
Journal of Computer Science and Cybernetics, V.38, N.1 (2022), 15–29

DOI no. 10.15625/1813-9663/38/1/16309

AN EFFECTIVE DEEP LEARNING MODEL FOR RECOGNITION
OF ANIMALS AND PLANTS

TRINH THI ANH LOAN1, PHAM THE-ANH1,∗, LE VIET-NAM1, HOANG VAN-DUNG2

1Hong Duc University, Viet Nam
2Ho Chi Minh City University of Technology and Education, Viet Nam

Abstract. This paper presents a deep learning model to address the problem of recognition of

animals and plants. The context of this work is to make an effort in protection of rare species

that are seriously faced to the risk of extinction in Vietnam such as Panthera pardus, Dalbergia

cochinchinensis, Macaca mulatta. The proposed approach exploits the advanced learning ability

of convolutional neural networks and Inception residual structures to design a lightweight model

for classification task. We also apply the transfer-learning technique to fine-tune the two state-of-

the-art methods, MobileNetV2 and InceptionV3, specific to our own dataset. Experimental results

demonstrate the superiority of our object predictor (e.g., 97.6% accuracy) in comparison with other

methods. In addition, the proposed model works very efficiently with the inference speed of around

113 FPS on a CPU machine, enabling it for deployment on mobile environment.

Keywords. Deep learning models; Classification losses; Feature pyramid network.

1. INTRODUCTION

Nowadays, we are learning a substantial amount of information on daily media reports
that a lot of species in the world are in danger of extinction such as Panthera pardus, Dal-
bergia cochinchinensis, Macaca mulatta. This situation is a source of many serious problems
to our planet, for instance: floods, forest fires, heat waves, and climate changes. Therefore,
it is urgent for humans to do necessary actions to protect natural environment, wildlife and
plants, especially endangered species. One of the promising solutions is to apply modern
technologies such as artificial intelligence or deep learning to build useful applications. This
paper presents a deep neural network to recognize the animals or plants with a real-time
response. The proposed model is scheduled to be embedded into a mobile application that
are helpful to people who are working in the sector of environment protection. For instance,
they can install the application on portable computing devices to quickly take a capture of
an animal or plant and then to determine the identity as well as all related information of
that individual.

*Corresponding author.
E-mail addresses: trinhthianhloan@hdu.edu.vn (T.T.A.Loan), phamtheanh@hdu.edu.vn (P.T.Anh),
levietnam@hdu.edu.vn (L.V.Nam), dunghv@hcmute.edu.vn (H.V.Dung)

© 2022 Vietnam Academy of Science & Technology

mailto:trinhthianhloan@hdu.edu.vn
mailto:trinhthianhloan@hdu.edu.vn
mailto:dunghv@hcmute.edu.vn

16 AN EFFECTIVE DEEP LEARNING MODEL FOR RECOGNITION OF ANIMALS

In recent years, deep learning techniques have been evolved and achieved outstanding
performance for various problems in the areas of computer vision, pattern recognition, and
object detection. In the specific field of image classification, the most representative methods
have been derived from convolutional neural networks (CNN) such as VGG16 [14], AlexNet
[8], ResNet50 [3], InceptionV3 [17]. Although these methods achieve high recognition rates,
they suffer from intensively computational cost, making them difficult to be deployed on
CPU machines. To handle the computational burden, a number of attempts have been
presented, including ShuffleNet [20], SqueezeNet [6], MobileNetV1 [5], MobileNetV2 [13] and
GoogLeNet [15]. Nonetheless, the obtained results are till not satisfactory for deployment
on mobile platform in terms of either accuracy or efficiency.

In the present work, we bring an attempt to design a lightweight and accurate convo-
lutional neural network (CNN) model to address the problem of image classification. In
particular, the proposed method is specifically targeted to classify the species of animals and
plants that are in the risk of extinction. To this aim, we have first collected a dataset of
around sixty species of rare animals and plants (with approximately 23,000 images) from dif-
ferent places of Thanh Hoa province. On the other hand, we have designed an effective CNN
model to perform image classification of these species. Finally, we have conducted various
experiments to evaluate the proposed method in comparison with the state-of-the-art CNN
models. The experimental results showed that our approach achieves a recognition rate of
97.6% while being very efficient with the inference speed of around 130 FPS on a moderate
GPU (GTX 1070Ti) or 113 FPS on a CPU machine.

The rest of this paper has been structured as follows. Section 2 provides a comprehensive
review of methods for image classification with special focus on deep learning approach.
Section 3 presents the proposed method with detailed description of network architecture,
computational analysis, and training settings. Section 4 is dedicated to the experiments and
evaluation of the proposed method. Finally, Section 5 concludes the paper and discusses
potential directions of further studies.

2. RELATED WORK

In this section, we revisit the main methods for image classification using deep learning
approach. We shall restrict our discussions to the high performance CNN methods as well
as real-time CNN predictors.

The authors in [8] introduced a CNN model, namely AlexNet, composed of five convo-
lutional layers, several max-pooling layers, and three fully connected (FC) stages. Differing
from traditional CNN models, AlexNet employs a novel activation function, rectified linear
units (ReLUs) [10], to gain faster convergence as well as stable training. In addition, the
convolutional layers of AlexNet employ large filter sizes (e.g., 11 × 11 and 5 × 5) and large
stride (e.g., 4). The model takes as input the image size of 224 × 224 × 3 and produces
an output vector of 1000 channels corresponding to 1000 classes. At last, AlexNet applies
the drop-out technique [4] to randomly discard 50% hidden nodes for reducing overfitting.
Experiments conducted on the dataset of the ILSVRC-2012 competition [1] show that the
proposed method performs best with a top-5 error rate of 15.3%. The model is heavy in
terms of weights and memory with about 60 million parameters and 650,000 neurons.

In the work of [14], a CNN model (VGG16) has been presented that consists of sixteen

TRINH THI ANH LOAN, et al. 17

convolutional layers, several max-pooling layers, and three FC layers. The input of the
model is normalized to the size of 224× 224× 3. The three FC layers create 4096, 4096, and
1000 outputs, respectively. In contrast to the AlexNet, VGG16 employs small kernel size
(3 × 3) with stride of 1. The authors argued that using several small filters could be good
alternatives for a large kernel. The model contains about 180 million parameters and yields
a top-5 test error of 7% (single model) in the dataset of the ILSVRC-2012 competition.

The authors in [17] propose replacing convolutions having large filter sizes by the ones
with smaller kernel sizes. To do so, they employed two sorts of operations. First, they applied
factorization of a large convolution into smaller ones. For instance, a 5× 5 convolution can
be replaced by two two convolutional layers having the filter size of 3 × 3. Second, they
performed spatial factorization of a symmetric convolution into asymmetric convolutions.
For example, a 3× 3 convolution can be replaced by a 3× 1 convolution followed by another
1× 3 convolution. Besides, they also incorporated the idea of using auxiliary classifiers [15]
to improve the convergence and accuracy. At last, spatial down-sampling of the feature maps
is done by applying an efficient grid size reduction method that combines max-pooling and
convolution of stride > 1. Putting all together, a novel CNN model, so-called InceptionV3,
is presented. InceptionV3 contains 42 layers but is more efficient than VGG16, and yields a
top-5 error rate of just 5.6% on the ILSVRC-2012 dataset.

Another high performance model for image classification has been presented in [3] with
the popular alias of residual learning. As the residual networks are easier to train and opti-
mize, much deeper models can be created, resulting in an improvement of accuracy. In their
paper, different versions of deeper models have been studied, including ResNet34, ResNet50,
ResNet101, and ResNet152. All the models mostly discard the use of max-pooling layers;
more precisely each model applies only one max-pooling operator after the first convolu-
tional layer. Alternatively, they use directly convolutional layers with stride > 1 for spatial
down-sampling. For example, ResNet34 contains 34 parameter layers (e.g., 33 convolutional
layers, a global average pooling, and a FC layer to create a 1000-output vector). It is worth
noting that the average pooling and max-pooling layers do not contain trainable parameters.
In term of efficiency, the computational complexity of ResNet34 is 5 times smaller than that
of VGG19 [14] (e.g., using FLOPs metric). As for performance, all the models achieve com-
petitive accuracy compared with the state-of-the-art methods. Especially, the single-model
ResNet152 obtains a top-5 error rate of 4.49% on the ILSVRC 2015 classification challenge1.

Apart from these methods, there is a streamline of studies targeted to real-time inference
speed such as GoogLeNet [15], ShuffleNet [20], SqueezeNet [6], MobileNetV1 [5], and Mo-
bileNetV2 [13]. The authors in [15] has created a lightweight model, codenamed GoogLeNet,
that embeds a number of advanced features to create a deeper yet less parameter architecture.
First, the model exploits the benefit of using Inception module to learn multi-scale features
in the dimension of network depth. Here, the Inception structure applies different filter size
convolutions (e.g., 1 × 1, 3 × 3, 5 × 5) to handle better the learning of multi-scale features.
Furthermore, the use of many 1×1 convolutions helps reduce the trainable parameters while
also creating a deeper network. Second, the author integrated a number of auxiliary classifier
for training to improve the accuracy. Next, they also applied global average pooling before
the FC layer to reduce a large number of parameters while till gaining the top-1 accuracy

1https://image-net.org/challenges/LSVRC/2015/

18 AN EFFECTIVE DEEP LEARNING MODEL FOR RECOGNITION OF ANIMALS

by 0.6%. Finally, the drop-out technique is applied to discard 30% hidden nodes. Overall,
the model contains 22 deep layers (consisting of about 7 million parameters) and becomes
the winner at ILSRVRC 2014 [12] with the top-5 error rate of 6.67% in classification task.

SqueezeNet [6] applies three strategies to create a small CNN architecture. First, it tries
to replace as many as possible the 3× 3 filters by the smaller ones having the size of 1× 1.
Second, it further forces feeding fewer input channels into the 3x3 filters, if any. Finally,
it applies delayed down-sampling to enrich the features learned at the beginning layers.
To handle the strategies 1 and 2, a Fire module is presented that consists of a squeeze
convolution layer and an expand layer. The former is composed of 1 × 1 filters, while the
latter employs convolutions having the sizes of 1× 1 and 3× 3 with the constraint that the
number of kernels in the squeeze layer is less than that of the expand layer. To the end,
SqueezeNet composes of two convolutional layers and eight Fire modules with the absence
of FC layer. Experimental results showed that SqueezeNet is competitive with AlexNet in
terms of accuracy but is much more efficient (e.g., 50 times fewer parameters).

In [5], the MobileNetV1 is presented that exploits the idea of depthwise separable con-
volution. A depthwise separable convolution is primarily composed of two components:
depthwise convolution and pointwise convolution. The former applies a single filter per each
input channel to create a set of separated feature maps. The latter creates linear combi-
nations of the feature maps via the channel dimension. MobileNetV1 is finally built as a
28-layer stack of depthwise convolutions and pointwise convolutions in conjunction with the
batch normalization [7] and ReLU activation function. MobileNetV1 performs on par with
VGG16 but is 27 times less compute intensive.

ShuffleNet [20] utilizes channel shuffle operation to create better feature representation of
group convolutions. Traditionally, the outputs of a group convolution only concern with the
specific input channels within the group. In contrast, channel shuffle operation allows the
outputs of different group convolutions to be exchanged before feeding into the next layer.
Hence the features are fully related and more robust. In addition, ShuffleNet improves
the bottleneck unit in [3] by incorporating both channel shuffle operation and depthwise
separable convolution resulting in a powerful and lightweight block, namely ShuffleNet unit.
At the end, ShuffleNet consists of an initial convolutional layer, a number of ShuffleNet units
structuring into three main stages, a global average pooling, and a FC layer. ShuffleNet is
superior to MobileNetV1 in the means of both classification accuracy and inference speed.

The MobileNetV2 [13] improves MobileNetV1 in that it designs an advanced block,
namely bottleneck depth-separable convolution with residual, to be the core component.
Principally, a bottleneck convolution is composed of a thin input layer (i.e., low-dimensional
volume) followed by one or several high-dimensional inner layers (i.e., expansion layers) then
followed by a thin output layer. Here the input and output layers should contain only the
linear features (e.g., by not using ReLU activation) thus not requiring to have a large number
of channels. In contrast, the inner layers must capture the non-linearities (e.g., with ReLU
included) and hence are required to work in high-dimensional spaces (e.g., using more filters
or kernels) so that when ReLU destroys information in some channels, it is expected that
the lost features might still be preserved in other channels. To reduce the computational
overhead of using expand layers, MobileNetV2 applies depthwise separable convolutions that
have been successfully exploited in MobileNetV1. In addition, a bottleneck is coupled with
the residual block to form inverted residual bottleneck. To this end, the architecture of

TRINH THI ANH LOAN, et al. 19

MobileNetV2 consists of two convolutional layers (one at the beginning and the other at the
end) and 19 residual bottlenecks. As for performance, MobileNetV2 yields better accuracy
in the classification task while having 19% less parameters than MobileNetV1.

Differing from the afore-mentioned works, there are specific studies dedicated to solve
the problem of forest species recognition as presented in [2, 9, 18]. The authors in [2]
designed a light-weight model composed of two CNN layers, two max-pooling operations,
followed by a local-connected layer and finally a full-connected layer. The proposed model is
targeted to handle high resolution images of forest species with the consideration of efficient
running times. To this aim, they proposed training the model by extracting random patches
from images. For recognition, a number of patches are first extracted for each test image
and then passed into the model. The patch results are combined with voting technique
to determine the final result. In [18], the authors investigated a study on applying an off-
the-shelf CNN model for four trap camera datasets of species. Specifically, the ResNet18
model [3] is employed as the basic model and was trained using the four datasets. For each
dataset, two separate models have been trained and work in a cascade filtering fashion. One
model is designed to predict empty or non-empty images. The other model is trained to
recognize the species of non-empty images. In addition, the authors also study the effect
of using transfer-learning technique where the basic models are pre-trained on the largest
dataset. Experiments showed that the overall accuracies are ranged from 88.7% and 92.7%
and the transfer-learning strategy helps improving the accuracies of both the empty model
and species model. The work in [9] trains two CNN models, VGG16 and ResNet50, to
classify 20 African wildlife species using a dataset of 111,467 images. The obtained accuracy
is about 87.5% for both the models. Besides, the authors conducted a study on CNN-based
feature interpretation that is helpful to explain the inner mechanism of feature learning of a
CNN classifier.

3. THE PROPOSED APPROACH

3.1. Network architecture

In this section, we describe the proposed approach in detail. The design strategy of
our model is two-fold. First, we further provide empirical demonstration that the Inception
residual structure [16] is helpful for learning discriminated features in classification task. This
structure has been successfully exploited in previous work [11, 19] and is a good alternative
to the max-pooling layer that has been a common choice in the literature when designing
CNN models [8, 14]. Specifically, an Inception residual (i.e., Inception-ResNet-A module)
learns the features in a multi-scale manner and forces the model to explore the feature
representation in the dimension of network depth. It is worth mentioning that the Inception
residual module does not change the dimension of the input tensor (i.e., the spatial size and
the number of channels are not changed). While the work in [11] is dedicated to handle the
problem of face detection with a central focus on designing the semantic convolutional box,
the present work emphasizes the design of an efficient model for the classification problem.

Second, we insist on creating a deeper model by adding more convolutions with stride
of 1 while using less filters or channels at each layer. These two strategies help create a
deeper and wider model while making it still efficient for real-time inference speed. Overall,
the network architecture is presented in Table 1, composing of alternating the convolutional

20 AN EFFECTIVE DEEP LEARNING MODEL FOR RECOGNITION OF ANIMALS

layers and (i.e., marked by Conv1 to Conv9) the Inception residual modules (i.e., IncRes1-
IncRes6). As for the the standard selection of the stride parameter, a kernel with filter size
of 3× 3 is usually associated with a stride of 1 or 2 (i.e., see [13, 17] for examples). For each
convolutional layer using the stride 2, the spatial size of the model is reduced four times
and hence the entire network would be quickly pruned. To handle this point, we have added
some convolutional layers with stride 1 to make the network deeper.

The model is ended by a global average pooling layer (i.e., AvgPool) which computes
a mean value from the features in a 3 × 3 window. The network takes as input an image
having the size of 192 × 192 × 3, has 15 parameter layers, and produces an output feature
vector with the length of K that is the number of classes or categories. As we will mention
in the subsequent part, we have K = 56 classess of animals and plants in our dataset. To
drive the learning process, cross entropy is selected as the loss function for the training.

Table 1: The architecture of the proposed network

No Layer Filter Shape/Stride (s) Input Shape FLOPs

1 Conv1 3× 3× 24, s=2 192× 192× 3 5,971,968

2 IncRes1 96× 96× 24 297,271,296

3 Conv2 3× 3× 24, s=1 96× 96× 24 47,775,744

4 Conv3 3× 3× 32, s=2 96× 96× 24 15,925,248

5 IncRes2 48× 48× 32 77,856,768

6 Conv4 3× 3× 32, s=1 48× 48× 32 21,233,664

7 Conv5 3× 3× 40, s=2 48× 48× 32 6,635,520

8 IncRes3 24× 24× 40 20,348,928

9 Conv6 3× 3× 48, s=1 24× 24× 40 9,953,280

10 Conv7 3× 3×K, s=2 24× 24× 48 3,545,856

11 IncRes4 12× 12×K 5,557,248

12 Conv8 3× 3×K, s=2 12× 12×K 1,052,676

13 IncRes5 6× 6×K 1,389,312

14 Conv9 3× 3×K, s=2 6× 6×K 263,169

15 IncRes6 3× 3×K 347,328

16 AvgPool 3× 3, s=1 1× 1×K 0

17 Flatten K 0

Total FLOPs: 515,128,005

To analyze the theoretical efficiency of our method, we provide in Table 1 the com-
putational complexity in the means of FLoating-point OPerations (FLOPs). For a given
convolutional layer, FLOPs is computed as follows [11]

FLOPs = CinF
2CoutWH, (1)

where F indicates the kernel width or height (typically we use square filters), Cin, Cout denote
the input and output channels, and W,H be the width and height of the output feature map,
respectively.

TRINH THI ANH LOAN, et al. 21

As for the Inception residual module, we adopted the computation of FLOPs in [11] for
a given input feature map having the shape of w × h × c (i.e., width, height, and depth,
respectively), by 192wh(c+144). On the other hand, FLOPs of other layers (e.g., AvgPool,
Flatten) are often ignored because they are relatively small when compared to those of
convolutional layers. As shown in Table 1, the computational complexity of our method is
about 515.1 MFLOPs. To have a comparative evaluation, we provide in Table 2 the FLOPs
of different methods for object classification [20]. Theoretically, the proposed model has
lower computational cost than other models with an exception for the case of ShuffleNet 1×
model. In the experiments, we further show that the practical running times of our model
is significantly lower than those of the state-of-the-art methods.

Table 2: Comparison of FLOPs of the state-of-the-art methods

Model MFLOPs

VGG-16 15300

GoogleNet 1500

AlexNet 720

MobileNetV1-224 569

ShuffleNet 2× 524

ShuffleNet 1× 140

Our model 515

3.2. Dataset and training

As mentioned earlier, the present work is conducted in the context of making an effort
to protect the endangered species. Hence we have collected the dataset of rare animals and
plants on the Internet as well as from different places in Thanh Hoa province. Specifically,
the dataset consists of 22,319 images distributing to 56 species (i.e., 36 animals and 20
plants). For the groundtruth, we have asked two experts in the field of wildlife conservation
to verify the labels of all the images. Figure 1 demonstrates a few examples of animals and
plants in the dataset. In addition, Figure 2 provides a summary of image distribution in the
dataset for 56 species. As can be seen, one of the challenges of this dataset is concerned with
the unbalance distribution over the classes. Furthermore, although each image contain one
species, complicated and rich context information may be present, making the classification
task more challenging.

The network is implemented in Python with Tensorflow 1.14 based on this source2 and
is trained on a moderate GPU configuration (8Gb RAM, GTX 1070 Ti). In addition, Table
3 describes other parameters used during the training phase. For model training, we divide
the dataset into three subsets: training, validation, and testing with respect to the ratio of
80%, 5%, and 15%. The model is trained on the training set and validated on the validation.

2https://github.com/TropComplique/FaceBoxestensorflow

22 AN EFFECTIVE DEEP LEARNING MODEL FOR RECOGNITION OF ANIMALS

Figure 1: Examples of the collected animals and plants in the dataset

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0
:P

ar
d

o
fe

lis
 n

eb
u

lo
sa

1
:P

an
th

er
a

p
ar

d
u

s

2
:F

ly
in

g
Le

m
u

r

3
:H

er
p

es
te

s
ja

va
n

ic
u

s

4
:A

rc
ti

ct
is

 b
in

tu
ro

n
g

5
:C

h
ro

to
ga

le
 o

w
st

o
n

i

6
:P

ar
ad

o
xu

ru
s

h
er

m
ap

h
ro

d
it

u
s

7
:C

o
p

sy
ch

u
s

m
al

ab
ar

ic
u

s

8
:D

ic
ru

ru
s

p
ar

ad
is

eu
s

9
:P

av
o

 m
u

ti
cu

s
D

el
ac

o
u

r

1
0

:M
el

o
ga

le
 p

er
so

n
at

a
G

eo
ff

ro
y

1
1

:M
el

o
ga

le
 m

o
sc

h
at

a
G

ra
y

1
2

:N
yc

ti
ce

b
u

s
p

yg
m

ae
u

s

1
3

:S
p

iz
ae

tu
s

ci
rr

h
at

u
s

lim
n

ae
et

u
s

1
4

:A
th

er
u

ru
s

m
ac

ro
u

ru
s

1
5

:U
rs

u
s

th
ib

et
an

u
s

C
u

vi
er

1
6

:P
an

th
er

a
ti

gr
is

M
az

ak

1
7

:M
ac

ac
a

fa
sc

ic
u

la
ri

s

1
8

:M
ac

ac
a

le
o

n
in

a

1
9

:M
ac

ac
a

ar
ct

o
id

es

2
0

:M
ac

ac
a

m
u

la
tt

a

2
1

:F
el

is
 b

en
ga

le
n

si
s

K
er

r

2
2

:L
u

tr
a

lu
tr

a

2
3

:O
rt

h
ri

o
p

h
is

 m
o

el
le

n
d

o
rf

ii

2
4

:G
eo

em
yd

a
sp

en
gl

er
i

2
5

:C
u

o
ra

 m
o

u
h

o
ti

2
6

:P
la

ty
st

er
n

o
n

 m
eg

ac
ep

h
al

u
m

2
7

:P
et

au
ri

st
a

p
et

au
ri

st
a

2
8

:R
at

u
fa

 b
ic

o
lo

r

2
9

:C
u

o
n

 a
lp

in
u

s

3
0

:P
yt

h
o

n
 m

o
lu

ru
s

3
1

:P
yt

h
o

n
re

ti
cu

la
tu

s

3
2

:P
h

as
ia

n
u

s
co

lc
h

ic
u

s

3
3

:T
ra

ch
yp

it
h

ec
u

s
d

el
ac

o
u

ri

3
4

:T
ra

ch
yp

it
h

ec
u

s
p

h
ay

re
i

3
5

:U
rs

u
s

th
ib

et
an

u
s

3
6

:M
ic

h
el

ia
 m

ed
io

cr
is

 D
an

d
y

3
7

:A
rd

is
ia

 s
ilv

es
tr

is

3
8

:A
rd

is
ia

 b
re

vi
ca

u
lis

3
9

:P
o

d
o

ca
rp

u
s

fl
eu

ry
i

4
0

:P
ap

h
io

p
ed

ilu
m

 h
ir

su
ti

ss
im

u
m

4
1

:P
ap

h
io

p
ed

ilu
m

 c
al

lo
su

m

4
2

:D
en

d
ro

b
iu

m
 A

m
ab

ile

4
3

:K
ad

su
ra

 c
o

cc
in

ea

4
4

:H
o

p
ea

 h
an

an
en

si
s

4
5

:M
ad

h
u

ca
 p

as
q

u
ie

ri

4
6

:F
ag

ra
ea

 f
ra

gr
an

s

4
7

:A
q

u
ila

ri
a

cr
as

sn
a

P
ie

rr
e

ex
 L

ec
o

m
te

4
8

:P
o

d
o

ca
rp

u
s

b
re

vi
fo

liu
s

4
9

:B
is

ch
o

fi
a

tr
if

o
lia

ta

5
0

:R
h

yn
ch

o
st

yl
is

 g
ig

an
te

a

5
1

:P
h

al
ae

n
o

p
si

s

5
2

:A
er

id
es

 f
al

ca
ta

5
3

:E
ry

th
ro

p
h

lo
eu

m
 f

o
rd

ii
O

liv
er

5
4

:D
en

d
ro

b
iu

m
 a

n
o

sm
u

m

5
5

:D
al

b
er

gi
a

to
n

ki
n

en
si

s

#
Im

a
g
e
s

Species ID

Figure 2: The statistics of image distribution of species in the dataset. Each species is represented

by a pair of ID and scientific name.

In addition, we applied basic data augmentation techniques for training, including random
color manipulation, pixel color scaling, horizontal and vertical flipping.

Table 3: Parameter settings for training phase

Parameter Value

Number of training steps 115,000

Batch size 32

Learning rates [0.01, 0.001, 0.0001]

Learning boundaries [45000, 95000]

When the training is done, we evaluate the model by using the test set. Figure 3(a) shows

TRINH THI ANH LOAN, et al. 23

the behavior of loss functions for the training and validation sets. As can be observed, the
two loss curves are very close to each other, indicating that the model has captured perfectly
well the underlying structure of the data and is expected to perform equally in the test set.
Figure 3(b) reveals the classification accuracy on the validation set during the training where
the model yields a final accuracy of 97.1%.

(a) (b)

Figure 3: (a) Training and validation loss curves of our model, (b) Accuracy curve on the validation

set.

4. EXPERIMENTS

4.1. Transfer learning of models

To have comparative results, we have included two state-of-the-art methods including
MobileNetV2 [13] and InceptionV3 [17]. Specifically, we have adopted the transfer learning
technique to fine-tuning these models. Both the MobileNetV2 an InceptionV3 are provided
as off-the-shelf methods at the Tensorflow libarary (i.e., Keras packet)3. The two models
have been pre-trained on the ImageNet dataset4 with 1000 classes. The intuition of the
fine-tuning technique is that we will unfreeze several top layers of a pre-trained model, add a
new classification head, and retrain the model. It is, however, important to note that we are
re-training only the unfreezed layers and the newly added classification head. The weights
associated to the bottom layers are not updated during the fine-tuning process. In doing so,
the model is adapted to learn new features particular to the new dataset.

Specifically, for each model we have added a classification head consisting of a FC layer
having K outputs followed by a Softmax activation to produce a prediction vector (i.e.,
K = 56). Using the FC layer for classification is a standard way used in many CNN models
in the literature. Besides, we also study an additional head for classification that consists of
a convolutional layer, an average pooling, a flatten layer, and finally a Softmax activation

3https://www.tensorflow.org/tutorials/images/transfer learning
4https://image-net.org/index.php

24 AN EFFECTIVE DEEP LEARNING MODEL FOR RECOGNITION OF ANIMALS

function. These new variants are denoted as MobileNetV2b and InceptionV3b in Table 4.
All the models require an input size of 192× 192× 3.

Table 4: Fine-tuning settings of two models

Model # Layers Start tuning layer Classification head

MobileNetV2 156 100 FC layer (K) + Softmax

InceptionV3 312 250 FC layer (K) + Softmax

MobileNetV2b 156 100 Conv + AvgPool + Flatten + Softmax

InceptionV3b 312 250 Conv + AvgPool + Flatten + Softmax

To demonstrate how the new classification head works, taking the MobileNetV2b for
instance, the last layer before appending the classification head has the shape of 6×6×1280.
Hence, we continue adding a convolutional layer having the filter size of 3× 3, stride 2, the
number of channels K. The output of this layer has the volume of 3 × 3 × K. We then
append an average pooling with stride 3 and filter size of 3× 3, resulting in a new output of
1× 1×K. Finally, we employ the flatten layer followed by the Softmax function to create a
K-dimensional feature vector for prediction.

The number of layers and the layer onwards we start the fine-tuning are all detailed in
Table 4. In addition, we have set the number of epochs (i.e., 40), batch size (i.e., 32), and the
learning rate (i.e., 0.00001) for re-training the two models. The dataset used for fine-tuning
is exactly applied as used for training our proposed system. The two models are fine-tuned
using the training and validation sets. Figure 6 shows the loss functions and accuracy scores
of the two models.

(a) (b)

Figure 4: Training loss and accuracy of the two baseline models: (a) MobileNetV2 and (b)
InceptionV3.

TRINH THI ANH LOAN, et al. 25

4.2. Results and discussion

This part is dedicated to the presentation of the results of all the studied methods. We
have computed the classification accuracy on the test set. Table 5 shows the accuracy results
of our method, MobileNetV2, and InceptionV3. As can be observed, the proposed method
significantly outperforms MobileNetV2 with a substantial gap of 6.5%. Our model is even
superior to the heavy-weight InceptionV3 model with an improvement in accuracy of 2.6%.
The obtained result consistently confirms the performance of our method as we have achieved
the same scores on the validation set (i.e., 97.1%). For the impact of classification head, it
was found that using dense layer gives a slight improvement of accuracy as indicated by the
gap between the MobileNetV2 and MobileNetV2b, for instance.

Table 5: Classification results and inference time

Model Accuracy FPS (GPU) FPS (CPU)

MobileNetV2 91.1% 53.5 17.1
MobileNetV2b 90.4% 50.2 17.0
InceptionV3 95.0% 31.1 14.7
InceptionV3b 94.8% 28.6 14.3
Our method 97.6% 130.9 113.5

Figure 5 provides more insight of our method in the means of confusion matrix of recog-
nition performance for 56 object classes. As can be seen, the proposed network is able to
give perfect accuracies (100%) for many classes. There are only a few animals or plants
that the proposed method works less effectively, for example, the following species IDs: 10
(81%), 14 (88%), 21 (85%), and 23 (87%). To further explore the source of this drop, we
have manually checked the images in the test set of these classes and it was found out that
the number of testing images is relatively small (e.g., around 10 images). Consequently, if
one or two images are wrongly classified, the corresponding accuracy is just near 80%.

Table 5 also presents the empirical running times of three models on a GPU (GTX 1070
Ti) and a CPU (Core i7-7700). Here FPS is computed as the mean value from the running
times of processing all images in the test set. For each image, the following tasks are taken
into account when measuring the processing times: image loading from external disk, size
normalization, and inference. To have stable timing measures, we have reported the results
after three runs of model. Our method works very efficiently with the inference speed of
around 130.9 FPS on a moderate GPU configuration or 113.5 FPS on a CPU machine. The
proposed method is about two times faster than the efficient MobileNetV2. Especially, when
working on a CPU enviroment, the proposed model even achieves more appealing speeds.
The obtained results are very promising even thought the network design is conceptually
simple and straightforward.

In addition, we also conducted an experiment to verify the efficiency of the proposed
model when running on mobile platforms. To this aim, we have converted the trained model
to the one that can work on mobile environment with TensorFlow.js library5. A simple
application has been developed using React Native6 and deployed on a mobile configuration

5https://www.tensorflow.org/js/guide/conversion
6https://reactnative.dev/

26 AN EFFECTIVE DEEP LEARNING MODEL FOR RECOGNITION OF ANIMALS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
Predicted Label

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

32
33

34
35

36
37

38
39

40
41

42
43

44
45

46
47

48
49

50
51

52
53

54
55

Tr
ue

 L
ab

el
96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0

0 100 0

0 0 100 0

0 0 0 100 0

0 0 0 0 100 0

0 0 0 0 0 100 0

0 0 0 0 0 0 100 0

0 0 0 0 0 0 0 100 0

0 0 0 0 0 0 0 0 100 0

0 0 0 0 0 0 0 0 0 100 0

0 0 0 0 0 7 12 0 0 0 81 0

0 0 0 0 0 0 0 0 0 0 0 100 0

0 0 0 0 0 0 0 0 0 0 0 0 97 0 3 0 0 0 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0 0 0 0 0 95 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 5 0 0 0 88 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0

0 100 0

0 85 0 0 0 0 0 0 0 15 0

0 100 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 0 0 0 83 0

0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 87 0

0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 98 0

0 100 0

0 100 0

0 100 0

0 5 0 0 0 0 0 0 0 95 0

0 100 0

0 96 0 4 0

0 100 0

0 100 0

0 100 0

0 100 0

0 98 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 95 0 0 0 3 0 0 0 0 0 0 0 0 2 0 0 0 0 0

0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 95 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0

0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 5 2 0 1 85 1 0 0 0 0 0 0 0 2 0 0 0 4 0

0 97 0 0 0 0 0 0 0 0 0 3 0 0 0

2 0 97 0 0 0 0 0 0 1 0 0 0 0 0

0 6 0 0 0 94 0 0 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 2 0 96 0 0 0 0 0 0 0 0 0 0

0 100 0 0 0 0 0 0 0 0 0

0 100 0 0 0 0 0 0 0 0

0 100 0 0 0 0 0 0 0

0 98 2 0 0 0 0 0

0 3 2 0 0 0 0 0 0 0 0 91 4 0 0 0 0

0 4 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 4 0 0 0 90 0 0 0 0

0 96 0 4 0

0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 96 0 0

0 2 0 0 0 0 0 0 0 3 0 5 0 90 0

0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 98
0

20

40

60

80

100

Sc
al

e
Figure 5: Confusion matrix of our method. The labels of animals and plants are derived
from those in Figure 2.

(i.e., iPhone XR) by using the client tool of Expo Go. Figure 6 shows a report of running
times given an input image having the size of 800 × 800. We provide here the timings for
different steps, including: size normalization (i.e., resizing to model’s input size of 192×192),
image decoding (e.g., JPEG, PNG, or BMP), and finally inference for label prediction. As
can be seen, the proposed model works very efficient with the total running times of 295
milliseconds that is appropriate for deployment in real life scenarios.

5. CONCLUSIONS

In this work, we have proposed an effective CNN architecture to handle the problem
of image classification specific to the context of protecting the endangered species. The
proposed method exploits the multi-scale feature representation in both the dimensions of

TRINH THI ANH LOAN, et al. 27

Figure 6: The demonstrated application of animal and plant recognition

Input image (800800)
Running times (milliseconds)

Predicted label Size
normalization

Image
decoding

Inference Total

86 135 74 295
Pavo

muticus Delacour

Figure 7: Demonstrated running times on mobile device of the proposed method

network width and depth. The former is accomplished by employing the Inception residual
network that is composed of convolutions with different filter sizes (e.g., 1 × 1 and 3 × 3).
The latter is handled by using more convolutions of stride 1 to create a deeper network.
To make the model small and efficient, we carefully design and minimize the number of
channels to every convolutional layer. Apart from the proposed model, we also perform
transfer learning of the two state-of-the-art methods, MobileNetV2 and InceptionV3, on our
specific dataset. Experimental results showed that our method outperforms the two others in
terms of classification accuracy as well as processing time. Especially, the proposed network

28 AN EFFECTIVE DEEP LEARNING MODEL FOR RECOGNITION OF ANIMALS

can work on CPU environment with real-time speed. The obtained results enable our CNN
model to be deployment on portable computation devices. A next plan of fully optimizing
the mobile application of this work has been scheduled and will be released soon.

ACKNOWLEDGEMENTS

This research is funded by Vietnam National Foundation for Science and Technology
Development (NAFOSTED) under grant number 102.05-2020.02

REFERENCES

[1] A. Berg, J. Deng, and L. Fei-Fei, “Large scale visual recognition challenge 2010,” 2010. [Online].

Available: www.imagenet.org/challenges

[2] L. G. Hafemann, L. S. Oliveira, and P. Cavalin, “Forest species recognition using deep convo-

lutional neural networks,” in 2014 22nd International Conference on Pattern Recognition,
2014, pp. 1103–1107.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–
778.

[4] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, “Improving

neural networks by preventing co-adaptation of feature detectors,” arXiv:1207.0580 [cs.NE],
2012.

[5] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and

H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision applications,”

arXiv:1704.04861 [cs.CV], 2017.

[6] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, “Squeezenet:

Alexnet-level accuracy with 50x fewer parameters and ¡0.5mb model size,” arXiv:1602.07360
[cs.CV], 2016.

[7] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing

internal covariate shift,” arXiv:1502.03167 [cs.CV], 2015.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolu-

tional neural networks,” in Advances in Neural Information Processing Systems, F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds., vol. 25. Curran Associates, Inc., 2012.

[9] Z. Miao, K. M. Gaynor, J. Wang, Z. Liu, O. Muellerklein, M. S. Norouzzadeh, A. McInturff,

R. C. K. Bowie, R. Nathan, S. X. Yu, and W. M. Getz, “Insights and approaches using deep

learning to classify wildlife,” Scientific Reports, vol. 9, no. 1, pp. 1–9, 2019.

[10] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” in

Proceedings of the 27th International Conference on International Conference on Ma-
chine Learning, ser. ICML’10, 2010, p. 807–814.

www.imagenet.org/challenges

TRINH THI ANH LOAN, et al. 29

[11] T.-A. Pham, “Semantic convolutional features for face detection,” Machine Vision
and Applications, vol. 33, no. 3, pp. 1–18, 2021. [Online]. Available: https:

//doi.org/10.1007/s00138-021-01245-y

[12] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,

A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “Imagenet large scale visual recognition

challenge,” International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252,
2015.

[13] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: Inverted resid-

uals and linear bottlenecks,” arXiv:1801.04381 [cs.CV], 2019.

[14] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recog-

nition,” arXiv:1409.1556 [cs.CV], 09 2014.

[15] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-

houcke, and A. Rabinovich, “Going deeper with convolutions,” in 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1–9.

[16] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-resnet and the

impact of residual connections on learning,” in Proceedings of the Thirty-First AAAI Con-
ference on Artificial Intelligence, ser. AAAI’17. AAAI Press, 2017, pp. 4278—-4284.

[17] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception archi-

tecture for computer vision,” arXiv:1512.00567 [cs.CV], 2015.

[18] M. Willi, R. T. Pitman, A. W. Cardoso, C. Locke, A. Swanson, A. Boyer, M. Veldthuis, and

L. Fortson, “Identifying animal species in camera trap images using deep learning and citizen

science,” Methods in Ecology and Evolution, vol. 10, no. 1, pp. 80–91, 2019.

[19] S. Zhang, X. Wang, Z. Lei, and S. Z. Li, “Faceboxes: A cpu real-time and accurate unconstrained

face detector,” Neurocomputing, vol. 364, pp. 297–309, 2019.

[20] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely efficient convolutional neural

network for mobile devices,” arXiv:1707.01083 [cs.CV], 2017.

Received on July 20, 2021
Accepted on December 29, 2021

https://doi.org/10.1007/s00138-021-01245-y
https://doi.org/10.1007/s00138-021-01245-y

	INTRODUCTION
	RELATED WORK
	THE PROPOSED APPROACH
	Network architecture
	Dataset and training

	EXPERIMENTS
	Transfer learning of models
	Results and discussion

	CONCLUSIONS

