
Journal of Computer Science and Cybernetics, V.37, N.3 (2021), 185–200

DOI 10.15625/1813-9663/37/3/16253

USING COMBINATORIAL MAPS FOR ALGORITHMS
ON GRAPHS

ROBERT CORI

Université de Bordeaux, Bordeaux, France

Abstract. In this paper the representation of the embedding of a graph on a surface by a pair of

permutations is considered. This representation is used to implement efficiently some algorithms for

graphs. The more important ones are the generation of all the spanning trees and the computation

of the Tutte polynomial. A detailed presentation of a recursive formula due to I. Pak for the Tutte

polynomial of the complete graphs is also given.

Keywords. Graph algorithms; Topological embeddings; Spanning trees Tutte polynomials.

1. INTRODUCTION

The aim of this paper is to come back to a data structure representation of graph by
permutations. This originated in the years 1960-1970 by contributions due to J. Edmonds
[7], A. Jacques [11], W. Tutte [22] in order to consider the embedding of a graph in a surface
as a combinatorial object. Some algebraic developments where suggested in [4] and [12].
It was also used for implementation in different situation, like planarity testing by H. de
Fraysseix and P. Rosenstiehl [6], computer vision by G. Damiand and A. Dupas [5] or formal
proofs by G. Gonthier [9].

There are two main reasons to come back to this old combinatorial data structure. The
first one is the publication of the Volume 4 (Fasc. 4) of the book of D. Knuth ”The Art
of Computer Programming”. This booklet contains an algorithm for the generation of all
spanning trees of a graph. It is interesting to compare this algorithm using the dancing links
data structure introduced by this author in [14] to the one using combinatorial maps for
deletion and contraction of an edge we present here.

The second reason is the renewal of interest to Tutte Polynomials in many recent papers
like those O. Bernardi in [1] and with T. Kalman and A. Postnikov in [2]. The use of
combinatorial maps to compute the Tutte polynomials we present here may be compared to
other recent proposals for computing these polynomials (see [3, 17, 19]).

This paper contains many algorithms written like computer programs but also some com-
binatorial results, it is organized as follows. In the next section we introduce combinatorial

Dedicated to Professor Phan Dinh Dieu on the occasion of his 85th birth anniversary.

*Corresponding author.
E-mail addresses: robert.cori@labri.fr.

© 2021 Vietnam Academy of Science & Technology

mailto:robert.cori@labri.fr


186 ROBERT CORI

maps as a mathematical object and an algorithmic data structure to represent graphs. In
Section 3, we recall some facts on the representation of topological graphs by this mathemat-
ical object, the readers interested by this aspect should consult the books: [15] and [16]. In
Section 4 we show how the combinatorial maps can be used as a data structure for classical
algorithms like Depth First Search and the deletion and contraction of an edge which are
central in graph theory. Section 5 is devoted to an algorithm for generating all spanning trees
of a graph which is inspired by that given in [13]. The last two sections are concerned with
Tutte polynomials associated to a graph. In Section 6 the definition of these polynomials
are recalled and a way to compute them is proposed. In Section 7 we come back to a result
given by I. Pak on the computation of the Tutte polynomials of the complete graph which
contains a nice bijection.

Notice that when speaking of a graph in this paper we mean an undirected graph G =
(V,E) where V is the set of vertices and E a set of edges, each edge e having two end
vertices as end points vi, vj which may have loops (that means that vi may be equal to vj)
and multiple edges (that allows two edges to have the same endpoints).

2. THE TWO PERMUTATIONS DEFINING A COMBINATORIAL MAP

Permutations

We will use permutations as a tool for the representation of a graph. A permutation α
is usually defined as a one to one function of the set {1, 2, . . . , n} on itself. It is represented
by the sequence of the n integers α(1), α(2), . . . , α(n), α(i) satisfies 1 ≤ α(i) ≤ n and
all the α(i) are all different since α is a one to one function. We will write algorithms
for permutations which will be implemented by programs where an array will contain this
sequence, hence we define a permutation of size n as an array of length n containing all
the integers {0, 1, . . . , n − 1}. This will allow a quick transformation of our algorithms
into programs in languages like C, Java or Python, for which α[0] is the first element of the
array α.

The composition of permutations α, β will be used denoting αβ(i) = α(β(i)).

Example 1. For instance considering the two permutations α = 4, 0, 1, 7, 2, 8, 6, 5, 3, 9 and
β = 1, 0, 3, 5, 9, 2, 7, 6, 4, 8 we have αβ = 0, 4, 7, 8, 9, 1, 5, 6, 2, 3 while βα = 9, 1, 0, 6, 3, 4, 7, 5, 8.

A cycle of a permutation α is a sequence (i1, i2, . . . , ip) such that ij+1 = α(ij) for j < p
and α(ip) = i1. The permutation α in the example above has four cycles

C1 = (0, 4, 2, 1), C2 = (3, 7, 5, 8), C3 = (6), C4 = (9).

One can write the representation of α by its cycles like

α = (0, 4, 2, 1)(3, 7, 5, 8)(6)(9).

As a training in order to be familiar with our description of algorithms we give the simple
algorithm finding the cycles of a permutation and computing their number.

Transpositions

A transposition τ on {0, 1, 2, . . . , n− 1} is a permutation with one cycle of length 2 and
n− 2 cycles of length 1. Such a permutation can be written as a sequence, as follows

1, 2, . . . i− 1, j, i+ 1 . . . j − 1, i, j + 1, . . . n,



USING COMBINATORIAL MAPS FOR ALGORITHMS ON GRAPHS 187

1 Function nbCycles(α): /* Count the number of cycles of a permutation α */

Data: The permutation α on n elements and a boolean array visited initialized to false.
Result: The number of cycles of α

2 nbC ←− 0;
3 for j ← 0 to n− 1:
4 if (not visited[j])then
5 visited[j]←− true;
6 nbC ←− nbC + 1;
7 k ←− j;
8 while σ[k] ̸= j do
9 visited[σ[k]]←− true;

10 k ←− σ[k] ;

11 end

12 end

13 return nbC;

where i < j are the elements in the cycle of length 2.
Or as the decomposition into cycles

(0)(1) · · · (i, j) · · · (n− 1).

We will prefer here the notation τ = (i, j), hence ignoring the fixed points in the decom-
position of τ into cycles, which is often the case while writing permutations.

Lemma 1. Let α be a permutation and τ = (i, j) a transposition. Then for the permutation
ατ obtained by the composition of α and τ , satisfies one of the two following conditions:

� If i and j are in different cycles of α then these two cycles are merged into one cycle of ατ .

� If i and j are in the same cycle of α then this cycle splits into two cycles of ατ , one containing
i and the other containing j.

Proof. In the two cases we have

ατ(k) = α(k) if k /∈ {i, j}, and ατ(i) = α(j), ατ(j) = α(i).

In the first case the two cycles (i, a1, . . . , ap) and (j, b1, . . . , bq) of α, give the cycle

(i, b1, . . . , bq, j, a1, . . . , ap) in ατ .

In the second case the cycle (i, a1, . . . , ap, j, ap+1, . . . , aq) of α gives the two following
cycles in ατ : (i, ap+1, . . . , aq) and (j, a1, . . . , ap).

Remark 1. The operation of transforming the permutation α into ατ where τ = (i, j) may
be done by exchanging in the array representing it the values of α[i] and α[j]. This is done
in three elementary operations

temp←− α[i]; α[i]←− α[j]; α[j]←− temp.

Combinatorial maps

Definition 1.
A combinatorial map consists of two permutations σ and α on the set {0, 1, . . . , 2m− 1}

such that all the cycles of α have length 2.



188 ROBERT CORI

Example 2. Consider the combinatorial map consisting of the two following permutations
defined by their cycles

σ = (0, 2, 4)(1, 6, 8, )(3, 9, 10)(5, 11, 7), α = (0, 1)(2, 3)(4, 5)(6, 7)(8, 9)(10, 11).

To a combinatorial map one can associate a graph in the following way. The vertices
of this graph are associated to the cycles of σ and the edges are associated to the cycles of
α. More precisely if σ has k cycles denoted C1, C2, . . . , Ck the graph G(σ, α) has k vertices
v1, v2, . . . , vk, to each cycle (i, j) of α is associated an edge with end points vp, vq, such that
Cp is the cycle of σ containing i and Cq is the cycle of σ containing j. Notice that this graph
may have multiple edges if the cycles (i, j) and (i′, j′) of α are such that i, i′ are in the same
cycle of σ and so as j, j′. It may have loops if a cycle (i, j) of α is such that i, j are in the
same cycle of σ. The graph associated to the combinatorial map of Example 2 has 4 vertices
and 6 edges, one for each pair of vertices, it is represented in the figure below.

The elements 1, 2, . . . , 2m defining the permutations σ and α are called here half-edges,
they are also called points or arcs or corners in other papers.

v4 v2

v1

v3

v4 v2

v1

v3

5

7

11

2

4
0

310 9

1

6

8

Figure 1: The graph associated to the combinatorial map of Example 2

Remark 2. For some algorithms modifying a graph it will be useful to allow α to have cycles
of length 1. These cycles should be ignored in the graph represented by such a combinatorial
map.

Proposition 1. The graph associated to a combinatorial map (σ, α) is connected if and only
if the group generated by the permutations σ and α acts transitively on the set of half-edges.
This means that any half-edge i may be reached from the half-edge 0 by a combination of
actions of σ and α. When it is not connected the orbits of the action of the group correspond
to connected components in the graph.

In many algorithms of this paper it will be assumed that the permutation α is such that
α(i) = i+ 1 if i is even and α(i) = i− 1 if i is odd, this α will be called canonical.

3. TOPOLOGICAL EMBEDDINGS OF GRAPHS

The embedding of a graph on an orientable surface may be represented by a combinatorial
map. In this embedding the order in which the edges are met around a vertex is important.
This order is taken into account in the representation by asking that the half edges around
a vertex should be met in a trigonometrical positive (or counterclockwise) rotation as they
appear in each cycle of σ. Taking as example the graph of Figure 1, when representing the
embedding the cycles of σ are

σ = (0, 2, 4)(1, 6, 8)(3, 9, 10)(5, 11, 7).



USING COMBINATORIAL MAPS FOR ALGORITHMS ON GRAPHS 189

Notice that graph above may be embedded in the torus in two different ways, these are
described in Figure 2, where the torus is represented as a square where the top and bottom
boarders are identified as the left and right ones. For these representations the permutations
are

σ1 = (0, 2, 4)(1, 8, 6)(3, 10, 9)(5, 7, 11) and σ2 = (0, 4, 2)(1, 6, 8)(3, 9, 10)(5, 7, 11).

v4 v2

v3

v1

0
2 4

1

6
8

3
10 9

7
11

5
v4 v2

v3 v1

8
6

1
7

11

5

0

4
23

10

9

Figure 2: Two embeddings of the complete graph K4 in the torus

The main interest of this representation is given by the determination of the faces of the
embedding using the permutations.

Proposition 2. In the representation of the embedding of a graph by a combinatorial map
(σ, α) the faces correspond to the cycles of the permutation obtained by the composition of α
and σ.

Proof. When going around one face of the embedding beginning by the half-edge i one goes
around the vertex of this half-edge to the half-edge σ(i) then along the edges of it to the
half-edge α(σ(i)) and so on until one reaches i again. This consists of a visit of all the
elements of the cycle of ασ containing i. ■

The examples of these cycles for the different representations of K4 give 4 cycles for the
first embedding

ασ = (0, 3, 8)(1, 7, 4)(2, 5, 10)(6, 9, 11).

For the others there are 2 cycles

ασ1 = (0, 3, 11, 4, 1, 9, 2, 5, 6)(10, 8, 7),

ασ2 = (0, 5, 6, 9, 11, 4, 3, 8)(1, 7, 10, 2).

As a consequence the genus g of the surface of the embedding satisfies equation (1) below,
where m is the number of cycles of α, n the number of those of σ and f the number of those
of ασ.

m+ 2− 2g = n+ f. (1)

4. CLASSICAL GRAPH ALGORITHMS

Many algorithms on graphs use a searching procedure, that means to follow the edges
in order to visit all their vertices. One of the most popular searching is Depth First Search
that uses adjacency lists for visiting all the neighbors of a vertex, we can write this algorithm



190 ROBERT CORI

using combinatorial maps. We illustrate this method with an algorithm giving the number
of vertices that can be reached by a path starting in a vertex vi. This algorithm may be used
to test the connectivity of a graph, since the graph is connected if and only if the number
of vertices reached by a path from vi is equal to the total number of vertices. Depth first
search was also used to test planarity and building spanning trees with a special property
see: [6, 8, 10].

The algorithm nbCountDfs(i) counts the number of vertices in the connected component
of the vertex incident to the half edge i. First this vertex is visited by turning around the
vertex using the cycle of σ such that all the half-edges incident to that vertex are marked.
Then for all these half-edges j, the half edge k = α(j) is tested, if it was not already visited,
a recursive call to the algorithm is done by nbCountDfs(k).

1 Function nbCountDfs(i, visited): /* */

Data: i is a half edge of the start vertex, visited is a boolean array initialized to false. The
combinatorial map is given by the two permutations σ, α represented as arrays of
integers.

Result: The number of vertices in the component of the start vertex
2 nbF ←− 0;
3 visited[i]←− true;
4 k ←− i;
5 while σ[k] ̸= i do
6 visited[σ[k]]←− true;
7 k ←− σ[k] ;

8 end
9 k ←− i;

10 repeat
11 j ←− α[k];
12 if (not visited[j])then
13 nbF ←− nbF + 1 + nbCountDfs(j, visited);
14 end
15 k ←− σ[k];

16 until (k = i);
17 return nbF ;

We now consider two fundamental operations on a graph which are often used in graph
theory, these are the deletion and the contraction of an edge. With these two operations one
builds the minors of a graph.

The deletion operation is very simple it has effect to obtain a graph with one edge less
than itself. When programming this operation one can keep the same half-edges and consider
that a half-edge i such that α[i] = i does not belong to an edge of the graph. Hence the
deletion in the combinatorial map σ, α of the edge composed by the two half-edges i and j
consists in the operation of replacing α by ατ , τ being the transposition (i, j). Doing this
transformation costs 3 elementary operations and after that one can do a reinsertion of it by
the same elementary operations. Hence the function un − delete(i, j) will be the same but
applied to a combinatorial map such that α(i) = i and α(j) = j.



USING COMBINATORIAL MAPS FOR ALGORITHMS ON GRAPHS 191

1 Function delete(i, j): /* Delete the edge consisting of the two half edges i, j
*/

Data: i, j are half edges such that α[i] = j and α[j] = i
Result: The edge is deleted, then i and j are fixed points of α

2 α←− ατ ;

The operation of contraction of two vertices v, v′ connected by an edge e with the two
half-edges i in v and j in v′ consists in replacing these two vertices by one vertex which will
be incident to all the edges incident with v or v′ except e itself. This operation merges the
two cycles of σ corresponding to the vertices v and v′ and deletes e. Lemma 1 expresses
that this merging can be done by replacing σ by στ where τ = (i, j). Notice that if one
wants to perform the inverse operation, returning to the initial map, the multiplication by τ
can be also used since τ2 is equal to the identity. This fact will be useful in the algorithms
considered in the next sections.

1 Function contract(i, j): /* Contract the edge consisting of the two half edges

i, j */

Data: i, j are half edges such that α[i] = j, α[j] = i and i and j are in different cycles of σ
Result: The edge is contracted, then i and j are in the same cycle of σ

2 α←− ατ ;
3 σ ←− στ

A bridge in a connected graph is an edge which deletion disconnects the graph. Using the
algorithms already considered we can determine if an edge e is a bridge by deleting this edge
then count the number of vertices which can be reached by a path starting from a vertex
incident to e. The edge e is a bridge if and only if this number is less than the total number
of vertices (which is equal to the number of cycles of σ).

1 Function isBridge(i, j): /* Determine if the edge consisting of the two

half edges i, j is a bridge */

Data: i, j are half edges such that α[i] = j and α[j] = i
Result: The result is true if after the deletion of this edges the graph is not

connected, and false otherwise
2 n←− nbCycles(σ);
3 delete(i, j);
4 k ←− nbCountDfs(i);
5 return (k < n);

5. ALL SPANNING TREES

Recall that a spanning tree of a connected graph G = (V,E) with n vertices is a subset
T of E containing n− 1 edges that does not contain a cycle. Hence for any pair of vertices
v, v′ of G there exists a unique path using edges in T . In a relatively recently written chapter
of The Art of Computer Programming [13] D. E. Knuth proposed an algorithm to generate
all the spanning trees of a graph he uses the dancing links with doubly linked lists. We
introduce here an algorithm using the data structure of combinatorial maps.

In this Section and the nexts we will consider that G with n vertices and m edges is
represented by a combinatorial map (σ, α) such that



192 ROBERT CORI

α = (0, 1)(2, 3) · · · (2m− 2, 2m− 1).

We will represent the spanning tree by an array containing n− 1 even integers i1, i2, . . . in−1

such that the tree T consists of the edges

{i1, i1 + 1}, {i2, i2 + 1}, · · · , {in−1, in−1 + 1}.

For the graph represented in Figure 1 the arrays [0, 2, 4] and [4, 6, 8] represent spanning
trees.

In order to build all spanning trees we will use un array T ′ of even numbers i1, i2, . . . , ik
satsifying i1 < i2, . . . , < ik such that the set of edges {i1, i1 +1}, {i2, i2 +1}, · · · , {ik, ik +1}
contains no cycle and we will try to add an edges e = {2j, 2j + 1} satisfying 2j > ik and
such that e does not add a cycle to T ′. Repeating this until k = n− 1 will give a spanning
tree. A recursive procedure repeating this construction will provide our full algorithm.

The key point for the efficiency of the algorithm is the following.

Lemma 2. In a connected graph G = (V,E) let T ′ be a subset of edges that do not contain
a cycle, and let e be an edge not in T ′. Then T ′ ∪ {e} contains a cycle if and only if e is a
loop in the graph obtained from G by contracting all the edges in T ′.

Proof. In a cycle e1, e2, . . . ek, e of a graph G, the contraction of the edges e1, e2, . . . ek will
give a unique vertex obtained by merging the half edges adjacent to both endpoints of all
the ei. In this graph the edge e has both endpoints adjacent to this vertex, hence it is a
loop. ■

We also have.

Proposition 3. In a connected graph G = (V,E) let E′ be a subset of E that does not
contain a cycle. Then all the spanning trees of G containing E′ are obtained by adding to
E′ each of the spanning trees of the graph GE′ obtained from G by contracting all the edges
in E′.

Proof. We proceed by induction on the number k of edges in E′.

If k = 1 then E′ = {e} let vi and vj be such that e = {vi, vj}, let T ′ be a spanning
tree of the graph Ge obtained by contracting e in G. Then each edge in T ′ has at most one
among vi, vj as endpoint, adding the edge e to T ′ and returning will consist in separating
the vertex obtained by the contraction of e into two vertices vi and vj and adding an edge
between them. This transforms the spanning tree T ′ of Ge into a spanning tree of G. Going
from E′ having k elements to E′ with k + 1 elements may be done by similar arguments. ■

The whole algorithm can now be written. To check that k, k + 1 is a loop in the graph
obtained by the contraction of the edges in E′ one checks if k and k+ 1 are not in the same
cycle of the permutation σ obtained after performing the contractions. The recursive proce-
dure needs to un-contract after contracting but we observe that the three basic operations
for contraction performed twice rebuild the initial combinatorial map representing the graph.

6. TUTTE POLYNOMIALS

In two seminal papers ([20, 21]) W. T. Tutte introduced a polynomial associated to a
graph which contains many informations on it. The definition of this polynomial uses the



USING COMBINATORIAL MAPS FOR ALGORITHMS ON GRAPHS 193

1 Function allTrees(tempTree,i): /* Display all the spanning trees of the map

(σ, α), where α is canonical. */

Data: i is an integer and tempTree is an array of integers containing the label of the edges
determining a partial tree of i− 1 edges.

Result: Display all the spanning trees which contain the edges in tempTree and edges
with labels greater than those.

2 n is the number of cycles of σ;
3 m is the number of cycles of α;
4 if i= n-1 then
5 display(tempTree) ;
6 else
7 if i = 0 then
8 k ←− 0;
9 else

10 k ←− tempTree[i− 1] + 2;
11 end
12 while k < 2 ∗m do
13 if (not inSameCycle(σ, k, k + 1))then
14 tempTree[i]←− k;
15 contract(k,k+1);
16 allTrees(i+1,tempTree);
17 (un)Contract(k,k+1);

18 end
19 k ←− k + 2;

20 end

21 end

association of a monomial in two variables to any spanning tree of this graph, the Tutte
polynomial is the the sum of all these monomials.

We consider a connected graph (G,E) where the edges are labelled by non negative
integers such that no two different edges have the same label, this gives a total order on its
edges.

Definition 2. Let T be spanning tree of G and e an edge of T , the deletion of the edge e in
T divides this tree into two subtrees T ′ and T ′′. Denote Cut(T, e) the subset of E consisting
of all the edges e′ = {vi, vj} such that vi is in T ′ and vj is in T ′′, clearly e ∈ Cut(T, e).
The edge e is internally active with respect to T if it has the minimal label among all the
elements of Cut(T, e).

Definition 3. Let T be spanning tree of G and e = {vi, vj} an edge not in T . Denote
Cyc(T, e) the subset of E consisting the edge and all the edges in the path in T with end
points vi and vj , Cyc(T, e) is then an elementary cycle of G. The edge e is externally active
with respect to T if it has the minimal label among all the elements of Cyc(T, e).

The monomial mon(T ) associated to the spanning tree T is xayb where a is the number
of edges internally active with respect to T and b the number of edges externally active with
respect to T . The Tutte polynomial TG(x, y) of the graph G is the sum of monomial Mon(T )
for all the spanning trees T of G.

Example 3. Consider the cycle graph Cn having n vertices v1, v2, · · · , vn and n edges labelled



194 ROBERT CORI

e1 = {v1, v2}, ei = {vi, vi+1} for i < n and en = {v1, vn}. Let Ti be the spanning tree of G
obtained by deleting ei in E. Then we have that T1 has one externally active edge (namely e1)
and no internally active edge), T2 has one internally active edge (namely e1) and no externally
active edge, and for i > 1 Ti has i− 1 internally active edge (namely e1, e2, . . . , ei−1) and no
externally active edge. Hence the Tutte polynomial of Cn is y + x+ x2 + · · ·+ xn−1.

The main results concerning these polynomials are summarized in the Theorem below.

Theorem 1. The Tutte polynomial of the graph G = (V,E) does not depend of the order
of the labels of the edges in E. Moreover for any edge e the Tutte polynomial TG of G may
be determined using the Tutte polynomial TG′ of the graph G′ obtained from G by deleting e
and the polynomial TG′′ of the graph G′′ obtained by contracting e as follows:

1. If the graph has only one edge e then TG = y if e is a loop and n TG = x if e is a bridge.

2. If the edge e is a loop then TG = yTG′.

3. If the edge e is a bridge then TG = xTG′′.

4. If e is neither a loop nor a bridge then TG = TG′ + TG′′.

The following Theorem allows to compute the monomial associated to a spanning tree
of a connected graph.

Theorem 2. Let G = (V,E) be a connected graph where the edges are labelled e1, e2, . . . , em
and let T be a spanning tree of G. For 1 ≤ i ≤ m let Gk be the obtained from G by contracting
all the edges ei such that i > k and ei ∈ T and deleting all the edges such that i > k and
ei /∈ T then we have for 1 ≤ k ≤ m

• ek is internally active with respect to T if and only if ek ∈ T and ek is a bridge of Gk.

• ek is externally active with respect to T if and only if ek /∈ T and ek is a loop of Gk.

Proof.

If ek ∈ T the ek is internally active if Cut(T, ek) does not contain an edge ej with j < k,
we notice that this is equivalent to the fact that ek is a bridge of Gk.

If ek /∈ T the ek is externally active the cycle Cyc(T, ek) contains only edges ej such that
j > ek this is equivalent to the fact that ek is a loop of Gk. ■

Using this proposition we obtain the following algorithm determining the monomial
Mon(T ). This algorithm examines all the edges of the graph in reverse order of their label.

� If the edge {j, j+1} is an element of the tree T then it is candidate to be an internally
active edge, this happens if it is a bridge in the graph obtained by contracting the
edges in T with label greater than j. To check this fact we use the procedure described
at the end of Section 4, since the current number of vertices of the graph is given by
the variable nbV ertices this procedure does not need to determine it. Then this edge
is contracted and the number of vertices decreased by 1.

� If the edge {j, j + 1} is not an element of the tree T then it is candidate to be an
externally active edge, this happens if it is a loop in the graph obtained by contracting
the edges in T with label greater than j. To check this fact we determine if j and j+1
are in the same cycle of the permutation σ of the current graph obtained by performing
the successive contractions.



USING COMBINATORIAL MAPS FOR ALGORITHMS ON GRAPHS 195

The full Tutte polynomial is obtained by adding all the monomials obtained by using a
new procedure which is obtained from the procedure allT rees in replacing display(tempTree)
by add Monomial(tempTree) to the current polynomial.

1 Function monomialOf(thisTree): /* Find the monomial xayb associated to the

spanning tree thisTree for the Tutte polynomial */

2 n←− numberOfCycles(σ);
3 m←− numberOfCycles(α);
4 j ←− 2m− 2;
5 nbV ertices←− n;
6 a←− 0;
7 b←− 0;
8 while j ≥ 0 do
9 if (nbV ertices ≥ 2) and (j = thisTree[nbV ertices− 2])then

10 if isBridge(j,j+1)then
11 a←− a+ 1 ;
12 end
13 contract(j, j + 1);
14 nbV ertices←− nbV ertices− 1 ;

15 else
16 if inSameCycle(σ, j, j + 1)then
17 b←− b+ 1 ;
18 delete(j, j + 1);

19 end

20 end
21 j ←− j − 2 ;

22 end

23 return (xayb);

7. THE TUTTE POLYNOMIAL OF COMPLETE GRAPHS

The complete graph with n vertices denoted Kn has n vertices v1, v2, . . . , vn and all
pairs of vertices vi, vj determine an edge. The number of its edges is then the binomial
coefficient

(
n
2

)
.

The Tutte polynomial of this graph interested many researchers and a formula for the
exponential generating function of these polynomials is given in [8]. Less known is a simple
recursive formula proposed by I. Pak in an unpublished manuscript available in a web page
(see [18]) where the proof is outlined. it seems interesting to give here this proof in more
details since it relies on a nice bijection.

This allows to compute this polynomial thanks to this recursive formula which helps to
obtain it. Let TKn denote the Tutte polynomial of Kn, by convention we denote TK1 = 1,
we have TK2 = x. The Tutte Polynomial of K3 which is also the cycle C3 is obtained in
Example 3 and is equal to y + x+ x2, TK3 = x2 + x+ y.

Theorem 3. For n > 2 the Tutte polynomial TKn may be computed from the polynomials
TKi for 1 ≤ i < n using the equation

TKn(x, y) =
n−1∑
p=1

(
n− 2

p− 1

)
(x+ y + y2 + · · · yp−1)TKp(1, y)TKn−p(x, y), (2)



196 ROBERT CORI

with the convention that
(
n
0

)
= 1.

Let us first illustrate this theorem by showing how to compute TK4 . Applying equation
(2) with n = 4 we have

TK4 =

(
2

0

)
xTK3 +

(
2

1

)
(x+ y)TK2(1, y)TK2 +

(
2

2

)
(x+ y + y2)TK3(1, y).

Which gives

TK4 = x(y + x+ x2) + 2(x+ y)(1)(x) + (x+ y + y2)(2 + y),

and

TK4 = x3 + y3 + 3x2 + 3y2 + 4xy + 2x+ 2y.

Proof of Theorem 3.

We now give a proof of this Theorem by using a bijection. This proof was given by I.
Pak [18] in a preprint, we propose to give it here since it sheds light on labelled trees and
the determination of the number of active internal and external edges.

This proof proceeds in three steps, in the first one we give a canonical labelling of the
edges of the complete graph and a canonical combinatorial map representing it, in the second
one we give a bijection between the spanning trees T of Kn and quadruples composed of two
spanning trees T ′ and T ′′ one of Kp (for some p such that 1 ≤ p < n) the other of Kn−p , an
integer i such that 1 ≤ i ≤ p and a subset of {3, · · ·n} containing p− 1 elements. The third
step consists in computing the Tutte polynomial of Kn using that of Kp and Kn−p. ■

Canonical labelling for the edges of KnKnKn.

The vertices of the complete graph Kn will be denoted here by v1, v2, · · · , vn it has
m = n(n−1)

2 edges hence n(n − 1) half edges. We define a canonical combinatorial map
representing it, it has as half edges the integers 0, 1, · · · , 2m − 2, 2m − 1, the edges are
represented by the permutation α with cycles (0, 1) · · · (2i, 2i+ 1) · · · (2m− 2, 2m− 1). The
half edges are labelled such that the edges are ordered lexicographically

{v1, v2}, {v1, v3}, · · · {v1, vn}, · · · {v2, v3}, · · · {v2, vn}, · · · {vn−1, vn},

an edge {vi, vj} represented by (2a, 2a+ 1) and an edge {vk, vl} represented by (2b, 2b+ 1)
one has a < b if and only if i < k or i = k and j < l.

Taking as example the complete graph K4 the edges are such that

α = (0, 1)(2, 3)(4, 5)(6, 7)(8, 9)(10, 11),

corresponding in that order with

{v1, v2}, {v1, v3}, {v1, v4}, {v2, v3}, {v2, v4}, {v3, v4}.

Hence giving the permutation which cycles corresponding to the vertices v1, v2, v3, v4

σ = (0, 2, 4)(1, 6, 8)(3, 7, 10)(5, 9, 11).

This labelling of the edges defining the permutation α determines an order on them using
the usual order on integers.



USING COMBINATORIAL MAPS FOR ALGORITHMS ON GRAPHS 197

Lemma 3. Let T be a spanning tree of Kn where the edges are labelled as above. Then e ∈ T
is an active internal edge if and only if e = (v1, vi) and i is such that for any vj which is in
the subtree of T with root vi one has j > i.

Proof. Cutting e = {vi, vj} in the tree T decomposes T into two subtrees T ′ and T ′′, suppose
that i, j ̸= 1 let T ′ be the subtree containing v1 then one of the external edge {v1, vi} or
{v1, vj} connects the two subtrees and has a label smaller than that of {vi, vj}, hence {vi, vj}
is not active. Considering an edge {v1, vi} of T , this edge is internally active if and only
for any the vertex vj in the subtree with root vi one has j > i, since {v1, vj} is an edge
connecting the two subtrees obtained by deleting {v1, vi} in T . ■

Lemma 4. Let T be a spanning tree of Kn where the edges are numbered as above. Then
e /∈ T is an active external edge if and only if one of the two following conditions holds

1. The edge e connects two vertices belonging to a subtree T ′ with root a neighbor vk of v1 and
is externally active in T ′.

2. e = {v1, vi} and i is such that in the path going from v1 to vi in T the first step {v1, vk}
satisfies k > i.

Proof. If e = {vi, vj}, where vi and vj are in two different subtrees which roots are neighbors
of v1, then the cycle of T ∪{e} contains an edge e = {v1, vk} which has a label less that that
of e = {vi, vj}. If they are in the same subtree then e is clearly active externally active in
that subtree. If e = {v1, vi} then the cycle of T ∪ {e} contains an edge e′ = {v1, vk} and e is
externally active if and only if k > i. ■

Example 4. For the spanning tree of K10 drawn in Figure 3 containing the edges

{v1, v3}, {v1, v6}, {v1, v7}, {v2, v5}, {v2, v7}, {v3, v8}, {v4, v6}, {v7, v10}, {v9, v10}.
Notice that their labels determine the cycles of α given by

(2, 3), (8, 9), (10, 11), (22, 23), (26, 27), (42, 43), (50, 51), (82, 83), (88, 89).

This tree has one internally active edges namely {v1, v3} and 4 externally active edges

{v1, v2}, {v1, v4}, {v1, v5}, {v7, v9}.

v7 v6 v3

v10 v2

v5v9

v4 v8

v1

Figure 3: A spanning tree T of K10

Decomposing the spanning trees of KnKnKn

A spanning tree of Kn is represented by the label of n− 1 edges. We now build a decom-
position of the spanning tree T of Kn into two trees. The vertices of Kn are v1, v2, . . . , vn.



198 ROBERT CORI

Consider the path in the tree T going from v1 to v2 and cut the first edge {v1, vk} of this
path, this gives two trees T ′ and T ′′. The tree T ′ contains the vertex v2 and T ′′ the vertex
v1. Denote p the number of vertices of T ′. Let X be the subset of the indices of the vertices
in T ′ except v2 and i be the number of vertices in T ′ which index is less or equal to k. Let
T1 be the tree obtained from T ′ by renumbering the vertices from v1 to vp keeping the order
of these indexes. Let T2 be the result of the same operation on T ′′. Then T1 is a spanning
tree of Kp while T2 is a spanning tree of Kn−p.

Definition 4. Let ϕ(T ) be the quadruple (T1, T2, X, i).

Clearly one can build T knowing ϕ(T ). First label the vertices of T1 in such a way that
v1 becomes v2 and the other vertices take as indexes the values in X according to the order
they have in T1. Then the vertices in T2 different from v1 have to be receive new indexes
taken in the complement of X in {3, 4, . . . , n} as this was done for T1. The last step consists
in adding an edge from v1 in T2 to the i-th vertex in T1 using the usual order on integers.

The construction is illustrated below by the spanning tree of K10 in Example 4.

v7 v6 v3

v10

v2

v5

v9

v4 v8

v1

Figure 4: The decomposition of the spanning tree T into T ′ and T ′′, the value of i is 3

v3 v2

v4

v1

v5

v4 v2

v3 v5

v1

Figure 5: The spanning tree T decomposed into T1 and T2

The Tutte polynomial of KnKnKn from those of KpKpKp and Kn−pKn−pKn−p

We consider now how to compute the monomialmon(T ) associated to the tree T , knowing
ϕ(T ) = (T1, T2, X, i) and the monomials mon(T1) = xayb, mon(T2) = xcyd. This monomial
does not depend of X since for two subsets X and X ′ with p − 1 elements order of the
labels of the edges are the same. The vertices of T are denoted v1, v2, . . . vn let us denote
u1, u2, . . . , up those of T1 and w1, w2, . . . , wn−p those of T2.

By Lemma 3 we have that the internal active edges of T are those coming from T2 and
{v1, v2} if i = 1, hence there are c+1 internally active edges in T if i = 1 and c ones if i ̸= 1.

Concerning the externally active edges of T we use Lemma 4. These are of two types
some corresponding to those of T1 and of T2 and those added by the reconstruction of T .



USING COMBINATORIAL MAPS FOR ALGORITHMS ON GRAPHS 199

These of the second type are the edges {v1, vj} of Kn where the vj ’s correspond to the
vertices uk of T1 such that k < i.

Hence if Mon(T1) = xayb and Mon(T2) = xcyd then Mon(T ) = xc+1yb+d if i = 1 and
Mon(T ) = xcyb+d+i−1 if i > 1. Given T1, T2, X where T1 is spanning tree of Kp and T2 is
spanning tree of Kn−p there are p different spanning trees of T that can be built, one for
each value of i, hence the number of externally active edges of T is b+ d+ i− 1.

The sum of the Mon(T ) for these trees is given by

xc+1yb+d + xcyb+d+1 + · · ·xcyb+d+p−1. (3)

Returning to Example 4 and the trees T1, T2 in Figure 5, we notice that T1 has two
internally active edges {v1, v2} and {v1, v3}, the corresponding edges in T namely {v2, v5}
and {v2, v7} are not internally active in T . There is one edge of Kp which is externally active
for T1 namely {v3, v4}, this corresponds to the edge {v7, v9} externally active for T . The
tree T2 has one internally active edge {v1, v2} which gives the internally active edge {v1, v3}
in T . For this tree T2 there is an externally active edge {v1, v3} this corresponds to the edge
{v1, v4} externally active for T . Since i = 3 there are two more externally active edges for T
namely {v1, v2} and {v1, v5}.

To end the proof of Theorem 3 we notice that there are
(
n−2
p−1

)
possibilities for the values of

X giving the same polynomial for i = 1, . . . , p. The sum of these polynomials give Equation
(2). The polynomial TKp(1, y) translates the fact that the internally active edges of T1 are not
internally active in T while the externally actives are. The polynomial TKn−p(x, y) translates
the fact that both internally and externally active edges of T2 correspond to active edges
in T .

8. CONCLUSION

The description given here of the algorithms using combinatorial maps is hoped to be
used for Master’s courses in Discrete Mathematics and Data Structures. The use of this
data structure for implementation was already very frequent. It sheds a new light on the
beautiful theory of Tutte polynomials and the different results presented are also hoped to
be used to enrich this domain.

REFERENCES

[1] O. Bernardi, “A characterization of the Tutte polynomial via combinatorial embeddings,” An-
nals of Combinatorics, vol. 10, pp. 139–153, 2008.

[2] O. Bernardi, T. Kalman, and A. Postnikov, “Universal Tutte polynomial,”

arXiv:math/2004.00683, 2020.

[3] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto, “Computing the Tutte polynomial in

vertex-exponential time,” in 2008 49th Annual IEEE Symposium on Foundations of Com-
puter Science, 2008, pp. 677–686.

[4] R. Cori and A. Mach́ı, “Maps, hypermaps and their automorphisms, a survey,” Expo. Math.,
vol. 10, pp. 403–467, 1992.



200 ROBERT CORI

[5] G. Damiand and A. Dupas, “Combinatorial maps for 2d and 3d image segmentation,” in Digital
Geometry Algorithms, Springer, Ed., 2012, pp. 359–393.

[6] H. de Fraysseix and P. Rosenstiehl, “A depth-first-search characterization of planarity,” inGraph
Theory (Cambridge 1981), A. North Holland, Ed., 1981, pp. 75–80.

[7] J. R. Edmonds, “A combinatorial representation for polyhedral surfaces,” Notices Amer. Math.
Soc, vol. 7, 646, 1960.

[8] I. Gessel and B. Sagan, “The Tutte polynomial of a graph, depth-first search, and simplicial

complex partitions,” Electronic Journal of Combinatorics, vol. 7, no. 2, 1996.

[9] G. Gonthier, “A computer checked proof of the four colour theorem,” Notices of the Amer.
Math. Soc., vol. 55, no. 11, pp. 1382–1393, 2008.

[10] J. Hopcroft and R. E. Tarjan, “Efficient planarity testing,” Journal of the ACM, vol. 21, pp.

549–568, 1974.

[11] A. Jacques, “Sur le genre d’une paire de susbstitutions,” C. R. Acad. Sci. Paris, vol. 267, pp.
625–627, 1968.

[12] G. Jones and D. Singerman, “Theory of maps on orientable surfaces,” Proc. London Math.
Soc., vol. 31, pp. 211–256, 1978.

[13] D. E. Knuth, The Art of Computer Programming, Vol 4, Fasc.4 : Generating all Trees,
Addison-Wesley, Ed., 2006.

[14] ——, “Dancing links,” arXiv:cs/0011047v1, 2020.

[15] S. K. Lando and A. K. Zvonkin, Graphs on Surfaces and Their Applications, S. Verlag, Ed.,
2004.

[16] B. Mohar and C. Thomassen, Graphs on Surfaces. John Hopkins University Press, 2001.

[17] M. Monagan, “A new edge selection heuristic for computing the tutte polynomial of an undirected

graph,” DMTCS, vol. Proc AR, pp. 839–850, 2012.

[18] I. Pak, “Computation of the Tutte polynomials of complete graphs,”

https://www.math.ucla.edu/ pak/.

[19] K. Sekine, H. Imai, and S. Tani, “Computing the Tutte polynomial of a graph of moderate

size,” in Algorithms and Computation, 6th International Symposium. Lecture notes in

Computer Science Springer, 1995, pp. 224–233.

[20] W. T. Tutte, “A contribution to the theory of chromatic polynomials,” Canad. J. Math., vol. 6,
pp. 80–91, 1954.

[21] ——, “On dichromatic polynomials,” J. of Comb. Theory, vol. 2, pp. 301–320, 1967.

[22] ——, “What is a map?” in New Directions in The Theory of Graphs. Academic Press,

New York, 1973, pp. 309–325.

Received on July 05, 2021
Accepted on August 27, 2021


	Introduction
	The two permutations defining a combinatorial map 
	Topological embeddings of graphs
	Classical graph algorithms
	All spanning trees
	Tutte polynomials
	The Tutte polynomial of complete graphs
	 Conclusion

