).
These peaks cause choppy web content scrolling in the browser. Applying our FA-CFS into
LineageOS significantly reduces these peaks (Figure 4). The maximum frame time for FA-
CFS is 24ms compared to 40ms on CFS. In the session, FA-CFS produces only 42 frames
longer than the 16.6ms limit. In contrast, this number of the CFS counterpart is 97. From
these results, our FA-CFS achieves a reduction of 40% frame time peaks (97 frames down
to 47 frames). Additionally, frame times are better packed in the mean 5-6ms range. These
two figures clearly illustrate the benefit of improving the user experience of our FA-CFS.

Top peak ratio

The previously described two metrics, frame time and frame time distribution, are not
adequate to measure web-browsing sessions in a reliable way on a larger scale because many
factors can affect frame time in such a session: delay of network connection, dynamic content
of the webpage (e.g., advertisement) or even the workload of the server.

To analyze the effectiveness of our FA-CFS scheduler, we define a statistical metric
called top peak ratio (TPR). The metric is described as follows: a top x% peak ratio at y
milliseconds shows that during the experiment, the top x% of all frame times are longer
than y milliseconds. TPR represents the stability of frame time and, thus, the “quality” of
responsiveness in user interactions. In this part of the evaluation, we analyze the average
TPR values of all user sessions.

A total of 5 users were involved in this part of our experiment. On each device, users
performed three sessions with the CFS scheduler and three sessions with our FA-CFS sched-
uler, and each session uses a different governor. The three most popular governors with
other characteristics were used to manage the rise and decline of system load with frequency
ramp up and ramp down. The governors included in our experiments are interactive (default,

320 GIANG SON TRAN, AXEL CARLIER, DANIEL HAGIMONT

Table 2: Average TPR (ms) of CFS vs. FA-CFS with 3 governors on Nexus 7 Wifi

Interactive Ondemand Performance

TPR CFS FA-CFS ± CFS FA-CFS ± CFS FA-CFS ±

Max 48.58 37.3 -23.2% 55.12 44.05 -20.1% 31.21 30.85 -1.2%

1 38.94 29.12 -25.2% 41.77 35.10 -16.0% 23.68 25.23 6.5%

2 31.29 23.16 -26.0% 32.83 25.57 -22.1% 19.03 19.49 2.4%

3 27.25 17.21 -36.8% 29.83 21.29 -28.6% 16.79 16.47 -1.9%

4 23.13 16.08 -30.5% 23.49 16.73 -28.8% 15.62 15.88 1.7%

5 20.44 15.98 -21.8% 22.89 16.25 -29.0% 14.73 14.61 -0.8%

6 18.89 15.45 -18.2% 19.96 15.88 -20.4% 13.98 14.05 0.5%

7 18.22 14.93 -18.1% 18.72 15.65 -16.4% 13.29 13.42 1.0%

8 17.76 14.68 -17.3% 18.45 15.45 -16.3% 12.75 12.60 -1.2%

9 17.33 14.46 -16.6% 18.11 15.24 -15.8% 12.36 12.21 -1.2%

10 17.18 14.27 -16.9% 17.94 15.02 -16.3% 11.93 11.81 -1.0%

Table 3: Average TPR (ms) of CFS vs. FA-CFS with 3 governors on Galaxy Tab A6

Interactive Ondemand Performance

TPR CFS FA-CFS ± CFS FA-CFS ± CFS FA-CFS ±

Max 42.11 37.29 -11.4% 44.18 42.43 -4.0% 28.06 27.61 -1.6%

1 35.17 32.92 -6.4% 35.75 33.59 -6.0% 22.87 23.55 3.0%

2 31.87 30.73 -3.6% 34.07 31.28 -8.2% 21.67 22.94 5.9%

3 30.53 29.92 -2.0% 31.92 30.39 -4.8% 20.88 20.6 -1.3%

4 28.42 26.21 -7.8% 26.01 23.96 -7.9% 18.41 17.9 -2.8%

5 22.63 23.64 4.5% 21.76 19.23 -11.6% 15.88 15.71 -1.1%

6 20.73 21.26 2.6% 19.40 17.33 -10.7% 14.24 14.35 0.8%

7 18.23 16.23 -11.0% 17.48 16.07 -8.1% 13.26 13.48 1.7%

8 16.44 14.04 -14.6% 17.17 14.15 -17.6% 12.80 12.54 -2.0%

9 15.79 13.34 -15.5% 16.19 13.82 -14.6% 12.23 11.75 -3.9%

10 14.96 12.78 -14.6% 15.54 13.11 -15.6% 11.97 11.35 -5.2%

fastest ramp up with intermediate frequencies, and best latency), ondemand (short ramp-up,
fast ramp down, mostly minimum, and maximum frequencies only), and performance (keep
the highest frequency, waste energy). Before changing the governor, we reboot the device to
avoid caching on CPUs. Therefore, each user is requested to perform a total of 30 browsing
sessions (6 on each of the four Android devices).

Tables 2 - 5 show average top peak ratio of all user sessions on all devices with 3 different
governors. It is worth reminding that interactive is the default governor on most mobile
devices. Bold numbers indicate the minimum TPR at which FA-CFS can maintain frame
time less than the 16.6ms limit.

Frame time reduction. With the two highly dynamic governors, interactive and onde-
mand, these tables generally show that FA-CFS achieves better frame times than CFS. The
Nexus 7 benefits greatly from our time slice optimization, with an average of 16.9% and
16.3% reduction in time decreased (with interactive and ondemand, respectively) for TPR
10% (Table 2). While showing less improvement regarding top TPR on Nexus 4, FA-CFS still

AN IN-DEPTH EVALUATION OF FREQUENCY-AWARE SCHEDULER 321

Table 4: Average TPR (ms) of CFS vs. FA-CFS with 3 governors on Nexus 4

Interactive Ondemand Performance

TPR CFS FA-CFS ± CFS FA-CFS ± CFS FA-CFS ±

Max 35.36 30.31 -14.3% 36.65 33.41 -8.8% 24.98 25.21 0.9%

1 24.52 20.36 -17.0% 23.83 22.01 -7.6% 19.32 19.38 0.3%

2 18.24 17.14 -6.0% 19.27 19.41 0.7% 16.42 17.31 5.4%

3 17.58 16.56 -5.8% 18.04 16.75 -7.2% 15.16 16.42 8.3%

4 16.49 15.86 -3.8% 17.50 15.83 -9.5% 14.02 14.50 3.4%

5 16.03 15.42 -3.8% 16.91 15.29 -9.6% 13.34 14.06 5.4%

6 15.63 15.27 -2.3% 16.49 14.67 -11.0% 12.99 13.75 5.9%

7 15.48 14.81 -4.3% 16.19 14.32 -11.6% 12.51 13.28 6.2%

8 14.82 14.25 -3.8% 16.03 13.87 -13.5% 12.15 12.85 5.8%

9 14.78 14.18 -4.1% 15.62 13.45 -13.9% 11.86 12.53 5.6%

10 14.54 14.03 -3.5% 15.41 13.14 -14.7% 11.58 12.32 6.4%

Table 5: Average TPR (ms) of CFS vs. FA-CFS with 3 governors on Redmi Note 4

Interactive Ondemand Performance

TPR CFS FA-CFS ± CFS FA-CFS ± CFS FA-CFS ±

Max 33.64 29.21 -13.2% 30.11 28.61 -5.0% 28.40 26.24 -7.6%

1 28.31 25.72 -9.1% 25.48 23.25 -8.8% 23.86 22.56 -5.4%

2 21.24 17.21 -19.0% 22.48 22.58 0.4% 17.72 17.75 0.2%

3 18.50 15.51 -16.2% 20.53 19.09 -7.0% 15.01 14.84 -1.1%

4 15.33 13.70 -10.6% 19.47 16.18 -16.9% 13.90 13.95 0.4%

5 14.56 13.14 -9.8% 18.15 15.66 -13.7% 12.75 12.40 -2.7%

6 14.01 12.95 -7.6% 17.21 15.34 -10.9% 12.02 11.88 -1.2%

7 13.78 12.22 -11.3% 16.64 14.04 -15.6% 11.41 11.33 -0.7%

8 13.42 11.86 -11.6% 15.67 13.72 -12.4% 10.93 10.91 -0.2%

9 13.07 11.58 -11.4% 14.97 13.57 -9.4% 10.45 10.70 2.4%

10 12.79 11.25 -12.0% 14.22 13.35 -6.1% 10.17 10.53 3.5%

achieves 3.8% and 14.7% enhancement for TPR 10% (Table 4). The faster devices (Galaxy
Tab A6 and Redmi Note 4) exhibit less improvement than the slower ones. It can be seen
that the general TPR of the Galaxy Tab A6 and the Redmi Note 4 could achieve only around
14.6%/14.6% and 12%/6.1% for TPR 10% using FA-CFS with interactive and ondemand,
respectively (Table 3 and 5). The differences between these devices can be interpreted as a
difference in hardware configuration: double amount of CPU cores (octa-core vs. quad-core),
faster CPU speed (2.0GHz/1.6GHz and 1.5GHz/1.2GHz), and a larger amount of memory.

Frame time stabilization. Not only does our frequency-aware FA-CFS scheduler reduce
average frame times, but also it provides better frame time stabilization than traditional CFS:
TPR 1%, 2%, 3%, and 4% provide significant improvements on both devices. Especially with
a better TPR 1% peak ratio (25.2% and 16% reduction for interactive and ondemand on
Nexus 7) (Table 2), user has smoother and more responsive interface as well as experiences
less micro stuttering frames during their interactions.

The 16.6ms limit. FA-CFS can keep more frames shorter than the 16.6ms limit, or in

322 GIANG SON TRAN, AXEL CARLIER, DANIEL HAGIMONT

other words, is better in terms of providing a good user experience. In most cases, FA-CFS
can keep 1%-2% fewer over-the-limit frames than CFS. For instance, the Galaxy Tab A6
interactive (7% vs 8% peak frames) and ondemand (7% vs 9% peak frames) (Table 3). We
can see the same trend on Nexus 4: interactive (3% vs 4% peak frames) and ondemand
(4% vs 6% peak frames) (Table 4). In an extreme case, the Nexus 7, FA-CFS completely
outperforms CFS using both dynamic governors: interactive (4% vs 10+% peak frames) and
ondemand (5% vs 10+% peak frames) (Table 2).

Tablet vs. Phone. One important observation we learned during the experiment is that
the frame time of mobile phones is generally shorter than tablets. For example, the Nexus
7 and Nexus 4 both have quad-core processors and similar screen resolution (800×1280 vs.
720×1280), but the Nexus 7 has a maximum frame time 37.4% longer (48.58ms vs. 35.36ms)
with interactive and 65% longer (55.12ms vs. 33.41ms) with ondemand than Nexus 4 using
CFS scheduler. The same difference can be observed even with faster devices: Galaxy Tab
A6 has a maximum frame time 25% longer (42.11ms vs. 33.64ms) with interactive and 20%
longer (44.18ms vs. 36.65ms) with ondemand than Redmi Note 4 using CFS scheduler,
although having almost the same resolution (1200×1920 vs. 1080×1920) and octa-core
CPUs. This variation can be explained as although having approximately the same number
of pixels, the tablets have to draw more elements to the screen than the phones (e.g., more
text elements and more images) due to a physically larger screen size. The size difference
results in more layout operations, scaling operations, and rasterization operations in the
rendering process.

Performance governor. Last but not least, the right parts of these tables exhibit almost
no improvement for all devices using performance governors with all user sessions. This phe-
nomenon can be explained that performance always provides maximum CPU computational

power to all possible threads without frequency changes (
fj
i

fk
i

= 1).

The analyses of Tables 2 - 5 above show that our FA-CFS enhances frame time stabi-
lization, increases average frame rate, and reduces frame time peaks (or spikes) with widely
used governors (interactive and ondemand). Due to this, our FA-CFS scheduler proves its
efficiency in improving user experiences while interacting with mobile devices.

5. QUALITY OF EXPERIENCE EVALUATION

In this section, we present the user study we performed to evaluate the impact of our
frequency-aware scheduler on the Quality of Experience (QoE).

5.1. Protocol

Our goal in this user study is to provide evidence that user experience is affected by the
change in the scheduler. We ask users to browse several popular websites on different devices
and under various scheduling conditions. We explain to users that two different modes (i.e.,
schedulers, but we do not enter into details) will be used during the experiment, and between
them, one is perceptibly better. We then start the study.

Tasks. The study is made of a succession of five similar tasks for each user. Each task
consists of presenting the user a given device (randomly chosen between a phone and a

AN IN-DEPTH EVALUATION OF FREQUENCY-AWARE SCHEDULER 323

tablet), requesting them to browse (mostly scroll up and down) a given web page using
both schedulers (in randomized order) until it is fully loaded, and asking them to choose
the scheduler with the highest perceived QoE. All users are requested to repeat the task five
times, each for a different website in a shuffled sequence. Randomization is used to prevent
any ordering bias that could occur during the study. By the end of this study, each user
should produce five data points, each for one described task on a given web page.

Devices. We used a Galaxy Tab A6 and a Redmi Note 4 in our experiments. The goal is to
assess whether the change in the scheduler is perceptible both on tablets and smartphones.

Websites. We ask users to browse five popular websites that any user would typically
browse at least once a week, namely a Facebook timeline (i.e., a social network), the BBC
main page (i.e., a news website), a Wikipedia page (https://en.wikipedia.org/wiki/
United_States, chosen to have a considerable enough loading time), an Amazon page (to
represent e-commerce websites), and the Mac page on Apple’s website (a company portal).

Questionnaire. We ask users questions after each of the ten similar tasks, and we ask a
different set of questions at the end of the study. We ask two questions after each task:

� How perceivable, from 1 (no perceivable difference) to 5 (noticeable difference), is the
difference in Quality of Experience between the two modes?

� Which mode (the first or the second) did you prefer in this task?

At the end of the study, we also ask a few more open questions to try to characterize the
effects of the change in the scheduler:

� What made you perceive the difference between the two modes? (“I did not see any
difference” is an acceptable answer)

� When was this difference the most obvious? (examples of possible answers indicated
to users: at the beginning or the end of the page loading, after a particular interaction,
etc.)

� Was the difference more obvious on one or the other of the two devices?

� Was the difference more evident on some of the websites?

Users. A total of forty-two users (thirty-eight male and four female) performed this task,
with ages ranging from 19 to 22. The user target may seem very specific, but we were
particularly interested in users who are very familiar with mobile devices and browse the
Internet every day on their devices, which explains this choice. These users produced a total
of 210 data points (perceived difference and preference per website).

5.2. Results

We assign the following scores to users’ choice of preference

preference =


1 if the user preferred mode 1,
0 if the user could not see any difference,

−1 if the user preferred mode 2.
(12)

https://en.wikipedia.org/wiki/United_States
https://en.wikipedia.org/wiki/United_States

324 GIANG SON TRAN, AXEL CARLIER, DANIEL HAGIMONT

We find the average user preference to be 0.69, with a 99% confidence interval ranging
in [0.59, 0.78]. This result indicates a very perceivable difference between the two modes, in
favor of mode 1 (our proposed solution), which can definitely not be attributed to chance.
We also divided the users’ answers according to the device they used. The average user
preference on the phone setup is 0.71 (into [0.57, 0.85] with a 99 % confidence) whereas it
falls to 0.66 (into [0.53, 0.79] with a 99 % confidence) on tablet setup.

We asked users to quantify on a 1-to-5 scale how perceivable the difference between the
two modes was. We refactor the results from −4 (resp. 4), which denotes a significant
difference in favor of mode 2 (resp. mode 1), to −1 which represents a slight difference in
favor of mode 2 (resp. mode 1). 0 means there was no perceivable difference between the two
modes. We observe an average perceived difference of 1.87, with a 99% confidence interval
ranging into [1.78, 1.96]. In the perception scale we provided to users, this value corresponds
to “medium difference.”

Answering our open questions in the study, the users are able to distinguish the schedulers
mostly because of the difference in scrolling performance (57% users) and in the total loading
time (38% users). Majority of users indicate that this difference is most obvious during
scrolling (43%), before images are shown (33%) and when they start scrolling (26%). This
indicates the effectiveness of our contribution to reduce frame time peaks.

Finally, we also investigated the variation of users’ preferences on the different websites,
but we can not see any significant difference in our collected data.

All these results confirm that the quantitative results we presented in the previous section
have a quantifiable impact on the users’ Quality of Experience. Among the comments made
by the users during the study, the most common one was that our method tends to lead to
a quicker, more responsive interface.

6. CONCLUSION AND PERSPECTIVES

In mobile operating systems such as Android, the process scheduler does not consider dy-
namic processor frequency modifications, which reduce energy consumption. Consequently,
tasks may be penalized when executed on a processor with a reduced frequency. This penalty
is a critical issue for interactive tasks, which may lead to unresponsiveness of user interface
to user interactions, thus reducing user experience on the mobile device. In this paper, we
performed an in-depth evaluation of the effectiveness of our previously introduced FA-CFS
model, not only for system performance but also for the quality of user experience when
using their mobile device. Through the experiments, the results show that FA-CFS reduces
unresponsiveness of user interface to user interactions (up to 40%) as well as noticeably
perceived difference by the users, and therefore, enforces the smoothness of user interface.

This work opens several perspectives. First and foremost, since our work helps improve
user experience on mobile systems, it is worth investigating our model in various situations
to see if it can bring benefits: with different workloads on mobile devices or larger multi-core
and multi-CPU platforms (i.e., desktops and virtualized servers). Secondly, combining our
frequency-aware scheduler with a performance-oriented scheduler (e.g., BFS scheduler) is also
an interesting research direction. Our FA-CFS scheduler can consider the BFS scheduler’s
advancements to improve UI responsiveness and save CPU power. Last but not least, we
wonder if our frequency-aware scheduling policy can be better integrated into the Red-Black

AN IN-DEPTH EVALUATION OF FREQUENCY-AWARE SCHEDULER 325

tree by restructuring it based on core frequencies at runtime.

ACKNOWLEDGEMENTS

The authors would like to thank Vietnam Academy of Science and Technology (VAST)
for funding this research in the scope of project DL0000.05/20-22.

REFERENCES

[1] M. Halpern, Y. Zhu, and V. J. Reddi. “Mobile CPU’s rise to power: Quantifying the impact of
generational mobile cpu design trends on performance, energy, and user satisfaction”, in 2016
IEEE International Symposium on High Performance Computer Architecture (HPCA), pages
64–76. IEEE, 2016.

[2] D. Ferreira, A. K. Dey, and V. Kostakos, “Understanding human-smartphone concerns: A study
of battery life”, in Pervasive Computing. Pervasive 2011. Lecture Notes in Computer Science,
vol 6696. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21726-5_2

[3] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating system concepts essentials. John Wiley
& Sons, Inc., 2014.

[4] G. S. Tran, T. P. Nghiem, T. V. Ho, and C. M. Luong, “Extended process scheduler for improving
user experience in multi-core mobile systems”, in SoICT ’16: Proceedings of the 7th Symposium
on Information and Communication Technology, December 2016, pp. 417–424. https://doi.
org/10.1145/3011077.3011106

[5] A. Carroll, G. Heiser, et al. “An analysis of power consumption in a smartphone” https://www.

usenix.org/legacy/event/atc10/tech/full_papers/Carroll.pdf

[6] Q.-H. Nguyen and F. Dressler, “A smartphone perspective on computation offloading - A survey”,
Computer Communications, vol. 159, pp. 133–154, 2020. https://doi.org/10.1016/j.comcom.
2020.05.001

[7] A. Annamalai, R. Rodrigues, I. Koren, and S. Kundu, “Reducing energy per instruction
via dynamic resource allocation and voltage and frequency adaptation in asymmetric multi-
cores”, in 2014 IEEE Computer Society Annual Symposium on VLSI, 2014, pages 436–441, Doi:
10.1109/ISVLSI.2014.110.

[8] M. Zhu and K. Shen, “Energy discounted computing on multicore smartphones”, in 2016
{USENIX} Annual Technical Conference ({USENIX}{ATC} 16), 2016, pages 129–141.

[9] J. Choi, B. Jung, Y. Choi, and S. Son, “An adaptive and integrated low-power framework for
multicore mobile computing”, Mobile Information Systems, vol. 2017, 2017. https://doi.org/
10.1155/2017/9642958

[10] W. Sheng, J. Castrillon, and R. Leupers, “Software compilation and optimization techniques
for heterogeneous multi-core platforms”, Multi-Processor System-on-Chip 2: Applications, John
Wiley & Sons, 2021, pages 203-231. ISBN: 978-1-789-45022-4.

[11] C. Kumar, K. Naik, et al., “Smartphone processor architecture, operations, and functions: cur-
rent state-of-the-art and future outlook: energy performance trade-off: Energy–performance
trade-off for smartphone processors”, Journal of Supercomputing, vol. 77, no. 2, pp. 1377–1454,
2021. https://doi.org/10.1007/s11227-020-03312-z

https://doi.org/10.1007/978-3-642-21726-5_2
 https://doi.org/10.1145/3011077.3011106
 https://doi.org/10.1145/3011077.3011106
 https://www.usenix.org/legacy/event/atc10/tech/full_papers/Carroll.pdf
 https://www.usenix.org/legacy/event/atc10/tech/full_papers/Carroll.pdf
https://doi.org/10.1016/j.comcom.2020.05.001
https://doi.org/10.1016/j.comcom.2020.05.001
https://doi.org/10.1155/2017/9642958
https://doi.org/10.1155/2017/9642958
 https://doi.org/10.1007/s11227-020-03312-z

326 GIANG SON TRAN, AXEL CARLIER, DANIEL HAGIMONT

[12] P. Pawar, S. Dhotre, and S. Patil, “CFS for addressing CPU resources in multi-core processors
with AA tree”, International Journal of Computer Science and Information Technologies, vol.
5, no. 1, pp. 913-917, 2014.

[13] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis, ”Parallel frame rendering: Trading respon-
siveness for energy on a mobile GPU”, in Proceedings of the 22nd International Conference
on Parallel Architectures and Compilation Techniques, IEEE Press, 2013, pages 83–92. Doi:
10.1109/PACT.2013.6618806.

Received on January 11, 2022
Accepted on October 08, 2022

	 Introduction
	Related Works
	Methodology
	CFS Model
	FA-CFS Model
	Integration inside Android / Linux Kernel

	System Performance Evaluation
	Experimental setup
	Experimental results

	Quality of Experience Evaluation
	Protocol
	Results

	Conclusion and Perspectives

