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Abstract. Many networks possess a community structure, such that nodes form densely connected

groups and are more sparsely linked to other groups. In many cases, these groups overlap, with some

nodes shared between two or more communities. Overlapping node plays a role of interface between

communities and it is really interesting to study the community establishment of these nodes because

it reflects the dynamic behavior of participants. Nowadays, community identification and mining are

the main directions in social network analysis.

In this paper, we present an algorithm to find overlapping communities in very large social

networks. The algorithm is based on the label propagation technique, and we find the overlapping

communities in the network by improving the clustering coefficient. Tests on a set of popular, standard

social networks and certain real networks have shown the high speed and high efficiency in finding

overlapping communities.

Keywords. Social network graph; Overlapping communities; Label propagation; Clustering coeffi-

cient; Belonging coefficient.

1. INTRODUCTION

Community structure is an important field in complex networks research. Newman et al.

[5] had made clear that a community structure could be defined as a group of nodes with

dense internal links and sparse connections between groups. The finding of the community

structure of a social network is very important. The metabolic networks or the large-scale

WWW webpage links are all community structures. Regarding community structure detect-

ing, we must solve two complicated problems as below: Firstly, we have to deal with the

running time of algorithms. Although community detection on social networks is a research

direction that many scientists are interested in, many algorithms have been proposed, but

one of the problems that need to be overcome is the processing speed of algorithms. In fact,

the number of vertices and edges of the graph is too large, leading to a long-running time
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which is unsuitable for practical requirements. Since the first work on community struc-

ture by Weiss and Jacobsen (1955) dealing with separating working groups in governmental

organizations, many algorithms have been studied and developed including works of Flake,

Radicchi, and especially Girvan and Newman with famous GN algorithm calculating be-

tweenness of edges and then trimmed out edges of highest betweenness. The complexity of

GN is O(m2.n), (m: the number of edges, n: the number of vertexes). Although many other

algorithms have been proposed later such as CONGA with O(m3); CONGO with O(n. log n);

Brandes with O(n.m) (weighted graph) or O(n.m+n2 log n) (unweighted graph). In general,

those algorithm has high complexity. Nowadays, while social network graphs have become

increasingly complex and extremely large, the common tendency is to find out the solution

of acceptable accuracy in the permitted time. So the Label Propagation Algorithms (LPA)

have been strongly developed. LPA is a popular method used for finding communities in an

almost-linear time-consuming process. However, its performance is not satisfactory in some

metrics such as accuracy and stability. The complexity of LPA is O(m+n), for sparse graph

graph is O(n). The common feature of LPAs is to find locally optimal results, but they

differ in designing optimal functions based on the interests of each author. We followed this

orientation and designed the optimal function for our algorithm.

Secondly: In detecting community structure, the authors always supposed that there is a

very clear division for each community: each node belongs to only one community [4, 5, 13].

In reality, networks are built in different relations, and nodes can be shared by many com-

munities [3]. For example, in collaboration networks in scientific research, an author can

participate in numerous groups with other scientists, or in bio-logical networks, a protein

structure can deal with many other groups of proteins, etc. . . An individual can belong to

many communities in simultaneous interactions with multiple groups. This feature makes

overlapping to be an important characteristic of complicated networks, especially social net-

works. Obviously, the algorithm for the overlapping community is hence very complicated.

Recently some algorithms have been proposed to detect the overlapping community struc-

ture, and two main effective means are clique and optimization theory. The methods based

on clique have high accuracy, but the process is complex. While the optimization algorithms

choose the appropriate object function and get a lower complexity, when and how to finish

are ambiguous. As we paid attention to fast processing big data sets so we made our ap-

proach based on the second orientation. Many algorithms have used the clustering coefficient

as an analysis parameter (COPRA, IVICCOPRA...). We analyzed and introduced the new

parameter: the belonging coefficient, which is developed from the clustering coefficient by

improving and removing irrelevant or approved nodes to reduce the number of re-updates

during label propagation. In this paper, we propose a fast overlapping community detection

algorithm with a belonging coefficient and implement the label propagation method (COPA-

BC) to quickly detect overlapping structures.

The rest of the paper is organized as follows. We first briefly consider related work in

Section 2. Section 3 presents the graph clustering coefficient and belonging coefficient. Sec-

tion 4 introduces the fast overlapping community detection algorithm. Section 5 presents

the results of the experiments. Conclusions appear in Section 6.
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2. RELATED WORKS

The social network is often represented by an undirected, connected graph G = (V,E),

also known as a social network graph, where V is the set of nodes and E is the set of edges.

The node v is adjacent to w if (v, w) ∈ E or (w, v) ∈ E. Suppose node v has k adjacent nodes,

denote N(v) = {v1, v2, . . . , vk} representing k neighbors of v. The label of vj :L(vj), denotes

the community to which vj belongs. Nowadays, many algorithms have been proposed for

community detection in social networks. The most famous algorithm is Girvan-Newman’s

division algorithm [5] which proposes to detect community clusters on a social network graph

using the betweenness centrality of the edge to remove the intermediate highest edge in each

iteration. This process will continue until it reaches communities with high modularity. In

other words, modularity features are used to evaluate the quality of detected communities.

Gregory proposes the Cluster-Overlap Newman Girvan Algorithm (CONGA)[6], to detect

overlapping communities using the concept of a division of community structure through

local mediation. The algorithm is efficient at discovering communities of small diameter in

large networks and O(n. log n) time complexity for sparse networks. The next typical and

popular algorithm in the social network community discovery field is the Label Propagation

Algorithm (LPA), introduced by Raghavan and Girvan [13]. LPA is an algorithm that de-

tects communities on a social network in almost linear time. This algorithm has drawn the

attention of many researchers to study, improve, develop and apply to many different cases

[7, 14]. Most overlapping community detection methods cannot simultaneously satisfy the

efficiency and accuracy requirements for large and dense networks. Steve Gregory proposes

the Community Overlap Propagation Algorithm (COPRA) [7] to detect overlapping com-

munities by extending the label concept and label propagation step to include information

about more than one community: each existing node can belong to the maximum v com-

munity, where v is the parameter of the algorithm. In the COPRA algorithm, the label for

each node x is a set of pairs (C, b), where C is the identifier (label) of the community and

b is the coefficient of the community based on the degree of nodes, indicating the likelihood

of membership of x in the C community, such that all the membership coefficients of having

x sum equal to 1 (normalized). Each propagation step will recalculate the label of x across

the labels of neighboring nodes, sum the community coefficients of all neighboring nodes,

and normalize. This can cause poor performance of the algorithm, in part because the nodes

with high degree values are sometimes unable to belong to more than one community, for

example, the nodes of the clique graph (full graph). Recently, Saradha and Arul focused on

the optimized overlapping community detection technique by applying the Improved Ver-

tex Imitation Co-efficient based Community Overlap Propagation Algorithm (IVICCOPRA)

[10], but has not yet addressed all the disadvantages of COPRA [7]. In particular, we do

not have the information to specify the v parameter about the number of communities to

which the nodes belong. To overcome the above limitations, we focus on studying the graph

clustering coefficient [12] and its application to develop a fast overlapping community de-

tection algorithm based on label propagation and advanced clustering coefficient (belonging

coefficient).
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3. GRAPH CLUSTERING COEFFICIENT AND BELONGING
COEFFICIENT

3.1. Graph clustering coefficient

The clustering coefficient is used to determine to “quantify the structural properties”

of the network [12]. The largest advantage of this value is the fact that it shows all the

networks in which it contains clusters. The clustering coefficient of vertex v is determined

by the number of unordered adjacent pairs of v that are directly connected, divided by the

total number of adjacent pairs of v.

In graph theory, the clustering coefficient is a measure of the degree to which the nodes

in the graph tend to gather together. Evidence shows that, in most real-world networks,

especially social networks, nodes tend to form interconnected groups characterized by a

relatively high density of relationships known as is the community. This probability tends to

be greater than the average probability of the constraint being randomly established between

two nodes.

Given an undirected, connected graph G = (V,E), where V = {v1, v2, . . . , vn} is a set

of nodes and E is a set of m edges; The two nodes u, v ∈ V are linked (connect) together

if (u, v) ∈ E. The triple of nodes vi is a set (vi, {vj , vk}) so (vi, vj), (vi, vk) ∈ E. Triangle

associated with vi is an unordered triple of nodes such that each pair of vertices is connected.

The clustering coefficient of node vi is defined as follows

Ci =
Number of triangles of node vi

Triple of node vi
. (1)

These measurements are 1 if every neighboring node connected to vi is also connected to

every other vertex in the neighborhood and is 0 if among the adjacent nodes no pairs are con-

nected together or degrees deg(vi) = 1. If deg(vi) = di, then the number of triplets associated

with vi would be di∗(di−1)/2. The clustering coefficient can be defined equivalent as follows

Ci =


Number of triangles of node vi

di(di − 1)/2
if di > 1,

0 if di ≤ 1.
(2)

The formulas (1) and (2) are equivalent. Given the adjacent matrix of the graph G =

(V,E), A = [aij ], i, j = 1, 2, . . . , n, aij = 1 if (vi, vj) ∈ E, otherwise aij = 0. Then the

clustering coefficient can be defined equivalently as follows

Ci =

{∑n
j,k=1 aij∗ajk∗aki
di(di−1)/2 if di > 1,

0 if di ≤ 1,
(3)

where di =
∑n

j=1 aij .

Example 1. Consider the graph shown in Figure 1

Calculated results of every formula (1), (2), (3) all give the clustering coefficients as

follows: C1 = 0, C2 = 1/6, C3 = 0, C4 = 2/3, C5 = 5/14, C6 = 1, C7 = 1, C8 = 1, C9 = 1,

C10 = 1, C11 = 1, C12 = 0, C13 = 0, C14 = 0.
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Figure 1: Network G (graph with 14 member (nodes))

For very large-scale networks, calculating the exact clustering coefficient may not be

feasible because it takes a lot of computation time. It is acceptable to reduce accuracy

to get results more quickly. There are many algorithms to calculate the clustering coef-

ficient, typically the ACCA algorithm (Approximating Clustering Coefficient Algorithms)

[11] to determine the clustering coefficient with complexity O(1). The ACCA approximation

algorithm that calculates the clustering coefficient is as follows:

Input : Adjacent matrix A of network G = (V,E);x ∈ V ; k

Output : Cx

l = 0;

for i ∈ (1, . . . , k) do {
j = GetRandom(k);

u = GetRandomVertex(N(j));

v = GetRandomVertex(N(j));

while (u==v)

{
v = GetRandomVertex(N(j));

if (checkEdge(u,v))

l = l+1;

}
}

return Cx= l/k;

The run-in-time approximation algorithm is constant, given the fact that all methods

inside the loop can be evaluated in constant time. While the loop is limited by a number k,

the algorithm has O(k) complexity, but since k can be chosen by the user (k is constant), so

the algorithm has an exact complexity O(k)= O(1).

3.2. Belonging coefficient

On the social network, a community can be defined as a set of nodes that have a high

density between them and a lower density with the rest. Thus, whether a node on the
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graph belongs to a community depends on the number of nodes associated (its degree) and

the number of connections between it and neighbors. For example, on the graph in Figure

1, nodes: 4, 5, 6, 7 have enough associations to see if they are in a community. Thus,

it is reasonable to apply the clustering coefficient to more effectively cluster overlapping

communities on the social network. However, by the definition (1), nodes with degree 1

(deg(v) = 1) have a clustering coefficient = 0, so they can only reside in one community. In

addition, nodes whose neighborhood set is a clique that has a clustering coefficient of 1 also

reside in a community. Therefore, it makes no sense: nodes located on only one community

may have different clustering coefficients (is 0 or 1). From those practical analyses, we

improve the clustering coefficient to the belonging coefficient of node vi as follows

Bi =

{
Ci if Ci > 0,

1 if Ci = 0.
(4)

Example 2. Considering the graph of Figure 1, according to (4), we get the belonging

coefficients for the nodes: B1 = 1, B2 = 1/6, B3 = 1, B4 = 2/3, B5 = 5/14, B6 = 1,

B7 = 1, B8 = 1, B9 = 1, B10 = 1, B11 = 1, B12 = 1, B13 = 1, B14 = 1.

The belonging coefficient of node i determines the probability that node i belongs to

one or more communities. From Example 2 and through the experimental results of the

algorithm to calculate the belonging coefficient of the nodes, along with the statistical results

on typical social networks such as Karate Club, Dolphin, Protein, Net-Science network [1, 8],

we find that when Bi = 1, node i clearly belongs only to one community, such as hanging

nodes (whose vertex degree is 1), or the central node of a star graph with zero membership

triangles, or the nodes of a clique are all located in a community. Nodes with Bi < 1 are

nodes that are likely to overlap in different communities. Continuing with Gregory’s idea [7],

we add the constraint by specifying the parameter v, which represents the maximum number

of communities that each node can belong to. It is easy to infer that the nodes with low

belonging coefficients are the ones most likely to be in overlapping regions of v communities.

That is, the overlapping nodes i can only have belonging coefficients less than 1/v. From

there we deduce:

i. Nodes with the belonging coefficient > 1/v belong to a community. (5)

ii. If nodes i have the belonging coefficient 0 < Bi ≤ 1/v, then i can

belong to at most [1/Bi] communities. Where [r] is the integer part

of the real number r. (6)

From (5) we deduce that the node i has Bi > 1/v, it is possible to assign the coefficient

of the community to which it belongs to 1. From (6) we can determine the input parameter

v for the proposed algorithm

1 ≤ v ≤
[
argmax

i∈V
(1/Bi)

]
. (7)

Considering the graph of Figure 1, if you choose v = 2, then nodes 2 and 5 are two nodes

belonging to two overlapping communities.
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4. DETECT OVERLAPPING COMMUNITY BASED ON LABEL
PROPAGATION AND BELONGING COEFFICIENTS

4.1. The method of label propagation is based on belonging coefficients to de-
tect overlapping communities

Label Propagation Algorithm (LPA) is an algorithm that detects communities on a social

network in almost linear time. The LPA algorithm follows these steps: The first step is to

assign each node a unique label. The label of a node represents the community to which this

node belongs. Next, the node is selected in random order, and its label is updated again

according to the parameters of its neighbors. The new label of node x in the t iteration is

updated according to the labels of the neighbors of node x in the (t− 1) iteration. The algo-

rithm terminates when every node has a label that is one of the labels used by the nodes with

the maximum number of neighbors. Based on the belonging coefficient and combined with

the method of the label propagation of Gregory [7], we can detect overlapping communities.

First, we choose the value v (maximum number of communities that a node can belong to),

as a parameter of the algorithm, determined according to the condition (7). At the same

time, we start to label each vertex x as a set of pairs L1(x) = {(x,Bx)}, if Bx ≤ 1/v, or vice

versa, L1(x) = (x, 1), where Bx is the belonging coefficient of node x, calculated according to

(4) and based on the conclusions (5), (6). During label propagation, the node’s label is either

added to a new label pair or changed to another label pair. The label Lt (x) is the label used

to assign node x at time t. Each propagation step will update the label of node x according

to the label of the neighboring node whose community membership coefficient is maximum,

often selecting adjacent nodes labeled with a belonging coefficient of 1. During the different

stages of label propagation, the role of the key nodes towards community establishment will

greatly influence the formation of communities in many different ways. For example, in the

early stage, the key nodes of the community (nodes with a high belonging coefficient ≥ 1/v)

are nodes that make a significant contribution to determining community structure by prop-

agating instantaneous transmission of the neighbor nodes in the same community. While

potentially overlapping nodes (nodes with low belonging coefficients ≤ 1/v) are located be-

tween many different communities, making it difficult to determine the community structure

because they are located in the overlap between communities. The belonging coefficient of

nodes can help to randomly adjust the label propagation steps and better determine the

update order in the sequence of neighboring nodes. Due to the topology characteristics of

the nodes with different roles, the propagation by the node with the first high belonging co-

efficient (key node) is usually quite fast, which is also the reason for the case that the overlap

will be propagated very quickly according to the key node. In contrast, propagation along

nodes with low belonging coefficient often leads to communities that are too large, which is

unusual in reality. When the key nodes are updated, potentially overlapping nodes will soon

be propagated[14]. Nodes x with a belonging coefficient greater than 1/v are all assigned 1,

using only one label to identify the community to which it belongs, i.e. [Lt(x)] = 1, for nodes

x with Bx ≤ 1/v, the number of labels used for assignment must be less than or equal to v,

ie |Lt(x)| ≤ v, where t is the time t of label propagation. In each step of label propagation,
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the label of node x will be updated with priority according to the nodes whose labels have

the highest belonging coefficient of 1. After each iteration of label propagation, the number

of labels used to assign to nodes is likely to decrease. Thus, the label sequence Lt(x) of node

x ∈ V in iteration t is updated according to the labels of neighboring nodes in N(x) in the

previous time as follows:

a) The label of x with belonging coefficient of 1 must be updated according to the label

of a neighbor node with a belonging coefficient of 1, that is, Lt(x) = Lt−1(s) with

s ∈ N(x) and Lt−1(s) = {(w, 1)}, so the number of used labels will be reduced by 1,

label x will be deleted.

b) It is necessary to update the label of x with community coefficient ≤ 1/v according

to the label of s ∈ N(x) if any (w, 1) ∈ Lt−1(s), (w, 1) /∈ Lt−1(x) then Lt(x) =

Lt−1(x) ∪ {(w, 1)}, that is to add labels to overlapping nodes.

The algorithm stops when all nodes have the same used label sets between two consecutive

iterations, i.e. no nodes are re-labeled. It is easy to see that this will happen after several

steps and thus the algorithm is guaranteed to terminate. After the algorithm is finished, the

nodes with the same label will be in the same community, and the nodes with more than

one label are the overlapping nodes.

Given the graph in Figure 1, at steps t = 1, 2, 3, 4 with parameter v = 2, there are labels

assigned as shown in the following table.

Table 1: Labeling process at steps t = 1, 2, 3, 4

Lt\x 1 2 3 4 5 6 7 8 9 10 11 12 13 14
L1(x) (1,1) (2,1/6) (3,1) (4,1) (5,5/14) (6,1) (7,1) (8,1) (9,1) (10,1) (11,1) (12,1) (13,1) (14,1)
L2(x) (12,1) {(2,1/6); (12,1) (6,1) {(5,5/14); (6,1) (6,1) (9,1) (9,1) (9,1) (9,1) (12,1) (12,1) (12,1)

(12,1)} (6,1)}
L3(x) (12,1) {(2,1/6); (12,1) (6,1) {(5,5/14); (6,1) (6,1) (9,1) (9,1) (9,1) (9,1) (12,1) (12,1) (12,1)

(12,1); (6,1);
(6,1)} (9,1)}

L4(x) (12,1) {(2,1/6); (12,1) (6,1) {(5, 5/14); (6,1) (6,1) (9,1) (9,1) (9,1) (9,1) (12,1) (12,1) (12,1)
(12,1); (6,1);
(6,1)} (9,1)}

The number of labels assigned in the initial step is the same as the number of nodes, that

is, 14 labels. The number of labels used to assign labels in step t = 2 is 3, in step t = 3 is 3.

The algorithm stops after iteration t = 4 because the number of labels used for labeling has

not changed and there are no more nodes to update the labels again.

The number of labels used to assign labels in the last step is 3. The graph is divided

into 3 overlapping communities: community 1, 2, 3, 12, 13, 14 labeled 12, community 2, 4,

5, 6, 7 labeled 6 and community 5 , 8, 9, 10, 11 are labeled 9. Node 2 is in the first two

communities and node 5 is in the latter two.

4.2. Algorithm COPA-BC

In the algorithm COPA-BC (Community Overlap Propagation Algorithm Based on New

Belonging Coefficient), a sequence of pairs of labels Lt is assigned to the nodes at the t

iteration, and N(x) is the set of neighbors of the node x ∈ V . The value of Bx determines

the assignment of a new label during propagation.

Input: Graph G = (V,E) and parameter v satisfy condition (7)

Output: Overlapping Communities.
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Figure 2: Network graph G has 3 overlapping communities with two overlapping nodes 2, 5

COPA-BC(G, v) {
CO = {};
t = 1;

for each x ∈ V do{
Bx = ACCA(x, k) ; //Calculate the coefficient according to the ACCA

if
(
Bx > 1

v

)
then Lt(x) = {(x, 1)};

else Lt(x) = {(x,Bx)} ;

};

w = argmaxx∈V

(
[ 1
Bx

]
)
; // [h] take the integer value of h

if(v > w) then v = w; // Check condition (7);

t = t+ 1 ;

do {
for each x ∈ V do {
N(x) = {y ∈ V |(x, y) ∈ E} ;

Propagate(N(x), Lt−1, Lt) ;

} while(Lt−1 ̸= Lt) ;

SplitCommunities(Lt) ; // To split into overlapping communities.

return CO;

}

Propagate(N(x), Lt−1, Lt) {
for each y ∈ N(x) do {
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if (Lt−1(y) == {(s, 1)}&&Bx == 1) then {

Lt(x) = Lt−1(s) ;

return; // stop : Ending Propagate().

}

if (Bx ≤ 1/v&&(w, 1) ∈ Lt−1(y)&&(w, 1) /∈ Lt−1(x)&&|Lt| < v) then {

Lt(x) = Lt−1(x) ∪ {(w, 1)} ;

return; // stop : Ending Propagate()

}

}

SplitCommunities(Lt) {

for each x ∈ V do if (Lt(x) == (x,Bx)&&Bx ≤ 1
v ) then delete(Lt(x));

//After label propagation, remove labels with belonging coefficient ≤ 1
v

for each x ∈ V do {

COx = {} ; // Empty set

if (Lt(x) == {(x,Bx)}&&Bx == 1) then

{COx = COx ∪ {x} ;

CO = CO ∪ COx; }

//To determine communities with nodes of the same label (having a belonging coefficient of 1)

for each y ∈ V − {x} do

if (L(y) == L(x)&&(y,Bx) == (x,Bx) then

{COx = COx ∪ {y};

V = V − {x};

CO = CO ∪ COx; }

else

{COv = COv ∪ {y};

V = V − {y};

CO = CO ∪ COv;

}
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4.3. Evaluate the complexity of the algorithm

The time complexity of the algorithm is estimated below. n is the number of nodes and

v is the parameter (maximum number of communities per node).

� Statement for each x ∈ V determines the belonging coefficient and assigns it to the

nodes of V . The time complexity of this statement is O(n.O(1)), where O(1) is the

complexity of the ACCA algorithm [11].

� Next statement calculates w as the maximum value of 1/Bv, with v ∈ V , so the number

of executions is O(n).

� In the Propagate procedure, for each node x, the label is updated according to its

neighbors. Nodes with a belonging coefficient equal to 1 have only one pair of labels

assigned, while nodes with community dependency coefficient less than or equal to 1/v

have at most v + 1 pairs of labels, used to assign (update) labels. For each adjacent

node y, it iterates over all (at most v) the number of community labels in the used

label sequence, so that the update time for x’s labels takes at most v number of checks.

Then, the time complexity of Propagate algorithm is O(v).

� Statement do. . . while propagating the label Propagate(), repeats until two consecutive

iterations with no node updating the label. Therefore, the time complexity of this

statement is O(n.v), where n is the number of nodes of the graph and v is the parameter

(maximum number of communities per node).

� The procedure SplitCommunities() divides nodes with the same label into overlapping

communities, also with a complexity of O(n).

� The remaining statements are single statements, only executed once.

Therefore, the time complexity of the algorithm COPA-BC is O(n.O(1)) + O(n) + O(v) +

O(n.v) + O(n) = O(n.v). Since, v is constant number, then the time complexity of the

algorithm COPA-BC is nearly linear.

5. EXPERIMENTAL EVALUATION

We have experimental results on published standard data sets [1, 8] to evaluate the effec-

tiveness of the proposed algorithm COPA-BC for fast detection of communities, compared

with recent popular algorithms, such as COPRA [7], IVICCOPRA [10]. We also compare

the accuracy of the algorithm through the quality of the community (modularity measure)

and the normalized mutual information (NMI) of the community detected by the proposed

algorithm.

5.1. Evaluate the effectiveness of the algorithm

Experimental results have confirmed that the proposed algorithm COPA-BC to detect

overlapping communities runs faster than the recently popular algorithm COPRA [7] on av-



42 NGUYEN HIEN TRINH, et al.

Table 2: Experimental results on execution time (n-number of vertices, m-number of edges, cc-
number of announced communities, cn-number of result communities, dcl number of overlapping

vertices). The execution time is in s seconds.

N0 Social Network Nodes Edges cn dcl Runtime(s)
(n) (m) COPA-BC COPRA IVICCOPRA

1 Karate Club 34 78 3 3 4.75 5.15 5.94

2 Dolphin Group 62 159 2 3 6.02 6.96 6.56

3 Email-Eu-core 1005 25571 29 13 65.02 69.72 68.12

4 DBLP 317080 1049866 12556 127 554.23 649.18 633.21

5 Amazon 334863 925872 35123 253 579.09 659.22 655.11

6 Youtube 1134890 2987624 8135 189 1109.15 1254.35 1158.23

Figure 3: Runtime comparison of COPA-BC algorithm on 6 real networks [1, 8]

erage by 15%, IVICCOPRA [10] on average by 10%, for all experimental data sets, especially

for networks with a large number of vertices.

5.2. Evaluate the modularity quality of the algorithm

Modularity Q [2] is proposed to measure the community division status of the entire

network. Networks with high modularity Q show that there are much more links between

vertices in the community and fewer links between vertices in different communities. There-

fore, the larger the value of the modularity Q is the higher the accuracy of the algorithm

shall be, leading to the quality of community detection being assessed as good

Q =
1

2m

∑
i,j

(
Aij −

didj
2m

)
δ (Ci, Cj) , (8)

where Aij is the adjacency matrix, m is the total number of edges of the graph, di is the

degree of vertex i, dj is the degree of vertex j, Ci, Cj are the communities where vertex i and

vertex j are, respectively in that community. δ (Ci, Cj) = 1 if vertex i and vertex j belong

to the same community, otherwise δ (Ci, Cj) = 0.
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Table 3: Experimental results on community quality Modularity

No Social Network Modularity
COPA-BC COPRA IVICCOPRA

1 Karate Club 0.69 0.58 0.57

2 Dolphin Group 0.63 0.55 0.53

3 Email-Eu-core 0.79 0.77 0.75

4 DBLP 0.81 0.75 0.77

5 Amazon 0.87 0.81 0.83

6 Youtube 0.79 0.75 0.76

Through the above experimental data with the modularity Q in these datasets, it has

been shown that the proposed method COPA-BC has a better community quality (about

10% on average) than the recently popular algorithms such as COPRA [7], IVICCOPRA

[10] on all experimental datasets and solved the overlapping community problem.

Figure 4: Comparison of detected community quality across 6 real networks

5.3. Evaluate the NMI of the algorithm

Metrics based on information theory present an alternative approach to community qual-

ity testing with a given reference partition. The most commonly used metric is the Normal

Mutual Information (NMI) [9], which can be calculated and determined according to the

arithmetic mean of the entropies

NMI(A,B) =
2I(A,B)

H(A) +H(B)
,

where, H(A) = −
∑|A|

i=1 pi log pi, and

H(B) = −
∑|B|

j=1 pj log pj , pi =
|Ai|
N , pj =

|Bj |
N , pij =

|Ai∩Bj |
N .

Or

NMI(A,B) =
−2

∑
i,j pij log

pij
pipj∑

i pi log pi +
∑

j pj log pj
. (9)
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It is common sense that N is the number of vertices of the network graph under consid-

eration; A : set of real communities; B : the set of communities detected by the community

detection algorithm in use. The value of NMI ranges from 0 to 1. The NMI is equal to 1

if the detected community matches the real community. In contrast, NMI is 0. With dif-

ferent community detection methods, when calculating the corresponding NMI, the closer

the value of NMI is to 1, the better.

Table 4: Experimental results on NMI

No Social Network NMI
COPA-BC COPRA IVICCOPRA

1 Karate Club 0.89 0.79 0.77

2 Dolphin Group 0.91 0.83 0.84

3 Email-Eu-core 0.74 0.67 0.69

4 DBLP 0.68 0.65 0.67

5 Amazon 0.65 0.61 0.63

6 Youtube 0.59 0.55 0.54

Figure 5: Comparison by NMI of communities detected on 6 real networks

Through the data of NMI in these data sets, it is shown that the proposed method COPA-

BC has an NMI value close to 1 and greater than that of the popular algorithm recently

(average about 10%) as COPRA and IVICCOPRA across all experimental data sets. It

proves that the community detected by the proposed algorithm is close to the announced

community and also solves the overlapping community problem.

We can see that the COPA-BC algorithm is better than other algorithms (COPRA,

IVICCOPRA) because the repeating times have been reduced thanks to parameter v as

analyzed in conclusions (5) and (6). The community quality has been improved due to the

exploration and selection of communities according to Q (Modularity) in each repeated step.

Experimental results have proved it.
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6. CONCLUSION

The article introduced the COPA-BC algorithm to detect overlapping communities in

social networks based on the label propagation method and belonging coefficient. The algo-

rithm is developed based on the label propagation method and uses the belonging coefficient

advanced from the clustering coefficient to quickly and effectively find overlapping commu-

nities. Compared to other overlapping community detection algorithms, the advantage of

COPA-BC is execution speed and accuracy. The execution time is linear with the node num-

ber of the social network graph. Experimental results show that COPA-BC is very effective

in quickly detecting overlapping communities in social networks. The value of v satisfies the

condition (7) that makes the algorithm highly efficient in detecting the overlap. However in

case v is very large (belonging coefficient is too small), then the number of labeling pairs is

much over the reality and efficiency decreases. On experiments for real social networks, v

should be 1 < v < 10, then the algorithm is very efficient, yields good results suitable with

reality. The algorithm has a very high parallelization capacity because each node can be

independently updated in propagation steps, due to the use of the label propagation syn-

chronous update mechanism.
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