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Abstract. The Dempster-Shafer (DS) theory of evidence is frequently used to combine multiple

supervised machine learning models into a robust fusion-based model. However, using the DS theory

to create a fusion model from multiple one-class classifications (OCCs) for network anomaly detection

is a challenging task. First, the lack of attack data leads to the difficulty in estimating an appropriate

threshold for the OCC models to distinguish between normal and abnormal samples. Second, it is

also very challenging to find the weight of OCCs that corresponds to the contribution of each OCC

model in the fusion model. In this paper, we attempt to solve the above issues in order to make the

DS theory applicable to constructing OCC-based fusion models. Specifically, we propose two novel

methods for automatically choosing the appropriate threshold of OCCs and for estimating the weight

of individual OCCs in fusion-based models. Thanks to that, we develop a One-class Fusion-based

Anomaly Detection model (OFuseAD) from multiple single OCCs. The proposed model is evaluated

on ten well-known network anomaly detection problems. The experimental results show that the

performance of OFuseAD is improved on almost tested datasets using two metrics: accuracy and

F1-score. The visualization results provide insight into the characteristics of OFuseAD.

Keywords. Deep learning; AutoEncoder; Anomaly detection; DS theory; Data fusion.

1. INTRODUCTION

Developing security systems has received great attention from both research and indus-
trial communities. Mining meta-data (i.e, network traffic and log files) to identify security
events is one of the primary tasks for almost every security system including Intrusion De-
tection Systems (IDSs) and network monitoring systems. In IDSs, the detection engines are
often constructed based on two approaches: signature-based and anomaly detection-based
techniques. The former works by matching malicious signatures with patterns found in data
using rules. This approach is highly accurate on known attacks, but it is unable to identify
new/unknown ones. On the contrary, the latter can learn to capture the normal behaviors of
network traffic data. The resulting model is then used to assign anomalous scores (or labels)
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for given a querying data point. This approach is very flexible and capable of detecting
novelty network attacks.

Anomaly detection techniques have been widely developed for identifying security events
from computer and IoT networks in recent years [2,5,11,32]. One-class classification (OCC)
is known as a typical approach for network anomaly detection. The OCCs exhibit several
advantages such as requiring only normal data in the training phase, the ability to han-
dle high-dimensional network data, and enhancing the ability in detecting new/unknown
malicious activities [10, 14, 38]. Traditional OCC-based techniques can be categorized into
two main groups: density-based methods and distance-based methods [18]. Recently, deep
learning, such as deep AutoEncoders (AEs), has emerged as the state-of-the-art anomaly
detection method [10, 14]. However, each kind of OCC-based method including AEs often
performs well only on some types of problems [8,11,20,23]. Therefore, aggregating different
kinds of OCC-based learners to construct a fusion anomaly detection model may potentially
further improve the performance of single OCCs.

In the field of fusion learning, the Dempster-Shafer (DS) theory of evidence is a method for
establishing fusion-based anomaly detection models [22,23,28,31,37]. This method allows to
combine the evidences supporting a hypothesis (normal or anomaly) created by many source
classifiers. The beliefs (i.e., anomalous scores) produced by individual classifiers for a given
hypothesis can be fused using the DS rules to provide a unified view of the system state.
The advantage of the DS theory is that no prior knowledge is required, making it potentially
suitable for classifying previously unseen information [12].

However, applying the DS theory requires computing the probability supporting a given
hypothesis (called mass value), such as normal, anomaly, or uncertainty, from each of the
involved classifiers. In addition, to construct a good fusion-based model, it is important to
weigh the involved classifiers according to their performance [23,25,31]. Therefore, it is very
challenging to apply the DS theory to one-class classification due to the lack of abnormal
data to validate the performance of the one-class models [8].

In this paper, we propose a one-class fusion-based anomaly detection model (OFuseAD)
that overcomes the above issues. To obtain that, a method for automatically estimating
the appropriate threshold for OCCs that allows OCCs can assign the normal and abnormal
score for each data sample. We also introduce a novel metric for measuring the generalization
ability of OCCs. This metric is then used to estimate the weight of OCCs in the fusion model.
Finally, the DS theory is applied to create a one-class fusion-based model from multiple single
OCCs. To the best of our knowledge, our research was the first attempt to address the two
above difficulties when applying the DS theory to construct a fusion model from OCCs for
network anomaly detection. Note that the contribution of this study focuses on making the
DS theory more practical for fusing one-class-based anomaly detection models rather than
mathematical developments on the DS theory.

The remaining of this paper proceeds as follows. In Section 3, we briefly review some
relevant work. In Section 2, we present a complementary background of the paper. We detail
our proposed model in Section 4. The experimental settings are described in Section 5. The
results are highlighted and discussed in Section 6. Finally, the conclusion is presented in
Section 7, which also draws some future directions.
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2. BACKGROUND

This section presents the background of our proposed model. The presented methods
include the DS theory, density-based anomaly detection, distance-based anomaly detection,
and double-shrink auto-encoder.

2.1. The Dempster-Shafer theory of evidence

The Dempster-Shafer theory of evidence is proposed by Arthur Dempster and improved
by Glenn Shafer [30]. The theory is used to calculate the probability of an event by combining
the evidence from multi-sources. The proposition can be a subset of the given set of finite
hypotheses, named Frame of Discernmen (FoD), and presented by Θ, which is known as the
fusion problem under consideration having p exclusive and exhaustive hypothesis

Θ = {H1, H2, ...Hp} . (1)

Let E1, E2, ..., En (n ≥ 2) be several evidence sources. The set of all subsets of Θ is
denoted by 2Θ. Basic Probability Assignment (BPA) over Θ is a function m: 2Θ → [0, 1]
that satisfies ∑

{m(H))|H ⊆ Θ} = 1, m(∅)) = 0, (2)

where m(H) represents the belief exactly committed to hypothesis H. In the DS theory,
Dempster-Shafer’s rule of combination (DRC) is used to combine mass assignments from
multiple sources. When applying DRC to combine two sources Ei and Ej , the combined
mass m(H) obtained by combining Ei and Ej is detailed as follows

m(H) =

∑
(B∩C=H;B,C⊆Θ) [mi (B)mj (C)]

1−
∑

(B∩C=∅;B,C⊆Θ) [mi (B)mj (C)]
, (3)

where B and C are the variables that represent the hypotheses supported by the source Ei

and Ej , respectively.
The DS combination rule in case of combining from many sources E1, E2, ..., Em can be

done sequentially instead of globally [13]. To calculate the aggregation mass, Mass(H), from
three sources, the following equation provides the same result for any hypothesis H ⊆ 2Θ,

Mass(H) = (m1 ⊕m2 ⊕m3) (H) = ((m1 ⊕m2)⊕m3) (H)

= ((m1 ⊕m3)⊕m2) (H) = ((m2 ⊕m3)⊕m1) (H) . (4)

2.2. Density-based anomaly detection

Density-based methods estimate the density distribution of the input space and then
identify anomaly objects as those lying in regions of low density. Let X = {x1, x2, ..., xn} be
a set of examples in Rd drawn from an unknown distribution with a true density function
p(x). An estimation p̂(x) of the density function at sample x can be calculated using the
equation as follows

p̂ (x) =
1

n

n∑
i=1

Kh (x− xi) , (4)

where Kh : x→ R is a kernel function with a smoothing parameter h called the bandwidth.
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The density-based method used in this paper is Kernel Density Estimation (KDE) [39].
KDE fits a large number of kernels over the data, one per datapoint. These kernels, typi-
cally Gaussian kernel, share a single co-variance parameter, called bandwidth. The global
probability density function is estimated by summing over the contributions of these kernels
in which the probability density at a location depends on the datapoints lying within the
localized neighborhood indicated by bandwidth. When applying KDE to network anomaly
detection [9, 10], only normal data is used to construct a probability density function. A
query datapoint will be classified as an anomaly if its density generated from the function
is lower than a predetermined threshold. The main drawback of KDE is that it is very
computationally expensive when working with large datasets.

2.3. Distance-based anomaly detection

Distance-based methods for anomaly detection are based on the calculation of distances
among objects in the data. In distance-based approaches, nearest-neighbor methods are
the most widely used to construct models for network anomaly detection. These methods
assume that normal datapoints are located close to their neighbors in the normal training
data, whereas anomalies occur far from those in the normal training data [18]. In this paper,
the distance-based approach implemented is Local Outlier Factor (LOF) [6]. LOF views the
datapoints that have a considerably lower local density than their neighbors as anomalies.
It estimates a density deviation score, called the LOF score. The larger the score a given
data point has, the higher the probability the data point is anomalous. LOF has shown its
power in network anomaly detection, however, it has some limitations when dealing with
high-dimensional data [10].

2.4. Double-shrink AutoEncoder

Shrink AutoEncoder (SAE) is an extension of AutoEncoders that learns a representa-
tion (encoding) for a set of data, usually for dimensional reduction [9, 10]. Double-shrink
AutoEncoder (DSAE) [7] works based on incorporating one more shrink pressure into SAE.
DSAE is trained on only normal data. The normal data is passed as the first input to DSAE.
The output of the decoder will then also be used as the second input of DSAE. The model
learns to minimize the reconstruction losses (call RE1 and RE2) and drive latent vectors (z1

and z2) toward the center of the latent space.
The first and the second reconstruction errors (RE1 and RE2) are denoted by the equa-

tions

LRE1 (θ, xi) =
1

m

m∑
i=1

(
xi − xout1i

)2
, (5)

LRE2 (θ, xi) =
1

m

m∑
i=1

(
xout1i − xout2i

)2
, (6)

where θ is the parameters of DSAE, m is the number of the training data points, and xi,
xout1i , and xout2i are the input data point i and its reconstruction values in the first and
second shrinks, respectively. The reconstruction error of the DSAE is the sum of the first
and the second reconstruction error as in Eq. (7)

LRE (θ, xi) = LRE1 (θ, xi) + LRE2 (θ, xi) . (7)
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The shrink term of the DSAE loss is the sum of the first shrink and the second shrink
components as presented in Eq. (8), (9) and (10)

LZ1 (θ, xi) =
1

m

m∑
i=1

∥∥z1i ∥∥2 , (8)

LZ2 (θ, xi) =
1

m

m∑
i=1

∥∥z2i ∥∥2 , (9)

LZ (θ, xi) = LZ1 (θ, xi) + LZ2 (θ, xi) . (10)

When applying DSAE to anomaly detection, the distance of the representation of a data
sample in Z1 and Z2 to the origin can be used as an anomaly score [7]. DSAE shows a good
prediction ability on a wide range of well-known datasets.

3. RELATED WORK

This section briefly presents some studies that employ fusion techniques to construct
network anomaly detection models. For a comprehensive survey of developing data fusion
techniques for network intrusion detection, the readers are recommended to see Li et al. [22].

In the early days, Tim Bass et al. [4] proposed a fusion-based framework to improve
intrusion detection systems. The authors provided general step by step to implement the
architecture requirements using a multi-sensor data fusion. Giacinto et al. [16] proposed
a fusion-based intrusion detection from several simple classifiers. Every single classifier is
trained in a distinct subset of features, and the individual decisions are combined using sev-
eral fixed and trainable fusion rules. Wang et al. [40] proposed a model using the DS theory
of evidence to fuse knowledge from both network and host agents. Sisters and Maglaris [33]
used the DS theory as the mathematical foundation for the development of a novel DoS
detection engine. The detection engine is evaluated using real network traffic and shows
a significant result. The DS theory was also used in the work of Hu et al. [19] where the
authors attempted to solve the problem of how to analyze the uncertainty quantitatively.
In their evaluation, the ingoing and outgoing traffic ratio, and service rate are selected as
the detection metrics, and the prior knowledge in the DDoS domain is used to construct the
basic probability assignment function (BPA).

Thomas and Balakrishnan et al. [36] improved the performance of IDS using the DS
theory by fusing multiple differential IDSs together. They focused on choosing the detectors
for fusion in order to get better advantages. The model was evaluated on the DARPA 1999
dataset and produced a potential result. Zhao et al. [41] used the DS theory to combine
multiple anomaly detection methods into a more efficient fusion-based model. Their work
used six classification algorithms to construct a fusion model. The results showed that
choosing joined basic algorithms with the same reliability will lead the model to provide
higher results. Liu et al. [23] proposed a new way of optimizing the DS theory to fuse
six sensors. The authors introduced weights to control the balance among the anomaly
detection algorithms. They also conducted the BPA function based on assuming that the
distance among the normal records is less than that in the abnormal data. The model was
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evaluated on the KDD-Cup99 dataset, with some anomalous labels for training the joined
models. The authors claimed that their model provides better accuracy than any single one.

Recently, Chulin Lu et al. [24] proposed a hybrid Network Intrusion Detection System
(NIDS) model using a neural network and the DS theory. The network traffic after pre-
processing will be fed to an extractor model to divide into three subsets of features. Three
supervised algorithms trained on these subsets of features are fused by the DS unit. Their
model was then evaluated on the KDD-Cup99 dataset and is reported effectively. Shah et
al. [31] introduced a modified framework of the DS theory when applying it to constructing
a fusion-based model from multiple intrusion detection models. The model fused four de-
tectors (two anomaly-based methods and two signature-based methods). The fusion model
was evaluated on the KDD-Cup99 dataset and showed a significant result. Mattar et al. [25]
introduced a network anomaly detection model using the DS theory. They proposed several
ways to define a BPA function to fuse four different methods.

4. PROPOSED MODE

This section proposes the solutions for the two problems in Section 1 when applying the
DS theory to construct a fusion model based on OCCs. The following is the list of our
proposed solutions in this paper:

� A method for automatically choosing an appropriate threshold for OCCs.

� A new metric to measure the generalization ability of OCCs without anomalous data.

� A formulation for calculating the weight of each OCC in the fusion model.

� A fusion model for network anomaly detection based on the DS theory and OCCs.

4.1. Determining the threshold for OCCs

When applying OCCs to detect network anomalies, it is requested that an appropriate
threshold is pre-set to separate normal and abnormal data. In this section, we propose a
new method for automatically estimating the threshold for OCCs. The validation set, va,
is used for determining such a threshold. We assume that normal data may contain a small
percentage (d%) of anomalies (also called contamination rate), then the threshold will be
estimated to separate the normal and contaminated samples in va. Let fj be the j-th OCC in
OFuseAD and Sva be the set of anomaly scores of samples in va returned from fj and sorted
in the accent order. Let Sva

sub be a subset of Sva that contains the values from 0.90∗ len(Sva)
to 0.98 ∗ len(Sva) 1, then the threshold is defined based on two consecutive values in Sva

sub

that have the largest difference. In other words, if two consecutive values in Sva
sub are the

largest difference, these values much are in the border to distinguish between normal and
abnormal data. Let st and st+1 be the two consecutive values in Sva

sub and that st+1 − st
is the greatest value compared to all other pairs, then the threshold is dertermined as the
mean of st and st+1. More details are presented in Algorithm 1.

1Here len() function returns the number of samples in Sva. Two values 0.90 and 0.98 are used since we assume
that from 90% to 98% of samples are normal.
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Algorithm 1 Threshold estimation for OCCs

1: Given classifier fj , validation set va.
2: Sva ← sort(fi(va))
3: Sva

sub ← subset(Sva)
4: threshold← 0
5: vol← 0
6: for k ← 0 to |Sva

sub| − 1 do
7: dif ← Sva

sub[k + 1]− Sva
sub[k]

8: if dif > vol then
9: vol← dif

10: threshold← (Sva
sub[k + 1] + Sva

sub[k])/2

11: return threshold

4.2. Metric to measure the generalization of OCCs

In fusion learning, each individual classifier should contribute to the final model corre-
sponding to the weight w.r.t their generalization ability [23]. In this section, we propose
a novel approach for measuring the generalization ability of OCCs without using anomaly
data. Let train and va be the training set and the validation set, respectively. A given
classifier fj has a good generalization ability if its performance on the train is approximate
to that on va. Our idea is to define a generalization error (gen errorj) for fj as the average
difference between the classification accuracy of fj on the train and va over several thresh-
olds ti. First, several thresholds ti are chosen. With these thresholds, the true negative rates
of f on train and val are TNRi

train and TNRi
va, respectively. In this work, we choose nine

thresholds in the range of [90.0%, 98.0%] with an interval of 1.0% resulting in nine values of
TNRtrain and TNRva on the train and va. Finally, the mean absolute errors between the
accuracy of fj on the train and va at these thresholds are calculated as Eq. (11)

gen errorj =
1

k

k∑
i=1

∣∣TNRi
train − TNRi

va

∣∣ , (11)

where k is the number of classification thresholds and ti is the i-th threshold. Table 1 shows
gen errorj at the nine thresholds of four OCCs on the NSL-KDD dataset.

4.3. Calculating the weight of OCCs

In this section, the weight of each OCC in the fusion model is calculated based on its
generalization error. A classifier with a smaller gen error should have a larger contribution
to the fusion-based model. The weight of a classifier fj can be computed and normalized in
the range of [0, 1] w.r.t the weight of other classifiers in the model as in Eq. (12)

wj =
min [gen error1, gen error2.., gen errorm])

gen errorj
, (12)

where m is the number of one-class classifiers in the fusion model.
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4.4. Estimating mass function for hypothesis

In fusion learning, a Basic Probability Assignment (BPA) function is used to assign
mass values (the belief committed) to each hypothesis in the hypothesis space. In anomaly
detection, the hypothesis space, P (Θ) = {A,N,NA, ∅}, where A and N are abnormal and
normal hypotheses, N ∩A = ∅ and NA is an uncertain hypothesis. In this paper, we develop
a new BPA function called the One-class Basic Probability Assignment function (OBPA), to
estimate mass values for each data sample. For a given data point, OBPA takes its anomaly
score produced by an OCC fj as the input. The corresponding output of OBPA is the mass
values assigned for each hypothesis in P (Θ) as m(A), m(N), m(∅) 2, and m(NA) for the
data point.

To estimate these values, we first determine the anomaly scores Sva of the samples in va
using fj . Next, we introduce two deviations, dN and dA, for the N and A areas, respectively.
dN is defined as the distance from the smallest anomaly score in Sva to the threshold t (t
is estimated in Subsection 4.1), while dA is the distance from threshold t to the maximum
anomaly score in Sva. By introducing a bandwidth, bw 3, we can determine the uncertain
area on A as σA = dA × bw, and the uncertain area on N as σN = dN × bw. Thus, the
uncertain area, NA, can be defined as [t− σN , t+ σA]. Fig. 1 represents Sval the threshold
t, the deviations dN and dA, and the areas σN and σA.

t- N, bw = 0.5 t = Auto t+ A
Anomaly Score

dN dA
Threshold (Auto)
Deviation line N
Deviation line A
Sigma line

Figure 1: Choosing threshold (t) and deviation (σ) from the score of training data

Algorithm 2 describes the OBPA function to calculate m(A),m(N),m(NA) for a given
data sample xi. When the anomaly score si is less than the threshold t, m(A) is assigned
to a high value and m(N) is assigned to a very small value. Conversely, when si is greater
than t, m(A) is very small and m(N) is high. In Algorithm 2, the input initial mass b0 is
set to 0.5 and a very small value 10−5 is set for u0. Moreover, it is important to guarantee
that m(A) +m(NA) +m(N) = 1 and m (∅) = 0 as in Eq. (2).

2Note that m(∅) = 0
3In our paper, bw = 0.5 is calibrated from the experiments.
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Algorithm 2 The OBPA function

1: procedure (anomaly score si, threshold t, basic belief b0, unbelief u0, deviation σN , σA,
and bandwidth bw)

2: if si ⩽ t then
3: b1 ← (t− si)/σN ;
4: m(N) ← b1 ∗ b0 ;
5: m(A) ← u0;
6: m(NA)← (1−mN −mA);
7: else
8: b1 ← (si − t)/σA;
9: m(A) ← b1 ∗ b0;

10: m(N) ← u0;
11: m(NA)← (1−m(A)−m(N));

12: return m(A),m(N),m(NA)

4.5. One-class fusion-based anomaly detection model

This section presents how to fuse single OCCs to form the final model, i.e., OFuseAD.
Fig. 2 shows the fusing stage of our proposed model. First, four OCCs (i.e. LOF , DSAEZ1 ,
DSAEZ2 , and SKDE) trained on the normal training data are used to computed anomaly
scores (i.e. SLOF , SDSAEZ1 , SDSAEZ2 , and SKDE) for the samples in the validation set
va. After that, the threshold, the generalization error, and the weight for each OCC are
estimated using the methods presented in Subsections 4.1, 4.2, and 4.3, respectively. Next,
the OBPA function is applied on each of these OCCs to estimate the mass value for each
data sample. The final step is to combine the mass values from the four OCCs to create the
final mass value for OFuseAD. The final mass value is calculated using the Dempster-Shafer’s
rule of Combination (DRC).

Normal 

validation set 

(va)

1zDSAE

LOF

2zDSAE

KDE

)( LOFs

Anomaly Score

1zDSAEs

2zDSAEs

KDEs

Estimate classification 

thresholds

Compute generalization 

errrors

Compute weights

LOFLOFLOF werrorgent ,_,

OBPA
Fusion 

Function

.     .      .     .     .

.     .      .     .     .

.     .      .     .     .

OFuseAD

Figure 2: The fusion phase of our proposed model, OFuseAD

m(H) =

∑
(B∩C=H) [wimi (B) ∗ wjmj (C)]

1−
∑

(B∩C=∅) [wimi (B) ∗ wjmj (C)]
(13)

where mi and mj are the masses produced from the i-th classifier and the j-th OCC. wi

and wj are the weights for i and j-th OCC, respectively. B and C are the hypotheses in Θ
supported by the source Ei and Ej , respectively. Using Eq. (13), we calculate the the mass
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value m(N), m(A) and m(NA) for each query sample. If the mass m(N) is higher than
m(A), the state of the system will be is normal, otherwise it is abnormal.

5. EVALUATION AND DISCUSSION

5.1. Data sets

In our experiments, ten well-known datasets in the network security domain are employed
for evaluating the model.

� The NSL-KDD dataset is a filtered version of the KDD Cup’99 dataset [34]. It is split
into two parts: The training set of 67343 examples and the testing set of 9711 normal
examples and 12833 anomalies. Each connection consists of 41 features with a label
(normal or an attack name).

� The UNSW-NB15 dataset [26] was aimed to solve some drawbacks in the previous
public datasets. UNSW-NB15 consists of a training set of 56000 records and a testing
set of 37000 normal instances and 45332 anomalies. Each samples is constructed from
47 features with a normal label or an attack label.

� CTU13 [15] is a botnet dataset that consists of thirteen botnet scenarios. In this paper,
we only use four scenarios, namely CTU13 08, CTU13 09, CTU13 10, and CTU13 13.
They are split each of them into 40% for training (only normal) and 60% for evaluating.

� BoT-IoT was created from a realistic network environment in the Cyber Range Lab
of the center of UNSW Canberra Cyber [21]. The dataset contains DDoS, DoS, OS,
Service Scan, Key-logging and Data ex-filtration attacks. We use the extracted version
of the dataset with about 3 million records. We sample 20% of normal data for training
and 80% of normal and anomalies for testing.

� The Spambase and the InternetADs datasets are from the UCI machine learning repos-
itory [3]. The Spambase is a set of spam e-mails, constructed from 57 features. The In-
ternetADs dataset represents a collection of possible advertisements on Internet pages.
It is constructed from 1558 features with 1582 records.

� WUSTL-IIOT-2018 is a dataset used for SCADA cybersecurity research [35]. The
dataset was built using the SCADA system testbed described in [35] to emulate real-
world industrial systems. It is constructed from 6 features with 505921 normal exam-
ples and 13750 anomalous records. The 10% of normal data is selected for training
and the rest is for testing.

The categorical features in these datasets are processed by using one-hot-encoding resulting
in higher dimension versions. All features are then normalized into [−1, 1].

5.2. Parameter settings

To create the fusion model, we used three individual OCCs including a deep learn-
ing model (Double-Shrink AutoEncoder-DSAE [7]), a distance-based method (Local Out-
liner Factor-LOF [6]), and a density-based method (Kernel Density Estimation-KDE [39]).
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Table 1: Generalization errors and weight of four OCCs on NSL-KDD

AD Methods
The generalization errors at classification thresholds Mean

errors
Weighted
scores90% 91% 92% 93% 94% 95% 96% 97% 98%

DSAEZ1 0.0001 0.0009 0.0018 0.0015 0.0002 0.0002 0.0005 0.0025 0.0034 0.0012 1.0000
DSAEZ2 0.0007 0.0026 0.0005 0.0005 0.0012 0.0012 0.0039 0.0034 0.0036 0.0020 0.5952

LOF 0.0076 0.0057 0.0040 0.0029 0.0056 0.0051 0.0051 0.0056 0.0025 0.0046 0.2577
KDE 0.0009 0.0009 0.0005 0.0006 0.0001 0.0008 0.0023 0.0034 0.0053 0.0016 0.7407

For DSAE, we use two versions with latent representations Z1 and Z2 and they are called
DSAEZ1 and DSAEZ2 , respectively. The hyper-parameters are set for the OCCs as follows

� The Gaussian kernel is used for KDE, and its scaling parameter γ is set by a default
value, γ = 0.1 [29]. The number of nearest neighbors in LOF , k, is chosen as 1% of
the training size.

� The architecture and hyper-parameters of DSAE are configured as in the previous
work [?]. Specifically, the weights of DSAE are initialized following [17] and the ac-
tivation function used in DSAE is tanh. We train the model over 1000 epochs using
Adadelta.

To evaluate the performance of OFuseAD, we used three popular metrics including F1-
score (F1), Accuracy (ACC), and the Area Under the ROC Curves (AUC). All experiments
are implemented in Python 3.7 and operated on a machine with the configuration as follows:
CPU Intel Core i5, 8GB RAM, and RAM frequency of 1867MHz. OFuseAD and other OCCs
are implemented using TensorFlow Library [1]. LOF and KDE provided by scikit-learn are
employed [27].

6. RESULTS AND DISCUSSION

We divided our experiments into two sets. The first set is to estimate the threshold of
each OCC and its weight in the final fusion model. The generalization error and the weight
of each OCC on ten datasets are presented in Table 1.

The second set of experiments is to evaluate the effectiveness of OFuseAD and to compare
it with the single models. The accuracy, F1-score, and AUC of OFuseAD and the four single
OCCs are shown in Tables 2, 3 and 4 and Figs. 3(a), 3(b), and 4. It can be seen from these
tables and figures that OFusedAD achieves better performance than the four single OCCs
on almost every dataset (except CTU13 09) when using F1-Score and ACC metrics. For
example, the accuracy of OFuseAD on InternetAds is 0.847 compared to 0.772, 0.753, 0.850,
and 0.404 of DSAEZ1 and DSAEZ2 , LOF , and DKE, respectively. Similarly, the F1-score
of OFuseAD on SCADA is improved from 0.367, 0.489, 0.449, and 0.379 of DSAEZ1 and
DSAEZ2 , LOF , and DKE, respectively, to 0.544. When using the AUC metric, the result
of OFuseAD is not as convincing as using accuracy and F1-score. This is because OFuseAD
can find a specific threshold to well separate between normal and abnormal data on each
dataset. Thus, the value of ACC and F1-score of OFuseAd is better than those of the
others. However, when averaging the result on multiple thresholds in AUC, the performance
of OFuseAD is not much different from the other single OCCs.
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Table 2: Accuracy of individual one-class classifiers and OFuseAD on ten datasets

Methods
Datasets

SCADA
(0.0)

IoT
(0.38)

CTU13 10
(0.71)

CTU13 08
(0.73)

CTU13 09
(0.73)

CTU13 13
(0.73)

Spambase
(0.81)

UNSW
(0.84)

NSLKDD
(0.88)

InternetAds
(0.99)

DSAEZ1 0.909 0.729 0.989 0.954 0.843 0.931 0.718 0.837 0.882 0.772
DSAEZ2 0.945 0.989 0.991 0.947 0.821 0.921 0.694 0.845 0.898 0.753

LOF 0.935 0.982 0.991 0.958 0.921 0.938 0.585 0.837 0.677 0.850
KDE 0.913 0.997 0.991 0.957 0.571 0.879 0.735 0.825 0.906 0.404

OFuseAD bw=0.5 0.956 0.997 0.994 0.961 0.904 0.946 0.740 0.846 0.913 0.847

Table 3: F1 Score from individual one-class classifiers and OFuseAD on ten datasets

AD Methods
Datasets

SCADA
(0.0)

IoT
(0.38)

CTU13 10
(0.71)

CTU13 08
(0.73)

CTU13 09
(0.73)

CTU13 13
(0.73)

Spambase
(0.81)

UNSW
(0.84)

NSLKDD
(0.88)

InternetAds
(0.99)

DSAEZ1 0.367 0.843 0.994 0.733 0.901 0.937 0.498 0.844 0.889 0.575
DSAEZ2 0.489 0.995 0.995 0.708 0.885 0.927 0.420 0.848 0.906 0.555

LOF 0.449 0.991 0.995 0.755 0.952 0.944 0.010 0.839 0.635 0.548
KDE 0.379 0.998 0.995 0.753 0.674 0.885 0.686 0.836 0.922 0.353

OFuseAD bw=0.5 0.544 0.999 0.997 0.770 0.941 0.951 0.690 0.849 0.925 0.660
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Figure 3: The Visualization of (a) classification accuracy and (b) F1 score from OFuseAD
again four classifiers.

Figure 4 visualizes the ROC curve of each single OCC and the OFuseAD model. In
this paper, we just show the AUC on two datasets, CTU13-08 and CTU13-13, for analysis
purposes. It can see that although the AUC of OFuseAD is not always higher than those
of the individual models, the ROC curves of OFuseAD are still approximately 0.1% higher
than the three single models.

Table 4: AUCs from individual one-class classifiers and OFuseAD on ten datasets

AD Methods
Datasets

SCADA
(0.0)

IoT
(0.38)

CTU13 10
(0.71)

CTU13 08
(0.73)

CTU13 09
(0.73)

CTU13 13
(0.73)

Spambase
(0.81)

UNSW
(0.84)

NSLKDD
(0.88)

InternetAds
(0.99)

DSAEZ1 0.991 0.920 0.994 0.985 0.942 0.966 0.840 0.882 0.966 0.958
DSAEZ2 0.991 0.956 0.992 0.986 0.931 0.972 0.827 0.903 0.963 0.959

LOF 0.993 0.967 0.999 0.982 0.973 0.988 0.743 0.893 0.850 0.831
KDE 0.991 0.999 0.999 0.985 0.808 0.944 0.818 0.888 0.938 0.927

OFuseAD bw=0.5 0.991 0.999 0.996 0.991 0.949 0.980 0.831 0.906 0.965 0.946
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One of the reasons for the effectiveness of OFuseAD is due to its ability to automatically
find the good threshold for each OCC. For instance, an OCC can achieve high performance at
a decision threshold t1, but another OCC can obtain its peak of performance at the threshold
t2. If we use only one decision threshold, say t1, for the two OCCs, only the first OCC can
achieve high performance while the second OCC does not. Fortunately, OFuseAD can find
a good threshold for each single OCC and aggregate them into one model to achieve better
F1-Score and Accuracy in comparison to all single OCCs.

Overall, our proposed model, OFuseAD, inherits the advantages of the single one-class
classifiers to perform robustly on almost all datasets. The method to automatically estimate
the classification threshold for OCCs allows OFuseAD to fuse single OCC at decision thresh-
olds in which these classifiers produce the highest performance. Consequently, the resulting
fusion-based model, OFuseAD, can often produce a higher F1-score and ACC than the single
OCC. Moreover, OFuseAD can eliminate the difficulty in calculating the weight of each OCC
in the fusion model. Thus, OFuseAD is more suitable for deploying to a real-world network
than using single models where the demand for the accuracy of detection is greater than the
speed of detection.
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Figure 4: The ROC curves of three classifiers in comparison to that of OFuseAD

7. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a one-class fusion-based anomaly detection model, called
OFuseAD. As far as we know, our research is the first attempt to develop a one-class fusion-
based anomaly detection model based on the DS theory. We have proposed solutions to
overcome some difficulties in fusing one-class classifiers where anomaly data is not available
for estimating the thresholds and determining the weight of OCCs. We then apply the new
version of the DS theory to construct a one-class fusion-based anomaly detection model for
network anomaly detection.

OFuseAD is evaluated on ten datasets in the field of network security, and its performance
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is better than the four single models. Moreover, our solution can work without manually
setting the threshold, which security experts often do. Thus, this solution meets the require-
ment of deploying to a real-world network. In the future, we intend to carry out extensive
experiments to investigate the performance of the OFuseAD on different domains and com-
pare it to other well-known research methods. We also define a new DS theory’s FoD for the
system state that has more than two states normal and anomaly, such as normal and some
specific attack types.
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