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Abstract. In this paper, we propose an efficient distributed denial-of-service (DDoS) attack

deFEnse solution, namely SAFE–which utilizes an elastic traffic flow inspection mechanism, for

Software-Defined Networking (SDN) based data centers. In particular, we first examine a leaf-spine

SDN-based data center network, which is highly vulnerable to volumetric DDoS attacks. Next, we

develop a rank-based anomaly detection algorithm to recognize anomalies in the amount of incom-

ing traffic. Then, for the traffic flow inspection, we introduce a component called DFI (deep flow

inspection) running an Open vSwitch (OvS) that can be dynamically initiated (as a virtual machine)

on-demand to collect traffic flow statistics. By utilizing deep reinforcement learning-based traffic

monitoring from our previous study, the DFIs can be protected from the flow-table overflow problem

while providing more detailed traffic flow information. Afterward, a machine learning-based attack

detector analyzes the gathered flow rule statistics to identify the attack, and appropriate policies are

implemented if an attack is recognized. The experiment results show that the SAFE can effectively

defend against volumetric DDoS attacks while assuring a reliable quality-of-service level for benign

traffic flows in SDN-based data center networks. Specifically, for TCP SYN and UDP floods, the

SAFE attack detection performance is improved by approximately 40% and 30%, respectively, com-

pared to the existing SATA solution. Furthermore, the attack mitigation performance, the ratio of

dropped malicious packets obtained by the SAFE is superior by approximately 48% (for TCP SYN

flood) and 52% (for UDP flood) to the SATA.

Keywords. Traffic flow inspection; Distributed denial-of-service attacks; Software-defined network-

ing; Data centers.

1. INTRODUCTION

In recent years, the ever-increasing computing resource demand has promoted the rapid
growth of cloud data centers [4,22]. In particular, the number of online services and applica-
tions, e.g., video streaming and gaming, that require massive data processing, storage, and
ultra-low latency, has been significantly rising. As a result, data centers are being stationed
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Figure 1: An example of a leaf-spine SDN-based data center network utilizing the OpenStack cloud

platform.

worldwide, e.g., Google [4] and Amazon Clouds [22]. To ensure productive communica-
tions between data centers and meet the service requirements effectively, the networking
performance in data centers should always be flexible and efficient [21, 29]. However, it
is challenging to accomplish this by utilizing conventional networking designs and traffic
management mechanisms in data centers [4, 22].

SDN [26] has become an innovative and widely adopted networking paradigm that sep-
arates the control plane from the data plane. In particular, the SDN plane accommodates a
global network view and executes traffic forwarding decisions, while the SDN data plane per-
forms traffic forwarding on network devices, i.e., SDN switches. Moreover, the control and
data plane communication is accomplished via the OpenFlow protocol [6], which concedes
an SDN switch to do the traffic forwarding by utilizing flow-tables where the SDN controller
can dynamically update flow rules. Accordingly, as shown in Figure 1, with the adoption of
the SDN concept [26] into data center networks, so-called SDN-based data centers, various
complex network control and management tasks, e.g., network security [11,12,24], have been
realized effectively.

Nonetheless, SDN-based data centers are highly vulnerable to distributed denial-of-
service (DDoS) attacks [2,27]. This is because DDoS attacks are considered the most frequent
and worst cyber-threats targeting every network environment, e.g., the Internet of Things
(IoT) [20], fifth-generation (5G) [7], and cloud computing [27]. Specifically, in a DDoS at-
tack, attackers or compromised users usually send massive malicious traffic to disrupt the
running services provided by data centers. The disruption of communication is caused by
exhausting the processing capacity of network devices (e.g., routers and switches) and the
network bandwidth capacity or resources of virtual machines [1]. In other words, DDoS
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attacks can lead to tremendous damage to network operators and businesses that rely on
online services [1, 7, 19, 20]. Therefore, it is crucial to acquire an efficient attack detection
and mitigation solution for SDN-based data centers.

1.1. Related work

Recently, several studies have been developed to detect and mitigate DDoS attacks in
SDN-based data center networks. For example, a framework, namely FlowTraApp [3] was
developed to recognize DDoS attacks in SDN-based data centers using the sFlow-RT. In
particular, the sFlow lies on the control plane to collect flow rule parameters, i.e., flow
rate and flow duration of a flow rule, from access SDN switches in the data center. Next,
these two information is analyzed by the sFlow-RT engine at the SDN controller to detect
attack traffic ranging from low rate to high rate and long-lived to short-lived attacks. In
addition, the authors in [10] proposed a solution that uses virtualized scrubbing functions in
an SDN-based data center to protect cloud services from DDoS attacks. Precisely, to reduce
the number of controller-switch messages in per-flow monitoring, a novel polling-response
strategy is designed as follows: The switches at higher levels with higher frequency, and
those at lower levels with lower frequency. Then, if a flooding attack happens to a victim
virtual machine in the data center, the flow rule statistics of switches in higher levels are
collected and analyzed based on the entropy to detect the DDoS attack. Likewise, a real-time
security service [24] for SDN-based data centers was developed to cope with real-world DDoS
attacks. Specifically, the authors propose an automated approach to speed up the reaction
lag in SDN-based data centers via a closed and passive monitoring loop, which is performed
by FPGA-based processing units. It is said that the introduced solution can detect and
prevent the top 9 Internet DDoS attacks. However, these works [3, 10, 24] focus on how to
assure networking performance in data centers and use threshold-based methods for attack
detection. In addition, attack mitigation is now discussed in [3, 10].

With the recent adoption of machine learning, many security problems in SDN-based
networks have been addressed [28]. For example, an implementation of a modular and flexible
SDN-based architecture, namely SATA, is proposed to detect DDoS attacks by applying
multiple machine learning models. In particular, the SATA periodically observes statistics
of individual traffic flows targeting a virtual machine based on a five-tuple identification (ID),
i.e., {source IP, source layer-4 port, destination IP, destination layer-4 port, protocol}. Next,
this information is fed into a machine learning-based model for attack classification. Finally,
if there is an attack is recognized, an alert is raised to the network administrator. The results
of the experiment show that SATA can achieve high detection rates for both high-volume
and slow-rate attacks. Nevertheless, the networking metrics and the attack mitigation issues
are overlooked.

1.2. SAFE proposal

In this paper, we propose an efficient DDoS attack defense solution utilizing an elastic
traffic monitoring scheme, namely SAFE, for SDN-based data centers. Specifically, we first
examine a leaf-spine SDN-based data center network based on the OpenStack platform and
investigate volumetric DDoS attacks. Then, we propose a DDoS attack defense framework
applying an elastic traffic monitoring approach for the SDN-based data center. For traffic flow
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inspection purposes, we propose a component called DFI (Deep Flow Inspection) running
on an Open vSwitch (OvS). The DFI can be dynamically initiated as a virtual machine
on demand to collect traffic flow statistics using flow-tables of the OvS. Next, by utilizing
a fine-grained traffic monitoring approach based on deep reinforcement learning from our
previous research [18], the DFIs can be protected from the flow-table overflow problem
while providing more detailed traffic flow information. Subsequently, a machine learning-
based attack detector analyzes the gathered flow rule statistics to identify the attack, and
appropriate policies are selected and implemented in case of a DDoS attack in the data
center.

As our case study, we evaluate the SAFE in an emulated SDN-based data center network
under three well-known DDoS attack types, i.e., TCP SYN, UDP and ICMP floods [1]
generated by Hping3 tool [8]. The obtained results demonstrate that the SAFE can effectively
defend against DDoS attacks while assuring a reliable QoS level for benign traffic flows in
SDN-based data center networks. In particular, for the TCP SYN and UDP floods, the SAFE
attack detection performance is improved by approximately 40% and 30%, respectively,
compared to the SATA solution [27]. In addition, the attack mitigation performance, the
ratio of dropped malicious packets obtained by the SAFE is superior by approximately 48%
(for TCP SYN flood) and 52% (for UDP flood) to the SATA method.

This paper is constructed as follows. First, Section 2 discusses common DDoS attacks
in data center networks. Next, Section 3 gives details of the SAFE solution for defending
against DDoS attacks. Then, Section 4 shows the results of the performance evaluation.
Finally, Section 5 summarizes this paper and outlines our future research.

2. DDOS ATTACKS TOWARDS DATA CENTER NETWORKS

According to [1], there exist two common types of DDoS attacks, i.e., high-rate (or volu-
metric) [5] and low-rate (or stealthy) [17]. Specifically, for the volumetric DDoS attack, the
attackers/compromised users send massive malicious requests to disrupt the cloud services
or the external users’ connectivity provided by data centers. More precisely, the disruption
of communication is caused by exhausting the processing capacity of network devices (e.g.,
routers and switches) and the network bandwidth capacity or resources of virtual machines,
e.g., TCP-SYN, ICMP, and UDP Floods [1]. Meanwhile, the stealthy DDoS attack is so-
phisticated and difficult to identify due to its low-rate traffic and stealthy behavior, e.g.,
Slowloris [17]. In particular, the attackers send malicious requests to a victim at a low rate,
making the traffic volume-based detection schemes unable to recognize the attack. As a
result, the attack affects the QoS experienced by the authentic users rather than suspending
the cloud services.

Note that, although the two above attacks are considered critical to every network system
and challenging to defend, in this work we focus on the volumetric DDoS attack due to its
highly frequent occurrence on computer networks nowadays [19]. Furthermore, we plan to
develop new solutions to counter the stealthy DDoS attack as our future task.

As stated in [1], for data center networks, volumetric DDoS attacks can be launched by
both external and internal users, which causes more severe damage to the network infras-
tructure and the cloud services. Hence, it is crucial to acquire an effective detection and
mitigation solution to counter DDoS attacks and protect servers in data centers. Therefore,
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Figure 2: SAFE solution

in the following, we present an efficient DDoS attack defense approach utilizing an elastic
traffic flow inspection mechanism in SDN-based data centers.

3. DDOS ATTACK DEFENSE WITH ELASTIC TRAFFIC FLOW
INSPECTION IN SDN-BASED DATA CENTERS

3.1. SAFE and its components

Figure 2 presents our proposed SAFE framework for DDoS defense in an SDN-based
data center network, comprising a component called DFI (Deep Flow Inspection) running
an Open vSwitch (OvS) that can be dynamically initiated as a virtual machine on demand
in the data plane, and seven modules residing on top of the SDN control plane, i.e., an
ML-based DDoS detector, a flow stats collector, an overflow handler, a flow rule installer, a
DFI manager, a port stats monitor, and a policy creator. These modules communicate with
the SDN control plane via APIs to gather information and implement policies in the data
plane. In addition, in this work, we utilize the OpenStack platform [14] to provide cloud
infrastructure for virtual machines, which is considered the SDN data plane. Details of the
SAFE’s components are given in the following.

Port stats monitor : In the data center network, the traffic forwarding process is per-
formed by using typically Layer 2 and Layer 3 information, i.e., MAC and IP addresses, to
provide a significant forwarding performance in the data plane, resulting in a great challenge
for DDoS detection due to few information. Therefore, we first propose to periodically mon-
itor the port statistics of every virtual machine connecting to the OvS switch at compute
nodes, i.e., the number of packets per second transferred to the virtual machine. Afterward,
we adopt a method called rank-based anomaly detection (RBAD) [9], which exploits the mu-
tual closeness of an object to its neighbors to recognize suspicious traffic behavior targeting
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a virtual machine by considering the number of transferred packets in a certain period (an
observation denoted as θ). In particular, given a dataset D containing up to n elements, and
a symmetric distance function D, with D(x, y)=D(y, x), where x, y ∈ D. Let Nk(x) denote
the set of k nearest neighbors of an element x ∈ D. In order to find k nearest neighbors of
x, we first define the k -distance as follows

Dk(x) = D(x, y), s.t.

{
|{z ∈ D \ {x}|D(z, x) < D(y, x)}| < k,
|{z ∈ D \ {x}|D(z, x) ≤ D(y, x)}| > k − 1,

(1)

where y ∈ D is the kth nearest neighbor of x. Therefore, the set of k nearest neighbors of an
element x ∈ D is formed as

Nk(x) = {y ∈ D \ {x}|D(x, y) ≤ Dk(x)}. (2)

In this study, the latest observation θ of the port statistics is considered to ensure a timely
anomaly detection performance concerning the packet rate transferred to a virtual machine.
Hence, for every new observation that obtains an element x in D, the port stats monitor
module first calculates Nk(x). Then, for each pair of elements (x,y) in the set of k nearest
neighbors, the rank of y respect to x is determined as follows

rx(y) = |{z : D(x, z) < D(x, y)}|, (3)

where rx(y) represents how close y is to x, and if there exist fewer elements in D between
x and y ; thus, y is very close to x, i.e., rx(y) is very small. Next, the RBAD score for the
element x is defined as the average rank with respect to its k nearest neighbors

Rk(x) =

∑
y∈Nk(x)

rx(y)

|Nk(x)|
. (4)

As D stores only n newest observations, we then compute the average of n-1 previous obser-
vations

An−1 =

∑i=n−1
i=1 Rk(i)

n− 1
. (5)

If Rk(x)
An−1

≥ δ (i.e., δ1 = 3.0, δ2 = 6.0, and δ3 = 9.0 are chosen in our experiments in Section 4),
then x is considered an outlier or an anomaly. In particular, δ shows the proportion of the
RBAD score of the newest observation (nth) in comparison with the average of (n-1) previous
observations. In other words, suspicious traffic behavior is detected by the port stats monitor
module, and an overload detection alert (consisting of the compute node identification, the
OvS port number, and the current δ value) is then sent to the DFI manager module for DFI
initiation in the data plane.

DFI manager : Based on the forwarded information about the overload detection from the
port stats monitor, the DFI manager locates the victim machine and, together with Open-
Stack, initiates DFI virtual machines on the same compute node. Afterward, the OpenStack
triggers the SDN controller to mirror traffic targeting the victim machine to the initiated
DFI. At the same time, this module updates three other modules, i.e., the flow stats collector,
the overflow handler, and the flow rule installer, considering the initiated DFI.

DFI : For the traffic flow inspection task, we propose an element, namely DFI, that operates
an OvS under the supervision of the SDN control plane. Specifically, the OvS contains flow-
tables that are used to match the mirrored traffic from other virtual machines located in the
same OpenStack compute node, which is later discussed in detail. Note that the flow rule
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instruction is set to Drop to discard all incoming packets that match the flow rule in the
flow-tables. This is because we aim to classify the incoming traffic into individual flow rules
and then collect the flow rule statistics that provide more detailed and useful information for
DDoS attack detection. Next, the mirrored traffic statistics are collected by the SDN control
plane and by the flow stats collector and then utilized by the ML-based DDoS detection and
the overflow handler.

Flow stats collector : This component collects the flow rule statistics from the OvS flow-tables
in DFIs located in compute nodes every β seconds, and it then extracts features (for the
ML-based DDoS detector) and parameters (for the overflow handler).

Overflow handler : With the integration of SDN into the data center network, the OvS
switches at DFIs are controlled by the SDN controller via the OpenFlow protocol [6] which
defines the details of a flow rule, e.g., match fields, counters, and instructions, in the flow-
tables of the OvS. Specifically, a flow rule can contain a large number of match-fields (>
40 fields [6]), and these fields are defined by the SDN control plane. In addition, if a
packet in message generated by an OvS arrives at the SDN controller, depending on the
traffic flow forwarding strategies, the controller defines a control message, i.e., flow mod [6],
which consists of the main elements of a flow rule (e.g., match-fields and instructions), to
install a new flow rule in the flow-tables of the OvS. Because a flow rule is usually stored in a
ternary content-addressable memory (TCAM) whose size is limited, a limited number of flow
rules can be inserted into the flow-tables of the OvS in a DFI [16]. However, if a volumetric
DDoS attack targets a virtual machine whose traffic is mirrored to the DFI, the flow-tables
can be quickly filled and get overflowed due to a huge amount of incoming traffic. Therefore,
to protect the flow-tables of the OVS in a DFI from the overflow problem, we adopt a deep
reinforcement learning-based solution from our previous research [18], which can provide
a fine-grained traffic flow measurement capability while proactively avoiding the overflow
problem in the OvS flow-tables. Precisely, a deep dueling neural network based flow rule
matching control algorithm [18] is developed, i.e., applying the double deep Q-network and
the deep dueling network architecture, to select the optimal traffic flow forwarding strategy
that maximizes the traffic flow granularity and minimizes the flow-table overflow probability
at the OvS switch.

Flow rule installer : This module first receives instructions from the overflow handler regard-
ing the flow rule installation for incoming packets at the flow-tables of OvS switches in DFIs.
Then, it sends the flow rule installation requests to the SDN controller via northbound APIs
to deploy the installation in the OvS of DFIs.

ML-based DDoS detector : To identify the DDoS attack, a machine learning-based classifi-
cation algorithm is first selected, and it then examines features extracted from the collected
flow rule statistics to recognize the attack. In particular, in this study, we adopted the
Multilayer Perceptrons algorithm (MLP) [23] with a binary cross-entropy loss function as an
ML-based DDoS classifier.

Policy creator : This module first obtains the attack detection results from the ML-based
DDoS detector. Next, it forms appropriate policies and implements them at leaf switches of
the data center network to quickly stop malicious traffic from arriving at the victim machine.
Details of policies are discussed in the following.
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Figure 3: Operation of SAFE in defending against DDoS attacks

3.2. SAFE operation in defending against DDoS attacks

As aforementioned in Section 2, whenever the data center is under a volumetric DDoS
attack targeting a virtual machine (e.g., a Web server), malicious traffic can stem from both
compromised external users (known as botnets) and compromised internal users (known as
insiders), as shown in Figure 2. Therefore, the SAFE operation in defending against the
DDoS attack is considered for both external and internal attackers, which is described in
detail as follows.

As illustrated in Figure 3, the port stats monitor first periodically observes the port
statistics of every virtual machine connecting to the OvS switch at compute nodes (step
(1)), i.e., the number of packets per second transferred to a virtual machine. Next, by
calculating the RBAD [9] score Rk(x) for each OvS switch port if an outlier is recognized as
discussed previously, an overload detection alert with the information, i.e., the compute node
identification, the OvS port number, and the current δ value, is sent to the DFI manager
(step (2)). Subsequently, a DFI virtual machine with appropriate computation resources is
initiated (step (3)), i.e., if δ is greater, more vCPUs are assigned to the virtual machine,
at the compute node where the victim virtual machine resides in (see Figure 2). At step
(4), the DFI initiation information, i.e., the virtual machine identification realized by IP and
MAC addresses, is updated at the flow stats collector, the overflow handler, and the flow
rule installer. Afterward, the OpenStack controller triggers the SDN control plane to do a
port mirroring for the new DFI by adding flow-rules to the OvS switch’s flow-tables at the
compute node, which duplicates all traffic targeting the victim machine and sends the copied
one to the DFI machine, that is step (5).

Once the mirrored traffic arrives at the flow-tables of the OvS in the DFI, the incoming
packet’s header information is used to match the existing flow rules [6]. In case there is no
matching flow rule for the packet’s header information, a packet in message is generated and
sent to the SDN control plane for further instructions (step (6)). Next, the SDN controller
forwards the packet in message stemming from DFIs to the flow rule installer module (step
(7)) to request a new flow rule installation with a drop action and a traffic flow forwarding
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strategy is given by the overflow handler, as explained previously. Afterward, the SDN
controller performs the flow rule installation in the initiated DFIs (step (8)). Subsequently,
that is step (9), the flow rule statistics of every flow rule (source and destination IP/MAC
addresses, TCP/UDP port numbers, transferred packets/bytes, and flow rule duration) are
periodically collected by the flow stats collector through the SDN control plane. At step
(10), these statistics are forwarded to the overflow handler to make instructions based on a
deep reinforcement learning-based solution from our previous study [18], which can provide
more detailed traffic flow information while proactively avoiding the overflow problem in the
flow-tables. The instructions are applied to the new flow rule installation at the flow rule
installer (step (11)).

In parallel, 12 features1 are extracted from the collected flow rule statistics and transferred
to the machine learning-based DDoS detector to identify the attack (step (12)). Then, the
detection results (i.e., attack or benign) and attacker information (i.e., IP addresses) are
delivered to the DFI manager, the port stats monitor, and the policy creator (step (13)).
Finally, to quickly stop malicious traffic from arriving at the victim machine, the policy
creator forms policies and implements them at leaf switches of the data center network in
case there is a volumetric DDoS attack in the data center (step (14)). In this study, we apply
two following policies: (i) for external attackers, a blocking policy is applied at the leaf switch
at the edge of the data center network for a period denoted as τ ; (ii) for internal attackers,
a blocking policy is implemented for the same period τ at the OvS of the compute node
where the insider resides. Furthermore, the attack is considered completely mitigated as
either there is no outlier detected by the port stats monitor or the ML-based DDoS detector
cannot recognize any attacks within a certain number of consecutive observations referred
to as Θ. Then, the initiated DFI for the traffic flow inspection is deleted to save the storage
and computational resources of the data center.

4. PERFORMANCE EVALUATION

4.1. Environment setup

To evaluate the performance of the SAFE framework, we first utilize the MaxiNet tool [25]
to emulate a leaf-spine SDN-based data center network as shown in Figure 2, then OpenStack
and Containers are employed to form the data plane infrastructure [15]. Specifically, all OvS
switches are under the supervision of an ONOS SDN controller [13]. For each compute node,
there are 10 Web servers and 2 internal users connecting to an OvS. For the external network,
there exist 2 switches connecting to 2 botnets, i.e., 10 compromised users for each botnet.
All SAFE modules are placed on a separate physical machine with an AMD Ryzen 7 3800X
CPU with a clock speed of 8×3.9GHz, 32 GB of RAM, and an NVIDIA GeForce RTX 3060
GPU.

For the background traffic, we utilize the Hping3 tool [8] that is installed on internal

1Features include the number of incoming TCP flows, the ratio of TCP flows over total incoming flows, the
number of distinct source IPs for incoming TCP flows, the average number of packets per incoming TCP flow,
the number of incoming UDP flows, the ratio of UDP flows over total incoming flows, the number of distinct
source IPs for incoming UDP flows, the average number of packets per incoming UDP flow, the number of
incoming ICMP flows, the ratio of ICMP flows over total incoming flows, the number of distinct source IPs
for incoming ICMP flows, and the average number of packets per incoming ICMP flow.
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Table 1: Parameter settings

Parameter Value

n (no. elements in D) 50

θ (seconds) 30.0

β (seconds) 5.0

δ1, δ2, δ3 3.0, 6.0, 9.0

τ (minutes) 5.0

Θ (no. observations) 5

MLP algorithm

Layer (fully connected) Neurons - Activation function

Input layer 256 - relu

2nd hidden layer 128 - relu

3rd hidden layer 128 - relu

4th hidden layer 64 - relu

4th hidden layer 32 - relu

Output layer 1 - sigmoid

users and compromised users to randomly access Web servers in the data center network.
In addition, these users are configured to randomly send a file which contains a significant
payload to the Web servers. For the DDoS attack traffic, the Hping3 tool is also used to
individually generate three attack scenarios, i.e., TCP SYN, ICMP, and UDP floods, from
inside attackers and outside botnets.

Regarding the deep reinforcement learning algorithm used in the overflow handler, we
adopt the same configuration and parameters in our previous study [18]. For the ML-
based DDoS Detector, we apply the Multilayer Perceptrons algorithm (MLP) [23] with a
binary cross-entropy loss function as the attack classifier, and the parameter setting is given
in Table 1. In particular, for the RBAD algorithm, the dataset D stores n=50 newest
observations, the length of observation at the OvS switch port is set to 30.0 seconds, and
three thresholds δ1, δ2, δ3 are 3.0, 6.0, and 9.0, respectively. The observation time of the flow
rule statistics from a DFI For the ML-based attack detector β is 5.0 seconds. In the case of
a detected attack, the blocking policy period τ is 5.0 minutes. Θ=5 shows the number of
consecutive β observations that the ML-based DDoS Detector cannot recognize the attack,
after that the DFI for the traffic flow inspection is removed to save computing resources.

For the MLP algorithm training, attack traffic is generated together with background
traffic for each DDoS attack scenario under consideration. First, two training data sets
comprising 40,000 normal traffic samples and 40,000 attack traffic samples are created, re-
spectively. Then, the MLP algorithm is trained by the data set for 10 epochs, yielding three
pre-trained MLP models (for each DDoS attack type) for traffic classification. Finally, for
runtime attack detection, the flow rule statistics are collected every β seconds and fed into
the trained MLP algorithm.

4.2. Comparable solution

We compare the SAFE to the SATA solution [27], which does not utilize an elastic traffic
flow inspection mechanism, concerning the DDoS attack detection capability. In particu-
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Figure 4: Accuracy in detecting outliers of port statistics obtained by the RBAD method in the

SAFE.

lar, the SATA method periodically observes statistics of individual traffic flows targeting
a virtual machine based on a five-tuple identification (ID), i.e., {source IP, source layer-4
port, destination IP, destination layer-4 port, protocol}. Therefore, in our experiments, the
ONOS controller installs flow rules with the five-tuple identification of the OvS switch at
each compute node. Note that, according to [18] the maximum number of flow rules, that
an OvS switch can contain in its flow-tables in an emulation environment is around 3,000
flow rules. As a result, if the number of flow rules in the OvS switch reaches its limit and
there exist more flow rule installation requests, the switch operation can be suspended due
to the overflow problem [18]. Next, the flow rule statistics are used by the machine learning
algorithm, i.e., MLP [23], for attack detection. Finally, attack detection performance metrics
are calculated to evaluate the effectiveness of the SAFE to the SATA solution in detecting
DDos attacks.

4.3. Results analysis

4.3.1. Rank-based anomaly detection performance of port statistics in SAFE

We first evaluate the performance of the proposed rank-based anomaly detection (RBAD)
at the port stats monitor module with three values δ1=3.0, δ2=6.0, and δ3=9.0 under three
attack scenarios. As shown in Figure 4, for all three DDoS types, the outlier detection
performance of the RBAD method is proportional to the increase of δ. For instance, for
TCP SYN flood, the obtained results are approximately 82.0%, 90.0%, and 96.5% in the
case of δ1=3.0, δ2=6.0, and δ3=9.0, respectively. This is because the users randomly send
some files to Web servers, making the achieved δ value significant, e.g., 4.0 or 7.0, but not
extreme, e.g., 10. As a result, the RBAD makes more false detection in the case of δ1
compared to that of δ3. Therefore, to achieve a remarkable attack detection performance,
the value δ3=9.0 is selected for all experiments in the remaining.

4.3.2. DDoS attack defense performance

Next, we compare the SAFE to the SATA considering the attack detection performance
under three attack scenarios. Precisely, the detection rate is measured after the testing
period, i.e., 100 attacks for each DDoS type, and one attack runs for 10 minutes. As il-
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Figure 5: Detection rate performance obtained by the ML-based DDoS detector in the SAFE and

the SATA solutions.
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Figure 6: Mitigation performance obtained by the SAFE and the SATA solutions.

lustrated in Figure 5, the SAFE is superior to the SATA concerning the detection rate in
the case of TCY SYN and UDP floods, i.e., by approximately 40.0% and 30.0%, respec-
tively. Meanwhile, for ICMP flood, both solutions obtain the same detection performance,
i.e., approximately 96.0%. According to [19], for TCP SYN and UDP floods, the attackers
try to open as many new traffic flows to the victim, leading to an explosion of the new flow
rule installation. As a result, for the SATA, the OvS switch quickly gets overflowed and
suspended, and the DDoS detector could not recognize new attack traffic due to the lack of
flow rule statistics. Meanwhile, for the SAFE the initiated DFI is supervised by the overflow
handler, providing significant traffic flow information. Therefore, it enables the capability of
efficient DDoS detection. In the case of an ICMP flood, due to a limited number of emulated
compromised virtual machines, i.e., 30 users, there exist at most 30 traffic flows targeting
the victim at a time. Therefore, the flow-tables of the OvS switch and the initiated DFI
could not be overflowed, leading to a similar performance obtained by the ML-based DDoS
detector in the SAFE and the SATA.

Furthermore, Figure 6 shows the ratio of dropped malicious packets obtained by the
SAFE and the SATA three attack types. In particular, for TCP SYN and UDP floods,
the SAFE highly outperforms the SATA by approximately 48.0% and 52.0%, respectively,
in the capability of stopping malicious packets. For the SATA, the overflow at the OvS
switch at the compute node as discussed earlier makes the DDoS detector unable to detect
new attack flows. Therefore, many new malicious packets still arrive at the leaf switches
in the data center network. Meanwhile, the SAFE can perform the detection, leading to a
significant mitigation performance, i.e., approximately 80.0% of attack packets are dropped.
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Figure 7: The average number of packet in messages arriving at the ONOS controller under different

DDoS attacks.

For ICMP flood, as mentioned previously, the SAFE and the SATA achieved a similar defense
performance.

4.3.3. Network control performance

To present the effects of the SAFE and the SATA solutions in networking performance
in the SDN-based data center, we first measure the average number of packet in messages
arriving at the ONOS controller, as shown in Figure 7, in an attack period of 10 minutes.
In particular, when the data center is under either a TCP SYN or a UDP DDoS attack, the
SAFE can gradually reduce the amount of generated packet in messages since the beginning
of the attack by applying deep reinforcement learning based overflow prevention approach
[18]. More precisely, in our previous study [18], we developed a solution that can adaptively
protect the OvS flow-tables from overflow while providing a significant traffic flow information
level for anomaly detection. Therefore, whenever a DDoS attack is recognized, the blocking
policies are implemented accordingly, preventing new abnormal traffic from entering the
network. As a result, the number of packet in messages arriving at the SDN controller
is significantly reduced after some minutes since the attack begins, i.e., approximately 4
minutes in our experiments. Meanwhile, for the SATA, the number of packet in messages
remains high before crashing down due to the overflow issue and the suspended operation
of the OvS switch. On the contrary, the level of packet in messages is lower in the case of
an ICMP flood because a few flow rules are implemented in the DFI and the OvS switch, as
discussed earlier.

Moreover, as illustrated in Figure 8, we compare the ratio of QoS violations of normal
traffic flows. Specifically, for TCP SYN and UDP attacks, the SAFE outperforms the SATA
in guaranteeing the QoS requirements of the benign traffic flows in the data center network,
i.e., approximately 4.0% of traffic flows do not meet their QoS requirements, while this ratio
is around 22.0% in the SATA method. However, due to the non-overflow problem, the ratio
of QoS violation is assured for ICMP attacks, which is approximately 5.0% for both solutions.

In conclusion, the SAFE solution is significantly superior to the SATA approach in pro-
viding a reliable networking performance for the data center network under DDoS attacks.
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Figure 8: Ratio of QoS violated benign traffic flows produced by the SAFE and the SATA solutions.

5. CONCLUSIONS

In this paper, we introduce a novel DDoS attack defense framework applying an elastic
traffic flow inspection mechanism, namely SAFE, for SDN-based data center networks. First,
we have developed a rank-based anomaly detection algorithm at the port stats module to
recognize the anomaly in the amount of incoming traffic. Next, we propose an element, called
DFI, that is utilized for the elastic traffic flow inspection mechanism. For our case study
on TCP SYN, UDP, and ICMP DDoS attacks, the results prove that SAFE can effectively
defend against malicious traffic from entering the data center network while assuring a reliable
QoS level for normal traffic flows in comparison to that of the SATA solution. In future
research, we plan to develop new methods to defeat the low-rate DDoS attacks in the SDN-
based data center network.
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