
Journal of Computer Science and Cybernetics, V.37, N.4 (2021), 365–402

DOI 10.15625/1813-9663/37/4/16151

DEEP LEARNING FOR SEMANTIC MATCHING: A SURVEY

HAN LI, YASH GOVIND, SIDHARTH MUDGAL, THEODOROS REKATSINAS, ANHAI DOAN∗

Department of Computer Science, University of Wisconsin, Madison, Wisconsin, USA

Abstract. Semantic matching finds certain types of semantic relationships among schema/data con-

structs. Examples include entity matching, entity linking, coreference resolution, schema/ontology

matching, semantic text similarity, textual entailment, question answering, tagging, etc. Semantic

matching has received much attention in the database, AI, KDD, Web, and Semantic Web communi-

ties. Recently, many works have also applied deep learning (DL) to semantic matching. In this paper

we survey this fast growing topic. We define the semantic matching problem, categorize its varia-

tions into a taxonomy, and describe important applications. We describe DL solutions for important

variations of semantic matching. Finally, we discuss future R&D directions.

Keywords. Deep learning; Semantic matching.

1. INTRODUCTION

Semantic matching is the problem of finding certain types of semantic relationships
among schema/data constructs. Examples of such constructs include table attributes, rela-
tional tuples, textual mentions, sentences, and ontological concepts. Well-known problem
classes of semantic matching include entity matching, entity linking, coreference resolution,
schema/ontology matching, semantic text similarity, textual entailment, question answering,
and tagging (see Section 2).

Semantic matching plays a fundamental role in data cleaning, data integration, knowl-
edge base construction, natural language understanding, question answering, among many
others. As a result, over the past few decades, semantic matching has received much at-
tention in the database, AI, Web, KDD, and Semantic Web communities. Going forward,
it will receive even more attention, as data science applications proliferate. This is because
such applications often must integrate data from disparate sources before analysis can be
carried out to extract insights, and such data integration often requires semantic matching.
Further, such applications often benefit from using knowledge bases and domain ontologies,
and building such knowledge bases and ontologies often requires semantic matching.

In the past few years, deep learning (DL) has become a major direction in machine
learning [44, 61, 95, 118]. DL yields state-of-the-art results for tasks over data with some

Dedicated to Professor Phan Dinh Dieu on the occasion of his 85th birth anniversary.

*Corresponding author.
E-mail addresses: hanli@cs.wisc.edu (H. Li); yashg@cs.wisc.edu (Y. Govind); sidharth@cs.wisc.edu (S.
Mudgal); rekatsinas@cs.wisc.edu (T. Rekatsinas); anhai@cs.wisc.edu (A.H. Doan).

© 2021 Vietnam Academy of Science & Technology

mailto:anhai@cs.wisc.edu

366 HAN LI et al.

hidden structure, e.g., text, image, and speech. On such data, using labeled examples, DL can
automatically construct important features, thereby obviating the need for manual feature
engineering. This has transformed fields such as image and speech processing, autonomous
driving, robotics, natural language processing (NLP), and many others [44, 61]. Recently,
DL has also gained the attention of database researchers [29, 118].

As described, deep learning appears well suited for semantic matching, and indeed nu-
merous works have applied deep learning to semantic matching, with promising results. In
this paper we survey these works. As far as we can tell, no such survey exists today. Many
surveys on various aspects of semantic matching exist (as we discuss in Section 2). But
they either do not cover deep learning; or they do, but only for certain problem classes of
semantic matching (e.g., those often encountered in natural language processing) and only
to a limited depth.

In contrast, in this paper we aim to provide a comprehensive survey of deep learning
approaches to the broad range of semantic matching problems. This survey can be beneficial
in three important ways. First, for seasoned researchers working in semantic matching, the
survey can help them deepen their understanding of DL-based solutions, obtain a global
view of the semantic matching landscape, and understand how DL solutions to one semantic
matching problem can be transferred to another. Second, the survey can help new researchers
quickly gain up-to-date knowledge about this important area. Finally, the survey can be used
to teach graduate students about DL-based approaches to semantic matching.

The rest of this survey is organized as follows. Section 2 briefly surveys the landscape of
semantic matching. It defines the different problem types of semantic matching, categorizes
them into a taxonomy, and describes important applications. Section 3 then surveys DL
solutions for the important semantic matching problem types, such as entity linking, textual
entailment, entity matching, etc. Section 4 discusses future R&D directions, and Section 5
concludes.

2. THE SEMANTIC MATCHING PROBLEM LANDSCAPE

In this section we define the different problem types of semantic matching, categorize
them into a taxonomy, then describe important applications.

2.1. Defining semantic matching

As discussed in the introduction, semantic matching is the problem of finding certain
types of “semantic relationships” among “schema/data constructs”. We now elaborate on
this definition. We first discuss databases, ontologies/knowledge bases, and text documents,
then use them to discuss schema/data constructs and semantic relationships.

Databases. A database typically consists of a schema and data, e.g., the schema of a
relational database defines a set of tables, and the data consists of a set of tuples for each
of these tables. Other database types include XML, JSON, key-value stores, etc. In this
survey we focus on relational databases, as most semantic matching works have focused on
this type of database.

Ontologies/Knowledge bases. An ontology captures the most important aspects of a
real-world domain, e.g., e-commerce, real estate, manufacturing, etc. Figure 1 shows a toy

DEEP LEARNING FOR SEMANTIC MATCHING: A SURVEY 367

Figure 1: An example of an ontology

Figure 2: A taxonomy of the most popular semantic matching problems that have been considered
by existing work

ontology. An ontology typically consists of a set of concepts being organized into a taxonomy,
such that a child concept is a type of a parent concept (e.g., “actors” is a type of “people”,
see Figure 1). Each concept is associated with a set of data instances (e.g., “Mel Gibson” is
an instance of concept “actors”). There are relationships among the concepts, e.g., lives-in
is a relationship between “people” and “places”, and the two data instances “Socrates” and
“Athens” participate in this lives-in relationship.

The ontology in Figure 1 is tiny. In practice, ontologies can contain anywhere from
hundreds to tens of millions of concepts, and from thousands to millions of relationships
[39]. Ontologies are often called knowledge bases or knowledge graphs. A data catalog, or
master data index, can often be viewed as an ontology which is simplified in certain ways. A
controlled vocabulary can also be viewed as a simplified ontology with just a set of concepts.

Text documents. A text document contains natural text in a language (e.g., English).
Text documents include paragraphs, sentences, phrases (e.g., “a black cat”), and pronouns
(e.g., “I”, “she”).

An important notion that we will refer to often is “text mention” (or “mention” for
short), which is a string in a document that is a name referring to a real-world entity. For
example, given the two sentences “Harry Potter went to Hogwarts. Initially he disliked it.”,
“Harry Potter” is a mention of a person and “Hogwarts” is a mention of an organization
(note that here “he” is not a mention, but a pronoun).

Another important notion is “text snippet”, which in general can refer to a mention, a
phrase, a sentence, or several consecutive sentences. However, most existing works use “text
snippet” to refer to a single sentence. So in this survey, unless noted otherwise, when we say
“text snippet” we mean a sentence.

Schema/Data constructs. We can now define the notion of schema/data construct. A

368 HAN LI et al.

schema construct refers to a component of a database schema or an ontology schema. Exam-
ples of the former include an attribute or a set of attributes in a relational schema, a table
schema, etc. Examples of the latter include a concept or a set of concepts in an ontology.

A data construct refers to a data component in a database (e.g., a relational tuple),
in an ontology (e.g., an instance of a concept, such as “Socrates”, “Athens”), or in a text
document (e.g., mentions, pronouns, text snippets).

Semantic relationships. We want to find relationships between schema/data constructs
that correspond to relationships in the real world. Examples include identity relationships,
e.g., the two tuples (David Smith, UWM) and (D. Smith, UW-Madison) refer to the same
real-world person, semantic equivalence relationship, e.g., the two sentences “He is wise” and
“He is a sage man” are semantically equivalent, and entailment, e.g., the sentence “The cat
is chasing a mouse” entails, i.e., implies, the sentence “The cat is moving”.

We call these relationships semantic relationships. Finding them is the goal of semantic
matching. Thus, semantic matching is different from syntactic matching, where the goal is to
find “matches” that satisfy some syntactic constraints, e.g., finding all strings in a document
that satisfy a given regular expression, or finding all person mentions that are within five
words of an organization mention.

As described, semantic relationships can cover a wide spectrum, ranging from simple ones
such as identity relationships to significantly more complex ones. However, most existing
works have considered only a small number of relatively simple semantic relationships, as we
discuss next.

2.2. A Taxonomy of semantic matching

We organize the most popular semantic matching problems (as considered by existing
works) into the taxonomy in Figure 2. The first subtree of the taxonomy (titled “Identity”)
describes works that find identity relationships, i.e., find schema/data constructs that refer
to the same real-world entity. Specific problems include:

� Entity matching, e.g., match tuple (David Smith, UWM) with tuple (D. Smith, UW-
Madison).

� Entity linking, e.g., link mention “Madison” in a text document to the data instance
“City of Madison” in an ontology.

� Coreference resolution, e.g., given the two sentences “Madison is the capital of Wiscon-
sin. It has four lakes.”, determine that “It” refers to “Madision”, not to “Wisconsin”.

� Schema/ontology matching, e.g., match the attribute “pname” in one table with at-
tribute “person name” in another table, and match concept “Faculty” in one ontology
with concept “Academic Staff” in another ontology.

The second subtree of the taxonomy (titled “Semantic equivalence”) describes works
that find semantic equivalence between two data/schema constructs. Most works in this
subtree have focused on semantic text similarity, i.e., determining if two text snippets are
semantically equivalent, such as “He is wise” and “He is a sage man”.

The third and final subtree of the taxonomy (titled “More complex relationships”) covers
existing works that find more complicated semantic relationships. Specific problems include:

� Textual entailment, e.g. determining that the sentence “The cat is chasing a mouse”
implies the sentence “The cat is moving”.

DEEP LEARNING FOR SEMANTIC MATCHING: A SURVEY 369

� Question answering, e.g., determining that “50” is the answer to the question “How
many states are in the US?”. This is an example of the relationship “answer-of”.

� Tagging, e.g., tagging the tweet “The president visited the UK” with “US politics”,
“UK”, “foreign affairs”. This is an example of the relationship “is-about-topic”.

In the next three subsections, we describe these three subtrees of the semantic matching
taxonomy in detail.

2.3. Finding semantic identity relationships

Entity matching. This problem finds matching data instances, i.e., those that refer to the
same real-world entity, such as the two tuples (Joe Wilson, New York) and (J. Wilson, NY).
See [16, 30, 35, 40, 41, 58, 83] for recent books, surveys, and tutorials on entity matching.

A common entity matching problem variation considers two tables A and B and finds
all tuple pairs (a ∈ A, b ∈ B) that match. We call such pairs matches. Figure 3 shows an
example of three matches between two tables. This problem is also known as entity reso-
lution, record linkage, entity alignment, reference reconciliation, and more. The problem of
finding all matching tuples within a single table is also called deduplication. Entity matching
plays a fundamental role in many data management applications, such as data cleaning and
integration [16, 30].

Entity linking. This problem is also known as named entity linking (NEL) and named
entity disambiguation (NED). See [52, 101] for surveys and book chapters on entity linking.
The goal of entity linking is to link (i.e., match) entity mentions in text documents to entities
(i.e., data instances) in knowledge bases (KBs) [101], such as YAGO [108] and DBpedia [4].

For example, given the text document and the small KB in Figure 4, we need to link the
mention “Madison” in the document to the correct entity (i.e., data instance) in the KB,
which in this case is “Madison, WI”, not “Madison, IL” (if a mention has no corresponding
entity in a KB, we can assign to it a special label “NIL”, indicating that the mention is
unlinkable).

Note that entity linking is different from entity extraction, a.k.a. named entity recognition
(NER) [98]. Given a tweet such as “Obama gave an immigration speech while on vacation
in Hawaii”, entity extraction determines that string “Obama” is a person name, and that
“Hawaii” is a location. Entity linking goes one step further, determining that string “Obama”
actually refers to the entity (i.e., data instance, also called a node) “President Barack Obama”
in a KB, and that string “Hawaii” refers to the entity “State of Hawaii” in the same KB.

Entity linking is widely used in information extraction [64, 74], information retrieval
[13, 25], and content analysis [68, 85], among many other applications. For example, named
entities extracted by information extraction systems are often ambiguous, and can benefit
from disambiguation by linking them to a KB.

Coreference resolution. Given a set of strings that are mentions, pronouns, and noun
phrases in a text document, this problem partitions the strings into groups such that all
strings in the same group refer to the same real-world entity [52]. For example, given
the text document in Figure 5, the three strings in blue (with subscript 1) refer to Harry
Potter and form a single group, while the three strings in red (with subscript 2) refer to the
Hogwarts magic school and form another group. Variations of this problem include anaphora

370 HAN LI et al.

Figure 3: An example of entity matching between two tables, with the matches indicated by red
arrows.

Figure 4: An example of entity linking from a text document to a knowledge base

Figure 5: An example of coreference resolution

and cataphora [109]. See [34, 52, 76] for surveys, tutorials, and book chapters on coreference
resolution.

Coreference resolution is related to entity matching, but differs in three ways. First, it
operates on short strings (e.g., mentions, pronouns). In contrast, entity matching operates
on tuples with multiple attributes (e.g., name, age, salary, location). Second, the strings
in coreference resolution come from (typically short) text spans that appear in the same
document, and thus share similar contexts. Finally, entity matching only determines if any
two given tuples match, whereas coreference resolution goes beyond matching, to assign the
input strings into groups.

Coreference resolution is an important task in natural language processing (NLP), with
applications in question answering [71, 107, 114], machine translation [80, 121], and text
summarization [6, 106]. For example, in [6] a fuzzy noun phrase coreference system has been
used as a core part for a text summarizer.

Figure 6: An example of schema matching

Schema and ontology matching. Schema matching finds semantic correspondences, called

DEEP LEARNING FOR SEMANTIC MATCHING: A SURVEY 371

Figure 7: An example of ontology matching

matches, between the attributes of database schemas [8]. Examples of 1-1 matches are “Addr
= Address” and “Zip = Zip code”. More complex matches include “Name = concat(First
Name, Last Name)” (see Figure 6).

Ontology matching is a similar problem of finding semantic matches between the concepts
of two ontologies, such as “People = Staff”, “Courses = Courses”, and “Faculty = Academic
Staff” (see Figure 7) [31]. Note that here complex matches are also possible, e.g., “Faculty
= union(Research Staff, Teaching Staff)”.

See [8, 87] for surveys on schema matching, [81] for a survey on ontology matching, and
[102] for a survey on schema/ontology matching.

Both schema matching and ontology matching are fundamental tasks in data integration
[30]. Ontology matching plays a critical role in the vision of the Semantic Web [31], which
publishes data that conform to ontologies, thus raising a need to establish matches among
these ontologies. Building knowledge bases often requires merging data from multiple similar
ontologies, which in turn requires ontology matching.

2.4. Finding semantic equivalence relationships

Semantic text similarity. Most works that find semantic equivalence between two schema/data
constructs have focused on semantic text similarity, i.e., decide whether two given text snip-
pets semantically convey the same meaning [1, 43]. For example, the two sentences “He is
smart” and “That is a wise man” are semantically similar despite sharing no common word
other than “is”, whereas the two sentences “A cat is chasing a mouse” and “A cat is chasing
a dog” are not that similar despite sharing all but one words.

As another example, the site Quora (quora.com) lists many popular questions and an-
swers on a wide range of topics. Deciding if two questions are semantically the same (and
thus should be merged) is an important need for Quora.

Semantic text similarity is a core research topics in NLP, with many real-word applica-
tions. Many challenges and evaluations (e.g., the SemEval task series on semantic textual
similarity, see alt.qcri.org/semeval2017) have been held to help advance this topic. See
[43, 53] for a survey and a tutorial, and see [1] for a pilot task on semantic text similarity.

2.5. Finding more complex semantic Relationships

Textual entailment. Given two text snippets (typically two sentences), this problem de-
termines if their meanings are semantically independent, contradictory, or in an entailment
relationship, where one snippet (called the premise) can induce the meaning of the other

372 HAN LI et al.

Figure 8: Examples of textual entailment

Figure 9: Examples of question answering

(called the hypothesis) [2, 93]. Figure 8 shows three such examples. In the first example, “A
cat is chasing a mouse” implies “A cat is moving”. In the second example, “A cat is chasing
a mouse” contradicts “A cat is sleeping”, and so on.

Textual entailment is also known as recognizing textual entailment (RTE) and natural
language inference (NLI). See [2] for a survey, [93] for a book chapter, and [22] for a tutorial.
Similar to semantic text similarity, many competitions have been held for textual entailment,
e.g., the PASCAL RTE challenge series (aclweb.org/aclwiki/Textual Entailment Resource Pool).

Textual entailment has been used in machine translation evaluation [82] and question
answering [48, 117], among others. For example, [48] shows that textual entailment infor-
mation can be used to either filter or rank answers returned by a question answering system
to improve the accuracy.

DEEP LEARNING FOR SEMANTIC MATCHING: A SURVEY 373

Question answering (QA). This is the problem of answering natural language questions
automatically. Existing works have considered three main problem settings:

� QA with a document. Given a text document and a question, select a text span from
the document that best answers the question [20, 26, 89, 119, 126]. See Figure 9.a for
an example.

� QA with a knowledge base. Given a KB and a question, find the answer from the KB
[21, 23, 27, 65]. See Figure 9.b for an example.

� Machine reading comprehension. Recent work has also examined machine reading
comprehension [14, 55], which answers a question given a document (e.g., a description
on an object, a narrative story, or even a dialog between two persons). This can be
viewed as a more advanced form of QA with a document, as the answer may not be
a span in the document. The system has to reason about the events and entities in
the document, and relationships among them, in order to find the correct answer. See
Figure 9.c for an example.

In this survey we focus on the first two problem settings, which have been addressed
by the majority of QA works. To solve them, existing work typically performs two steps:
generating candidate answers, and then matching each candidate to the question to pick the
best answer.

The second step is also known as answer selection [5, 97, 99, 112, 115, 120], and can
be formulated as follows: Given a question and a pool of answer candidates, select the best
answer from the pool. We view this as a semantic matching problem (which discovers that
an answer is in the relationship “is-answer-of” with a question) and will focus on this answer
selection problem in this survey.

Question answering is a long-standing task in NLP. Various workshops and tracks have
been held (e.g., TREC QA track), and public datasets (e.g., SQuAD [89], WikiQA [125],
InsuranceQA [36], etc.) have been released. QA has many important real-world applications,
e.g., playing a key role in Amazon Alexa, Google Assistant, Apple Siri, etc. [94].

See [69] for a general QA survey, which classifies QA from different views. See [89] for
a short review on the text span setting of QA and a description of the well-known SQuAD
dataset. See [27, 65] for surveys on QA with KBs. Additional QA materials can be found in
[3, 89].

Semantic tagging. Given a schema/data construct and a set of controlled phrases, this
problem tags the construct with a small set of phrases that best describes the construct, i.e.,
the topics that it is about [39, 67]. The construct can be a text document, a text snippet,
a tweet, a table, etc. The controlled phrases can be manually created, or automatically
obtained from an ontology, e.g., taken to be the list of the names of all concepts in an
ontology.

For example, given the tweet “Obama gave an immigration speech while on vacation in
Hawaii”, we may tag it with “politics”, “tourism”, “vacation”, “President Obama”, “im-
migration”, and “Hawaii”. Several works have automatically recommend such tags (called
hashtags) to Twitter users [28, 96]. See [46] for a survey on social tagging techniques. A
related problem is tagging images so that they can be easily found by image search engines
[63].

Semantic tagging is important for applications in data discovery and recommendations,
e.g., [63, 67]. As a concrete example, consider the Environmental Data Initiative website at

374 HAN LI et al.

environmentaldatainitiative.org, which is a data lake for the environmental research commu-
nity. Numerous researchers in this community have submitted more than 43K data packages
to this data lake, where each package may consist of several CSV tables. They then manually
tag each package with phrases obtained from several environmental ontologies (e.g., LTER,
ENVO, ENV-THES), so that users of this data lake can easily find the desired tables for a
particular research task.

See [7] for a paper that describes a similar problem regarding a data lake in biomedicine.
That paper also describes an automatic non-DL approach to automatically tag each given
table in the data lake.

3. DEEP LEARNING SOLUTIONS
FOR SEMANTIC MATCHING PROBLEMS

We now describe how deep learning has been applied to the semantic matching problems
described in Section 2. In particular, we cover entity linking, textual entailment, semantic
text similarity, question answering, then entity matching, in that order.

We choose this order because it allows us to group related DL techniques and to explain
them in increasing order of complexity. We do not cover schema/ontology matching and
tagging because as far as we can tell, there has been very little if any published major work
that applies DL to these problems (clearly an opportunity for future research).

For each semantic matching problem, we summarize the basic ideas underlying DL solu-
tions, then describe 1-2 representative solutions in detail. As we will see, even though the
problems look quite different, their DL solutions share many commonalities. In particular:

� Virtually all solutions use word embeddings as the input. They rely on the expressive
power of word embeddings and neural networks to learn features and their interactions,
thereby removing the need for manual labor-intensive feature engineering.

� Most solutions share three key steps: summarizing the two input constructs (e.g.,
two sentences or two tuples), comparing them to create a comparison vector, then
classifying this vector to make a match/no-match prediction.

� The solutions heavily use attention mechanisms. This may be because semantic match-
ing compares two constructs, and attention to get cross-construct information is helpful.

� Finally, the solutions commonly combine multiple techniques to build hybrid DL mod-
els.

3.1. Entity linking

Entity linking links mentions in a text document into a KB, e.g., the mention “Madison”
in “Madison is the capital of Wisconsin” to the entity (i.e., data instance) “Madison, WI” in
DBPedia [4] (rather than to “Madison, CA” or “Madison Square, NY”). Many works have
applied DL to entity linking [11, 37, 38, 47, 56, 78, 88, 103, 110]. They often use the following
ideas:

� Since the text mentions (to be linked) are short, traditional non-DL approaches need to
create multiple task- or language-specific “high-quality” features, to maximize linking
accuracy. This is very expensive. DL approaches use word embeddings to avoid such
expensive feature engineering.

DEEP LEARNING FOR SEMANTIC MATCHING: A SURVEY 375

� These DL works exploit multiple types of context information, such as words surround-
ing the mention, document context, and the structure of the knowledge base.

� They may perform collective entity linking to capture topical coherence among the
mentions. For example, if a mention “Python” in a document links to the entity A
= “Python (the programming language)” in a KB, then a mention “Pig” in the same
document is more likely to link to the entity B = “Pig (the Big Data language)”, which
is in the vicinity of entity A, instead of linking to the entity “Pig (the animal)”.

� They may use attention mechanisms to capture the dependencies in the context.

Many works (e.g., [11, 37, 38, 47, 78, 110]) employ a DL approach that consists of the
following three steps:

� Context summarization. Given a text mention, convert its context (e.g., mention text,
words surrounding the mention, whole document, etc.) into a summarization, which
is an embedding vector. Given a candidate entity in the KB, convert its context (e.g.,
entity name, entity type, entity description, etc.) into another summarization, which
is another embedding vector. Different networks can and have been used in this step,
including CNNs, RNNs, tensor networks, etc.

� Comparison vector generation. Generate a comparison vector by merging or comparing
the vectors (e.g., embeddings) of the mention and the entity candidate.

� Classification. Apply a classifier (e.g., using a feed-forward NN) to the comparison
vector, to determine if the mention links to the entity.

In the above approach, we only compare a mention with a corresponding entity candidate to
determine the similarity. This is known as a local approach where each mention is handled
independently. The work [11, 78] extended this to perform collective linking, i.e., trying
to link multiple mentions all at the same time, to exploit the topical coherence among the
mentions (e.g., linking “Python” and “Pig” to the KB entities falling under the same topic,
as discussed earlier).

We now describe CNN-EL [37] and NTN-EL [110], two recent well-known works that are
representative of the above three-step DL approach.

CNN-EL. The work [37] proposed a CNN-based model called CNN-EL to capture the
semantic correspondence between a mention and a target KB entity. CNN-EL employs two
ideas. First, semantics at different granularities are useful for determining the topics of
entities for linking. Second, CNNs can convert the information at each granularity into a
meaningful topic vector.

Specifically, let M be a text mention, where m is the text of the mention (e.g., “Madi-
son”), c is the context, i.e., the words surrounding the mention (e.g., five words before and
five words after), and d is the entire document that contains the mention. Let E be a target
entity in the KB, where t is E’s title and a is E’s description (e.g., the Wikipedia article
associated with E). Then the CNN-EL is a log-linear model that learns the conditional
distribution over the entity given the mention

P (E |M) ∝ exp(w⊤fC(M,E; θ)). (1)

Here fC(M,E; θ) is the feature vector that contains the six feature values from CNNs with
parameter θ. It is generated as follows (see Fig. 10).

376 HAN LI et al.

Figure 10: The CNN-EL model architecture

First, for the input text at each granularity, a separate CNN will be used to produce a
summarization vector. As shown in Fig. 10, we have CNNm for the mention text, CNNc

for the mention context, etc. In total, five different CNNs are used.

To generate the summarization, we proceed as follows. Consider summarizing the men-
tion text t as an example. Suppose t is a sequence of n words. Then the first step is to
convert them into the word embeddings w1, w2, . . . , wn using word2vec, where each embed-
ding wj ∈ Rdw . Next, a convolution filter Fm ∈ Rk×ldw takes each consecutive l words
and produce a k dimensional summary sj = Fmwj:j+l. Then each summary sj will be sent
through ReLU activation. Finally, all results are combined using a sum-pooling operation
to get the summary vector vm. That is,

vm = CNNm(w1:n) =
n−l∑
j=1

max{0, Fmwj:j+l}. (2)

Note that wi:j is the concatenation of embeddings of words i to j, and max is an element-
wise operator.

Once each input text has been summarized into a vector (see vectors vm, vc, etc. in
Figure 10), we compare all vector pairs across the mention and the target entity using the
Cosine similarity measure. This produces six values as shown in the middle of Fig. 10. These
six values form the feature vector fC(M,E; θ).

Besides the feature values from CNNs, the authors show that the model can achieve
better accuracy when integrating some other signals (features), which are created using a
prior non-DL work [32].

NTN-EL. The work [110] proposes NTN-EL, which stands for “Neural Tensor Network for
Entity Linking”. This model is similar to CNN-EL in that context information on both
mention and entity is utilized to obtain better summarization vector.

NTN-EL differs from CNN-EL in that rather than generating a summarization vector for
text at each granularity with a separate CNN, it uses the Neural Tensor Network (NTN) [104]
to combine the text m and the context c of a mention to generate a single summarization
vector, and similarly it generates a single summarization vector on the entity side. Then the
cosine similarity of the two vectors will be used as the score indicating whether the mention
links to the entity or not. We briefly now describe the model.

The input of the model consists of (1) the mention part M = (m, c) with the mention text
m and the immediate context c (e.g., five words before and five words after the mention),

DEEP LEARNING FOR SEMANTIC MATCHING: A SURVEY 377

Figure 11: Summarizing the text and context of a mention into a vector vmc in the NTN-EL model.

and (2) the entity part E = (t, k) with the entity title t and the entity class k (e.g., a word
or a phrase provided in the infobox of a knowledge base). To predict whether M is linked
to E, the model proceeds as follows.

First, a summarization vector vmc is generated condensing the information of M . This
is done in three steps (see Figure 11).

1. We first summarize the context c to a vector vc using a CNN. Assuming that a closer
context word might be more informative for disambiguating a mention, the authors also
incorporate a position embedding for each context word. So the final embedding of a
word (as the input to the CNN) is the concatenation of the original embedding from
word2vec and the positional embedding (see the blue boxes in the lower-left corner of
Figure 11).

2. Next, a summarization vector vm is generated for m, the mention text. This text is
usually very short, so vm is simply the average of all word embeddings in m (see the
red boxes in the lower right corner of the figure).

3. Finally, we combine vc and vm into a final summarization vector vmc using an NTN.
An NTN is a list of bilinear layers (i.e., matrices) T = [M1,M2, ...,Ml] that takes as
input two vectors and outputs a composite vector. Specifically, suppose [vc; vm] ∈ Rn,
which is the concatenation of vc and vm, then each Mi ∈ Rn×n maps [vc; vm] into a
scalar oi using a bilinear operation

oi = [vc; vm]⊤Mi[vc; vm]. (3)

This is illustrated in Figure 11. Note how each Mi is matrix, which participates in a
matrix operation with the blue matrix vc and the red matrix vm. The vector vmc is
then the concatenation of all oi’s to a vector of size l: vmc = [[vc; vm]⊤Mi[vc; vm]]1:l
(see Fig. 11).

Once vmc has been computed, we compute ve, which summarizes the entity title and entity
class, in a similar fashion. Finally, we compute the cosine similarity between vmc and ve as
the score indicating whether M should link to E.

378 HAN LI et al.

Discussion. So far we have discussed how the DL models are constructed in the works
CNN-EL and NTN-EL. Once this is done, the models are trained, i.e., their parameters
computed, using labeled training data. Applying the models to new data is a bit more
involved. Suppose in the new data we have 1,000 mentions and 100,000 KB entities. When
trying to link a mention, we cannot possibly consider all 100,000 entities, as this will become
very expensive.

As a result, typically a blocking step is carried out to prune the entities, so that for each
mention M , we consider only a relatively small set C of entities (e.g., we may consider only
entities whose names share at least one word with the mention text). We then apply the
above DL models to compute a similarity score between mention M and each entity in the
set C, then select the entity with the highest similarity score, or we pair M with each entity
in the set C, then apply a classifier (which is typically the last step in applying the DL
models) to predict link/no-link.

Most DL works for semantic matching so far do not discuss the blocking step (with the
exception of some works in entity matching). As a result, in this survey we also do not
discuss this step in detail.

Additional work. We now briefly discuss additional DL work for entity linking. The work
[47] proposes a joint encoding model for the entities that utilizes more resources besides
the ones used in CNN-EL and NTN-EL, such as fine-grained entity type information. The
work [38] extends attention mechanisms to consider not only the input text span but also
the surrounding context windows. The works [88, 103] examine cross-lingual entity linking
using deep learning. Another line of work incorporates global information to make topical
coherent links (i.e., performing collective linking) [11, 78]. Most of the above approaches
assume the mentions in the documents are given in advance. The work [56] proposes an
end-to-end entity linking solution that jointly discovers and links entities in a text document
to a KB based on LSTMs and attention.

3.2. Textual entailment

Figure 12: (a) The BiLSTM-MaxPool architecture, which consists of the sentence encoder, the
comparison layer, and the classifier; (b) The architecture of the sentence encoder.

DEEP LEARNING FOR SEMANTIC MATCHING: A SURVEY 379

Given two text snippets, which are often two sentences, textual entailment determines if
one snippet (called the premise) entails (i.e., implies) the other (called the hypothesis), or
contradicts it, or is neutral with it [2, 93]. For example, as shown in Fig. 8, “a cat is chasing
a mouse” entails “a cat is moving”, contradicts “a cat is sleeping”, and is neutral with “Tom
saw a cat with yellow eyes”.

Many works have applied DL to textual entailment [10, 12, 15, 20, 26, 51, 66, 84, 100, 111,
120]. Most works use a DL approach of three steps: sentence encoding (i.e., summarization),
sentence comparison, and classification.

1. Sentence encoding (i.e., summarization). Convert each sentence into a summarization
vector using word embeddings and NNs.

2. Sentence comparison. Combine the two summarization vectors into a comparison vec-
tor, by concatenating the two summarization vectors, or performing element-wise mul-
tiplication or element-wise absolute difference computation, etc.

3. Classification. Predict whether the two sentences are in an entailment, or contradictory,
or neutral relationship, typically by applying a feed-forward NN to the comparison
vector.

In the above approach, the first two steps are most complex, and many solutions for them
have been developed. These solutions fall into four groups:

1. The first group [20, 111] encodes sentences using common DL building blocks such as
RNNs, CNNs, pooling, mixture, etc.

2. The second group [10, 15] takes into account the syntactic information of each sentence
(e.g., the sentence structure) and uses Recursive Neural Networks such as Tree-LSTMs
to encode sentences.

3. The third group [26, 84, 100] relies on the attention mechanism for the encoding, by
finding cross-sentence alignment or performing self-attention for each sentence, to focus
on the important part of the sentences.

4. The last group [12, 66, 120] combines methods used by the above three groups, e.g.,
combining LSTM and attention.

It is worth noting that many work mentioned above can also be used and have actually
been evaluated (in the papers) for other types of semantic matching problems, such as
semantic text similarity [20, 26, 100], question answering [26], etc., with possibly slight
modifications (e.g., on the output layer).

We now describe two well-known works on textual entailment. The first work falls into
the first group described above. It builds a bi-directional LSTM followed by max-pooling.
We will refer to it as BiLSTM-MaxPool [20]. The second work falls into the third group,
and uses a decomposable attention model, DAM [84].

BiLSTM-MaxPool. The original goal of the work [20] is to generate universal sentence
embeddings. However the proposed model is based on the textual entailment setting, and
trained on textual entailment datasets (but the paper notes that this model can also be
applied to other semantic matching problems). After exploring various NN combinations,
the paper shows that BiLSTM with max-pooling achieves the best accuracy on textual
entailment (and also on semantic text similarity and paraphrase detection). We now describe
the BiLSTM-MaxPool model in the textual entailment setting.

380 HAN LI et al.

The BiLSTM-MaxPool model takes as input the premise and hypothesis sentences, and
conducts a three-class classification to determine whether they are in entailment, contra-
diction, or neutral relationship. It consists of three modules: The sentence encoder, the
comparison layer, and the classifier.

Fig. 12.a shows the working of these modules. The first module, the sentence encoder,
converts the two sentences into two summarization vectors v⃗p and v⃗h (we will discuss this
in detail soon). The comparison layer then generates a comparison vector that combines
the information of the two: c⃗ = [v⃗p, v⃗h, |v⃗p − v⃗h|, v⃗p ∗ v⃗h]. Thus, this vector consists of the
concatenation of v⃗p, v⃗p, the element-wise absolute difference, and the element-wise product
of the two. The last module, the classifier, applies a feed-forward NN to vector c⃗ to predict
one of the three classes: entailment, contradiction, or neutral.

We now describe the first module, the sentence encoder, in more detail. This module
takes as input a sentence, which is a sequence of words, and outputs an embedding vector.
It proceeds in three steps (see Fig. 12.b).

1. Suppose a sentence s has n words w1, w2, . . . , wn, in the first step a word-embedding
lookup table is built to convert each word wi into an embedding e⃗(wi). This lookup
table can be built using word2vec, GloVe or fastText.

2. Then a BiLSTM is used to generate a hidden state h⃗i for each word wi. Specifically, we
have a forward LSTM and a backward LSTM to generate hidden states in the opposite
directions

−→
h⃗i =

−−−−→
LSTM(

−−→
⃗hi−1, e⃗(wi))

←−
h⃗i =

←−−−−
LSTM(

←−−
⃗hi+1, e⃗(wi))

(4)

The final hidden state h⃗i = [
−→
h⃗i ,
←−
h⃗i] is the concatenation of the two for each word wi.

3. Given the hidden states h⃗1, h⃗2, . . . , h⃗n, the third step is to apply a max-pooling oper-
ation to get the sentence embedding v⃗s. In particular, assuming each h⃗i ∈ Rd, then
v⃗s ∈ Rd with value at the j-th index v⃗s[j] = max{h⃗1[j], . . . , h⃗n[j]}, for 0 ≤ j ≤ d − 1.
Note that only one shared encoder will be created for both the premise and hypothesis,
therefore the encoder is a Siamese network [54].

DAM. The work [84] proposes DAM, a decomposable attention model for textual entailment
that relies only on the attention mechanism. Attention allows the model to find parts that
align across the premise and the hypothesis, on the assumption that this will make the
classification more accurate. The model does not use the sequential information of the
sentences, like LSTMs.

Similar to BiLSTM-MaxPool, DAM takes as input the premise and the hypothesis, and
outputs a prediction indicating the relationship. DAM consists of four modules: Embedding
lookup, attending, comparing, and aggregating.

First, the embedding lookup table converts each word in the input into an embedding
vector. Let the premise and the hypothesis be a⃗ = [⃗a1, a⃗2, . . . , a⃗m] and b⃗ = [⃗b1, b⃗2, . . . , b⃗n],
respectively, where each word a⃗i and b⃗j are in the embedding format.

Second, the attending module conducts decomposable attention. It proceeds in two steps:

1. For each word pair (⃗ai, b⃗j), we calculate an attention score

eij = F ′(⃗ai, b⃗j) = F (⃗ai)
⊤F (⃗bj). (5)

DEEP LEARNING FOR SEMANTIC MATCHING: A SURVEY 381

This score reflects the correlation between the two words. A higher score means a
higher chance that the words are related to the same concept. Here we can see the
reason why this model is called “decomposable”: the attention function F ′ (which
takes two inputs) has been decomposed into the dot product of a shared function F
(which only takes one input).

2. Then based on the attention scores, for each word a⃗i, we compute a weighted average
over the words in b⃗ (we compute a similar weighted average for each word b⃗j)

βi =

n∑
j=1

exp (eij)∑n
k=1 exp (eik)

b⃗j 1 ≤ i ≤ m,

αj =

m∑
i=1

exp (eij)∑m
k=1 exp (ekj)

a⃗i 1 ≤ j ≤ n.

(6)

Here each βi is softly aligned to a⃗i, representing how the meaning of a⃗i is distributed
in the words of b⃗ (a similar process is carried out for αj).

In the third step, the comparing module takes as input a word-alignment pair (i.e., each
(⃗ai,βi) or (⃗bj ,αj)) and outputs a similarity vector, using a feed-forward NN. Specifically,

c⃗a,i = G(⃗ai,βi) 1 ≤ i ≤ m

c⃗b,j = G(⃗bj ,αj) 1 ≤ j ≤ n
(7)

Here G represents a feed-forward NN. The reason the comparing module is useful is that
the attention step only finds conceptually related alignment, but it does not measure the
semantic similarity, e.g. a pair (⃗ai,βi) represents similar meaning or contrary. For instance,
it finds out that “red” and “blue” are both colors and thus are conceptually related, but it
cannot tell that they are different colors, and thus are not similar.

Finally, the aggregating module aggregates the similarity vectors for each input sentence,
and predicts a label using a feed-forward NN as a classifier. Specifically,

c⃗a =
m∑
i=1

c⃗a,i, c⃗b =
n∑

j=1

c⃗b,j

ŷ = H(c⃗a, c⃗b)

(8)

where H is the feed-forward NN, and ŷ is the prediction.

It is worth noting that even though DAM was originally invented for textual entailment,
it can be applied to other tasks, e.g., entity matching [72].

Additional work. Many works have applied DL to textual entailment. A line of work
builds on BiLSTMs combined with different pooling and attention operations. The work [66]
uses BiLSTM and inner-attention within the hypothesis. [111] extends BiLSTM-MaxPool
model and proposes hierarchical BiLSTM max-pooling architecture. [12] uses BiLSTM with
generalized pooling. Incorporating the sentence’s syntactic information, [10, 15] proposes
Tree-LSTM based methods. Similar to DAM, another line of work [26, 51, 100] suggests
using only attention mechanisms with simple feed-forward NNs.

382 HAN LI et al.

3.3. Semantic text similarity

In this problem we determine if two text snippets, which are typically two sentences
or sentence fragments, semantically convey the same meaning [1, 43]. For example, “he is
smart” and “he is a wise man” are semantically similar, whereas “a cat is chasing a mouse”
and “a cat is chasing a dog” are not.

Many works have applied DL to this problem [20, 26, 49, 50, 73, 75, 79, 100, 120]. As
semantic text similarity is closely related to textual entailment, many methods for textual
entailment can also be applied to semantic text similarity [20, 26, 84, 100, 120]. In fact, many
papers conduct empirical evaluation on both textual entailment and semantic text similarity
[20, 26, 100, 120] (this includes the paper on the BiLSTM-MaxPool model described in
Subection 3.2). There are work specifically focusing on semantic text similarity [49, 73, 75,
79]. Even these works share a similar model architecture to textual entailment: sentence
encoding, sentence comparison, and similarity prediction (sometimes the comparison layer
and the prediction layer are combined [73, 75]).

We now briefly describe a well-known work in semantic text similarity: MaLSTM [73],
which is simple yet performs well on many datasets [73].

Figure 13: An illustration of how the MaLSTM model works, given two sentence fragments as the
input.

MaLSTM. MaLSTM [73] represents Manhattan LSTM. As the name suggests, the model
is based on LSTMs and Manhattan distance. Given a pair of sentences, the model predicts a
scalar score indicating the level of similarity between the two sentences. To do so, it performs
sentence encoding and then sentence comparison (see Figure 13).

Given a sentence pair a⃗ = [⃗a1, a⃗2, . . . , a⃗m] and b⃗ = [⃗b1, b⃗2, . . . , b⃗n], where each word is
in the format of embedding, a Siamese LSTM is used to encode each of the a⃗ and b⃗ into a
fixed-size vector, by selecting the last hidden state h⃗a,m and h⃗b,n respectively.

Then the following similarity function is used to produce a similarity score sa,b

sa,b = exp(− ∥ h⃗a,m − h⃗b,n ∥1) ∈ [0, 1]. (9)

Here ∥ · ∥1 is the Manhattan metric (i.e., the l1-norm), which is the element-wise sum of
the input vector. As pointed out in the paper, the Manhattan metric slightly outperforms
other reasonable alternatives such as cosine similarity.

Additional work. The work [75] proposes a similar Siamese network that uses a character-
level BiLSTM. It also uses a contrastive loss function in training so that matching sentences
would be nearby in the vector space. [79] builds upon [75] and proposes training the network

DEEP LEARNING FOR SEMANTIC MATCHING: A SURVEY 383

by jointly minimizing a logistic loss apart from the contrastive loss. [49, 50] argue that
sentence encoding like LSTM (as used in the aforementioned work) is too coarse to capture
fine-grained word-level information. The work [49] proposes instead to use CNN to extract
sentence features at multiple levels of granularity, and to compare sentence representations
at several granularities using multiple similarity metrics. The work [50] proposes a pairwise
word interaction model after the LSTM layer used in [73, 75], to encourage direct comparisons
between word contexts across the sentences.

Figure 14: Three QA models: (a) Convolutional-pooling LSTM, (b) Convolution-based LSTM, and
(c) Attention-based LSTM.

3.4. Question answering

Question answering (QA) automatically answers questions in natural languages. As
discussed in Section 2, several QA settings exist. However, they often share a common task,
which is answer selection: given a question and a pool of answer candidates, select the best
answer from the pool. In this section we focus on this task.

Many works have applied DL to answer section (see [60] for a recent survey). Most of them
(e.g., [5, 97, 99, 112, 115, 120]) use a DL approach similar to those for textual entailment and
semantic text similarity. Specifically, given a question and a candidate answer, this approach
encodes them as vectors, compares the vectors to obtain a comparison vector, then uses this
vector to predict how likely the candidate answer is the correct answer to the question.

There are two main approaches for the encoding step. The first approach encodes the
question and the candidate answer independently [97, 112]. There is no explicit interaction
between the question and the answer during encoding. The second approach uses attention
mechanisms to capture cross-sentence information (here we view both the question and the
candidate answer as two sentences). The majority of work in answer selection fall into the
second approach (e.g., [5, 99, 112, 115, 120]). Note that some of these works have also been
evaluated on textual entailment [120] and semantic text similarity tasks [99, 120].

We now describe [112], which specifically focuses on answer selection. It proposes two
model variants that belong to the first approach (i.e., encoding the question and the answer
independently). These variants use both CNN and LSTM. It also proposes a model variant
that belongs to the second approach. This variant uses attention-based LSTM.

All three models return a score indicating how likely an input candidate answer is the
correct answer to an input question. All three use an embedding lookup table to convert
each word in the sentences (i.e., the input question and the input answer) into an embedding
vector. Let q⃗ = [q⃗1, q⃗2, . . . , q⃗m] and a⃗ = [⃗a1, a⃗2, . . . , a⃗n] be the question and the candidate

384 HAN LI et al.

answer respectively, where each word in already the embedding format. We now describe
the three models in detail.

ConvPool-LSTM. The first model, convolutional-pooling LSTM, applies a convolution-
based pooling operation after a BiLSTM layer. Figure 14.a shows the architecture. While
LSTM can capture long-range dependencies, it has difficulties capturing local n-gram coher-
ence. So the ConvPool-LSTM model adds a CNN layer after the LSTM layer to keep the
local information as well. The resulting model consists of three parts.

The first part is a BiLSTM that takes as input a sentence and output a sequence of
hidden states. This is exactly the same as Equation 4. Note that the BiLSTM used here is
Siamese, meaning the question(s) and the answer(s) share the same BiLSTM (see the bottom
part of Figure 14.a).

The second part is a convolution layer followed by a max-pooling operation. Specifically,
suppose h⃗q = [⃗hq,1, h⃗q,2, . . . , h⃗q,m] are the hidden states for the question, with each h⃗q,i ∈ Rh.
Then a list of c filters with kernel size of k (i.e., every k consecutive words in the sentence
will be considered for a convolution operation for each filter) are used for the convolution.
Let Wf ∈ Rc×kh be the convolution parameters. Suppose we rewrite h⃗q in the matrix format
to be Hq ∈ Rkh×L, with L being the output dimension after convolutions (i.e., the number
of convolutions). Then we can define the convolution function

C = CNN (⃗hq) = Tanh(WfHq). (10)

Then we apply a max-pooling over C to obtain the final output vector o⃗q with the i-th
dimension being o⃗q[i] = max{Ci,1, Ci,2, . . . , Ci,L}. Similarly, for the answer a⃗ we can obtain
the output o⃗a. This CNN layer is also Siamese.

Finally, we compute the cosine similarity score of o⃗q and o⃗a, and return it as the score
that captures how likely it is that the candidate answer is the correct answer to the question.

Conv-LSTM. The second variant, convolution-based LSTM, applies a BiLSTM after the
outputs of a convolution layer. Figure 14.b shows the architecture. Compared to ConvPool-
LSTM, we can see that this model tries to capture the local n-gram information first, and
then extract the long-range dependencies.

Similar to ConvPool-LSTM, Conv-LSTM also consists of three parts. The first part is a
CNN layer which is identical to the one used in ConvPool-LSTM except that the input are
the word embeddings in a sentence. The second part is a BiLSTM followed by a max-pooling
operation.

Suppose Xq ∈ Rc×L is the output of the CNN layer, we form a sequence of vectors
x⃗q = [x⃗q,1, x⃗q,2, . . . , x⃗q,L] where each x⃗q,i is the i-th column in matrix X. Then x⃗q will be

used as the input to the BiLSTM to get a list of hidden states h⃗q = [⃗hq,1, h⃗q,2, . . . , h⃗q,L].
The output o⃗q is generated by max-pooling each dimension of the hidden states: o⃗q[i] =

max{h⃗q,1[i], h⃗q,2[i], . . . , h⃗q,L[i]}. We obtain the representation o⃗a for the candidate answer in
a similar fashion. Finally, we compute the cosine similarity score between o⃗q and o⃗a. Note
that both CNN and BiLSTM are Siamese in Conv-LSTM.

Att-LSTM. One drawback of both ConvPool-LSTM and Conv-LSTM is that they generate
the summarization vectors for the question and the answer separately, not taking into account
the cross-sentence information. So the summarization may not extract crucial content for
the prediction. In particular, even the correct answer can be very long and contains lots of
words that are not related to the question. In such cases the resulted summarization can

DEEP LEARNING FOR SEMANTIC MATCHING: A SURVEY 385

be “distracted” by non-useful information. To address this problem, the same work [112]
proposes a third model, attention-based LSTM, which will attend to the question for the
answer summarization generation.

This model proceeds in three steps. The first step is to generate the summarization
vector o⃗q for the question, using a BiLSTM followed by a max-pooling operation. This step
is very similar to the second step in the Conv-LSTM model.

In the second step, the answer summarization vector o⃗a is generating by attending to o⃗q.
We first apply the same BiLSTM used for the question to generate a list of hidden states
h⃗a = [⃗ha,1, h⃗a,2, . . . , h⃗a,n]. Next, for each state h⃗a,i we attend to o⃗q to get a weight score

indicating how important the hidden state is. Specifically, we compare each h⃗a,i to o⃗q to get
a comparison vector m⃗i

m⃗i = Wamh⃗a,i +Wqmo⃗q. (11)

Then we get the weight score sa,i for h⃗a,i

sa,i ∝ exp (w⃗⊤
smTanh(m⃗i)). (12)

Here Wam,Wqm, and w⃗sm are the attention parameters. Then we get the final weighted

hidden states
˜⃗
ha = [

˜⃗
ha,1,

˜⃗
ha,2, . . . ,

˜⃗
ha,n], where each

˜⃗
ha,i = sa,ih⃗a,i. The summarization

vector o⃗a is obtained by max-pooling on each dimension of all weighted hidden states.

Once we have o⃗q and o⃗a, in the last step we calculate the cosine similarity to obtain the
prediction score, similar to the way the previous two models compute this score.

Additional work. The attention in the Att-LSTM model [112] mentioned above only
applies on one side, where the question embedding is used for encoding the answer. [5] ex-
tends it by creating a global view of the candidate answer and applying another attention
for the answer encoding based on that global view. [115] uses a tensor network [104] to
model the interactions between the two sentences, and then uses k-max pooling to filter out
the k strongest interactions for final prediction. [99] uses both cross-sentence attention to
discover fine-grained alignment and intra-sentence attention to emphasize important words
from the perspective of semantic composition for sentence encoding. [120] uses a bilateral
multi-perspective matching (BiMPM). First, each word in the question (or the answer can-
didate) is matched to all words in the answer candidate (or the question) from four different
perspectives (with four different networks) and form a matching vector. Then the matching
vectors for each sentence (i.e., question or answer) are aggregated into a single vector as the
sentence embedding. Finally, the two sentence embeddings are used to make a prediction
through a feed-forward NN.

3.5. Entity matching

Entity matching finds data records that refer to the same real-word entity, such as (Joe
Wilson, New York) and (J. Wilson, NY) [16, 42, 57, 72]. We focus on the common setting
where given two tables A and B with the same schema S = {a1, a2, . . . , an} of n attributes,
we need to find matching pairs across A and B (if A and B do not share the same schema,
we can apply schema matching first).

Typically entity matching proceeds in two steps blocking and matching. It is often very
expensive to compare all pairs in A×B, so the blocking step uses some cheap heuristics to

386 HAN LI et al.

remove obviously non-matching tuple pairs to get a set of candidates (usually much less than
enumerating all pairs). Then the matching step determines if each pair in the candidate set
is a match. To our knowledge, as of November 2018 there have been only two published
work on entity matching using deep learning: DeepER [33] and DeepMatcher [72]. We now
describe both.

DeepER. DeepER covers both blocking and matching. It converts each tuple into an em-
bedding vector, then performs blocking and matching using these vectors. We now describe
these steps.

1) Converting tuples into embedding vectors: To convert a tuple t into a vector, first, a
word-embedding lookup table is used to convert each textual word in t into an embedding
vector. Then these vectors are combined into a single vector, using either simple averaging
or LSTM-based composition.

� Suppose tuple t has value t[ai] for attribute ai. To generate the tuple embedding vec-
tor v⃗(t) for t using simple averaging, we first calculate an attribute embedding vector
v⃗(t[ai]) for each ai. Assuming there are |ai| words in attribute ai, we do this by con-
verting each word wi,j in ai into an embedding vector e⃗(wi,j) using a lookup table, then

calculate the average vector v⃗(t[ai]) = (
∑|ai|

j=1 e⃗(wi,j))/|ai|. Then the final tuple embed-
ding v⃗(t) is the concatenation of all attribute embeddings: v⃗(t) = [v⃗(t[a1]), . . . , v⃗(t[an])].

� The simple averaging method cannot capture the sequence information of words. To
address this, the paper proposes using LSTM to obtain the tuple embedding. Specifi-
cally, it first concatenates all attributes into a single string. Assuming the concatenated
string has m words w1, w2, . . . , wm in that order, then it converts each word into an
embedding vector, and loops through the embeddings to get the hidden representations

hi = LSTM(e⃗(wi), hi−1). (13)

The last hidden output hm will be the tuple embedding vector v⃗(t).

2) Blocking: This step performs blocking using the tuple embeddings. As each tuple is now
represented by a high-dimensional vector, the paper uses locality sensitive hashing (LSH)
[116] to perform blocking. Given a set of tuples as input, LSH will produce a set of hash
blocks, such that if two tuple embeddings are very similar (by cosine similarity), then with
high probability they will be put into the same block. This is carried out in three steps.

First, we generate a hash table g(v⃗(t)) = [h1(v⃗(t)), h2(v⃗(t)), . . . , hK(v⃗(t))] with K hash
functions each of which takes as input a tuple embedding v⃗(t), and outputs a binary vector
with K dimension. Each binary vector represents a hash block, and different tuples with
the same binary vector will be placed into the same block. Each hash function hi(v⃗(t)) is
a random hyperplane w⃗i (a unit vector through the origin drawn randomly) in the tuple
embedding space. Given the tuple embedding t, each hi(v⃗(t)) outputs 1 or -1 as follows

hi(v⃗(t)) =

{
+1 if w⃗i · v⃗(t) ≥ 0

−1 otherwise.
(14)

Second, we repeat the first step multiple times to obtain a set of L different hash tables
g1(v⃗(t)), . . . , gL(v⃗(t)). Since for each hash table we use K hash functions, which reduces the
chance that similar tuple pairs fall into the same hash block, we use multiple hash tables to
mitigate this problem.

DEEP LEARNING FOR SEMANTIC MATCHING: A SURVEY 387

Finally, given a set of tuples (e.g., the union of the two tables to be matched), we pass
each tuple through all L hash tables to obtain a list of blocks. Then the candidate set for
matching consists of all tuple pairs that appear together in at least one block (there are
pruning strategies to further reduce the candidate set size, see [33]).

3) Matching: To classify each candidate tuple pair as a match or no-match, we first convert
each pair of tuple embeddings into a comparison vector sim(v⃗(t1), v⃗(t2)). Then a feed-
forward NN is used to map the comparison vector into a scalar score indicating a match or
not.

Attr 1 Attr 2

Se
q

1

Se
q

2
Sequences of Words

1. Attribute Embedding

Sequences of
Word Embeddings

2. Attribute Similarity
Representation

Attribute Similarity

Entity Similarity

3. Classification

prediction

Se
q

1

Se
q

2

NNs with the same
pattern share parameters

Neural Network (NN)

Attr 3

Se
q

1

Se
q

2

Figure 15: The DeepMatcher architecture

Table 1: Options available for the three modules in the DeepMatcher architecture

Architecture module Options

Attribute embedding
Granularity:
(1) Word-based
(2) Character-based

Training:
(3) Pre-trained
(4) Learned

Attribute
similarity
representation

(1) Attribute
summarization

(1) Heuristic-based (2) RNN-based
(3) Attention-based (4) Hybrid

(2) Attribute
comparison

(1) Fixed distance (cosine, Euclidean)
(2) Learnable distance (concatenation,

element-wise absolute difference,
element-wise multiplication)

Classifier NN (multi-layer perceptron)

DeepMatcher. Unlike DeepER which covers both blocking and matching, DeepMatcher
[72] focuses on the matching step. Specifically, the DeepMatcher authors propose a template
architecture for entity matching, as shown in Figure 15. This template consists of three
modules: attribute embedding, attribute similarity representation, and classification. The
authors provide a set of design choices for each module, as summarized in Table 1. From the

388 HAN LI et al.

different combinations of design choices, they select four DL solutions as representative points
in the design space. These solutions correspond to DL models of varying representational
power and complexity.

All four solutions are similar in two ways. First, they use fastText [9] to implement
the attribute embedding module, i.e., each textual word will be turned into an embedding
vector using fastText. Second, they use a two-layer feed-forward NN (more specifically,
fully-connected ReLU HighwayNet1; see [105] for details.) followed by a softmax layer to
implement the classifier module.

However, the four solutions use different choices for the attribute summarization process,
and so are named SIF, RNN, Attention, and Hybrid, respectively, for their choice of the
attribute summarization part. We now describe the four solutions, focusing on this part.

1) SIF: This model is the simplest. For each attribute in a tuple, it uses an aggregate function,
specifically a weighted average over the word embeddings to get the attribute summarization.
This step is similar to the simple averaging method in DeepER, except that here it calculates
a weighted average based on smooth inverse frequency (SIF). Concretely, a weight f(w) is
generated for each word w with f(w) = a/(a + p(w)) where a is a hyperparameter and
p(w) is the normalized unigram frequency of w in the input corpus. Due to its simplicity,
the model’s performance for matching relies mostly on the expressive power of the attribute
embedding and the classifier used.

2) RNN: This model uses a bidirectional GRU to summarize an attribute. This is similar
to the LSTM summarizer used in DeepER except that here it uses GRUs as the RNN
units rather than LSTMs. Compared to SIF, this model takes into account the sequence
information and may obtain better representation power. It introduces more parameters (in
the GRUs) and therefore is a more complex model.

3) Attention: This is an attention model based on the Decomposable Attention Model (DAM)
described in Subsection 3.2. For each attribute, it basically executes all steps before the
classification step (see Subsection 3.2), to obtain the attribute summarization. Compared to
SIF, this model considers cross-tuple information, which makes the model focus on the most
important words for predictions. As the attention layer introduces more parameters, this is
also a more complex model than SIF.

4) Hybrid: This model combines attention and RNN to consider both sequence information
within an attribute value and cross-tuple alignment information. The model can be decom-
posed into three steps: soft alignment, comparison, and aggregation. Figure 16 shows the
workflow for the attribute summarization. We now briefly describe each step. We assume
a tuple pair (t1, t2) and a table schema S = {a1, a2, . . . , an}. For each attribute al we will
only describe performing summarization on t1[al] with t2[al] as the attended context (we can
simply swap t1 and t2 for the summarization on t2).

The first step is soft alignment, which is essentially the decomposable attention step
in DAM combined with RNNs. Specifically, suppose t1[al] = [⃗a1, a⃗2, . . . , a⃗m], and t2[al] =
[⃗b1, b⃗2, . . . , b⃗k] with all words already in the embedding format. We first compute the attention
score eij for each word pair (⃗ai, b⃗j) following Equation 5. Next, a bidirectional GRU , GRU1,

1HighwayNets are used since they speed up convergence and produced better empirical results than traditional
fully connected networks across entity matching tasks, especially in the case of small datasets.

DEEP LEARNING FOR SEMANTIC MATCHING: A SURVEY 389

Primary Input: Embeddings
for attr. al in tuple t1

Context Input: Embeddings
for attr. al in tuple t2

Soft Alignment

Comparison

s1,l

Weighted
Average

G
R
U1

G
R
U1

G
R
U2

Weighted
Average

Weighted
Average

1.
 S

of
t A

lig
nm

en
t

2.
 C

om
pa

ri
so

n
3.

 A
gg

re
ga

ti
on

Figure 16: The Hybrid model workflow for attribute summarization

will be applied on t2[al] to get the hidden states: h⃗2 = GRU1(t2[al]) = [⃗h2,1, h⃗2,2, . . . , h⃗2,k].

Then for each word a⃗i, a weighted average vector βi over h⃗2 is calculated as the soft alignment
for a⃗i

βi =

k∑
j=1

exp (eij)∑k
p=1 exp (eip)

h⃗2,j , 1 ≤ i ≤ m. (15)

We can see that Equation 15 is similar to Equation 6 in the original DAM. The difference
is that here the weighted average is over the RNN hidden states. This can be viewed as
capturing sequence information in attention, which can build phrase-level alignment rather
than word-level alignment.

The second step is the comparison step. First, we apply the same GRU1 (used in step
one) to t1[al] to get the hidden states h⃗1 = GRU1(t1[al]) = [⃗h1,1, h⃗1,2, . . . , h⃗2,m]. Then for

each h⃗1,i, we compare it with the corresponding alignment βi using a feed-forward NN, to
get a comparison vector c⃗1,i.

The last step is to aggregate the comparison vectors from the previous step, to get the
attribute summarization vector s⃗1,l for t1[al]. In this step, the second attention is conducted.
Specifically, we first apply a new bidirectional GRU, GRU2, to t2[al] and take the last
hidden output h⃗′ as the summarization of t2[al]. Then, for each comparison vector c⃗1,i,

we concatenate c⃗1,i and h⃗′, and pass it to a feed-forward NN to get a weight score w1,i.
Essentially, this score represents the importance of c⃗1,l by attending to the summary of t2[al].
And finally we get the attribute summarization vector for t1[al] as s⃗1,l =

∑m
i=1w1,ic⃗1,i.

3.6. Coreference resolution

Coreference resolution takes as input a document with text mentions already identified.
It partitions the mentions into groups such that all mentions within a group (and only those
mentions) refer to the same real-world entity [52]. As such, it is somewhat different from the
works that we have discussed so far, which focus on matching two given data items, rather
than partitioning a set of data items.

Many works have applied DL to coreference resolution [17, 18, 59, 62, 122, 123, 127]. As
the mentions are typically very short, a major challenge is to generate informative features

390 HAN LI et al.

and model the correlations among them. By using DL, these works try to take advantage
of the expressive power of the embeddings and NNs to learn the features as well as the
fine-grained interactions among them, without manual effort. The majority of existing DL
works for coreference resolution fall into three groups.

First, the mention-pair models [17, 123] receive a pair of mentions as input and decide
if they are coreferent or not. Each entity will be represented as a chain of coreferent pairs
of mentions. The models usually treat each mention pair independently, and may produce
incoherent coreferences.

Second, the entity-mention model [18, 122] goes one step further than the mention-pair
models, to consider the entity-level information. Specifically, the models learn to build the
entity clusters directly, where each cluster consists of all coreferent mentions.

The final group is end-to-end models [62, 127]. The previous two groups of models assume
the set of mentions in a document are given in advance. This last group of models do not
make that assumption. They perform coreference resolution from scratch: first identity all
potential mentions and then resolve the coreferences.

Figure 17: Cluster-CR model architecture

We now describe Cluster-CR, a well-known entity-mention model [18]. Cluster-CR di-
rectly builds clusters of mentions, but it also employs a mention-pair model submodule.
Understanding Cluster-CR should give a good view into how DL has generally been applied
to coreference resolution.

Cluster-CR. A major challenge in coreference resolution is to utilize entity-level informa-
tion (rather than only comparing mention pairs). For example, given two mention clusters
{Bill Clinton} and {Clinton, she}, we can determine that they do not refer to the same
person. However, given only the mention pair {Bill Clinton} and {Clinton}, we cannot
determine whether they are coreferent.

The work [18] develops Cluster-CR, an NN-based coreference resolution method which
operates in an agglomerative clustering fashion. This method builds distributed representa-
tions of pairs of coreference clusters, and can take advantage of the entity-level information
without many hand-crafted features.

We first briefly introduce the whole workflow, and then zoom into the details of Cluster-
CR. Suppose a set of mentions in a document have been identified. The model resolves
the coreferences by merging mentions into the same cluster if they refer to the same entity.
Concretely, the model builds up the mention coreference clusters incrementally, i.e., it will
start with each mention as a single cluster, then iteratively merge a pair of clusters in each
step. The neural network will learn the cluster-pair representations, which will be used to
determine if combining the two clusters is desirable.

Cluster-CR consists of four major modules: Mention-Pair Encoder, Cluster-Pair Encoder,

DEEP LEARNING FOR SEMANTIC MATCHING: A SURVEY 391

Mention-Ranking Model, and Cluster-Ranking Model. Figure 17 show the architecture of
Cluster-CR. Since the Mention-Ranking Model works as a pre-training and search-space-
pruning step for the Cluster-Ranking Model, we will not discuss it further, for ease of expo-
sition.

The Mention-Pair Encoder takes as input a mention m, a candidate antecedent corefer-
ence a, and context features, to output an embedding vector r⃗m(a,m) using a feed-forward
neural network. It consists of three hidden layers with ReLU activation where each layer has
the form

h⃗i(a,m) = max{0,Wih⃗i−1(a,m) + b⃗i}. (16)

The input h⃗0 consists of various features: The embeddings of the candidate antecedent and
mentions, syntactic features such as the type of the mention words (e.g., noun, pronoun, etc.),
context features such as the document genre and the distance between the two mentions.
The embedding r⃗m(a,m) is the output h⃗3 of the last layer.

The Cluster-Pair Encoder takes as input a pair of mention clusters ci = {mi
1,m

i
2, . . . ,m

i
|ci|}

and cj = {mj
1,m

j
2, . . . ,m

j
|cj |}, and outputs a vector r⃗c(ci, cj). It proceeds in three steps:

1) For each pair (mi,mj) ∈ ci × cj , vector r⃗m(mi,mj) is generated by MPEnc;

2) A matrix Rm(ci, cj) is created by using each r⃗m(mi,mj) as a column

Rm(ci, cj) = [r⃗m(mi
1,m

j
1), r⃗m(mi

1,m
j
2), . . . , r⃗m(mi

|ci|,m
j
|cj |)];

3) We apply a pooling operation over each row to get r⃗c(ci, cj). Suppose each vector
r⃗m(mi,mj) ∈ Rd, then the output vector r⃗c(ci, cj) ∈ R2d is obtained by concatenating the
results of max-pooling and average-pooling on Rm(ci, cj). The k-th dimension in r⃗c(ci, cj) is

r⃗c(ci, cj)k =

{
max{Rm(ci, cj)k,·}, 0 ≤ k < d,

avg{Rm(ci, cj)k−d,·}, d ≤ k < 2d.
(17)

Figure 18: An example of the Cluster-Pair Encoder’s workflow

Figure 18 shows an example of the encoder’s workflow given two clusters where each
cluster has two mentions.

The Cluster-Ranking Model takes as input the representation vector r⃗c(ci, cj) of a pair
of mention clusters ci, cj . It outputs a scalar score sc(ci, cj) that captures the confidence
score on whether the two clusters are coreferent or not. This is done by a fully connected
neural network

sc(ci, cj) = Wcr⃗c(ci, cj) + bc. (18)

392 HAN LI et al.

Note that it is possible that a mention m has no antecedent coreference. Therefore a separate
network is also defined to determine if m should link to an “NA” (meaning no antecedent)

sNA(m) = WNAr⃗m(NA,m) + bNA. (19)

So far we have discussed the Cluster-CR model structure. We now discuss the cluster
ranking policy. Cluster ranking can be viewed as a sequential decision procedure. Given a
set of mentions in a document with each as a single cluster, we loop through all mentions.
In each iteration step, we take one of the following two actions: Either merging the current
mention’s cluster with an antecedent, or skipping it.

In particular, we define a state s = (C,m) where C contains all clusters (after applying
some merging) seen so far, and m is the current mention. In the start state s0, each cluster
in C is just a single mention. In the state si = (Ci,mi), let Cm be the cluster containing
mi, and A(mi) be candidate antecedent set for mi. We perform one of the following actions:
MERGE(cm, c) where c is a cluster containing a mention in A(mi), or PASS(m) leaving cm
unchanged. The probability we should merge or pass is determined by the scores we get
from the Cluster-Ranking Model

P (MERGE(cm, c) | si) ∝ esc(cm,c),

P (PASS(m) | si) ∝ esNA(m).
(20)

We take the action with the highest probability, and move to the next state si+1 =
(Ci+1,mi+1). The training of the model is based on the learning-to-search algorithm [24].

Additional work. The work [123] uses a mention-ranking model for anaphoricity detection
and antecedent ranking. The model is built on neural networks to learn representations that
do not need to specify interactions of input features. A follow-up work [122] incorporates
global representations of entity clusters using RNN, which is similar to Cluster-CR.

All aforementioned methods assume a set of mentions have been identified in advance.
[62] proposes an end-to-end coreference resolution system, which consists of two major steps.
First, the model computes embedding representations of text spans (up to a maximum width)
that are potential mentions using LSTMs and attention, and generates a potential score for
each text span. Only spans with high scores will be considered as mention candidates.
Then in the second step, antecedent scores of a pair of spans are calculated by feed-forward
networks, and the final coreference score is the sum of the antecedent score and the mention
scores of two spans. A follow-up work [127] improves [62] with bi-affine attention, joint
mention detection, and mention clustering. Another type of work focuses on cross-lingual
coreference resolution [59].

4. DISCUSSION AND FUTURE DIRECTIONS

We discuss several open challenges and opportunities in the intersection of semantic
matching and machine learning. The open problems we cover aim to attract the attention
of the database community to how machine learning can help semantic matching be more
effective. By no means is this an exhaustive list.

Multi-modal data integration. Traditionally semantic matching has focused on textual
data. However, there is an abundance of image, sensory, and audio data that is rarely inte-
grated with textual data into a common queryable knowledge repository. This is to a certain
extent due to the inherently different methods required to process each aforementioned data

DEEP LEARNING FOR SEMANTIC MATCHING: A SURVEY 393

mode. Nonetheless, state-of-the-art deep learning methods can potentially provide the nec-
essary tools and formalisms required for multi-modal data integration. Recent results in
multi-modal information extraction [124] and multi-modal deep learning [77] certainly pro-
vide positive evidence.

Fast and cheap training data for data integration. Machine learning models for se-
mantic matching can require large amounts of training data when applied over domains with
reach domain-specific semantics [72]. Obtaining large number of examples can be resource-
intensive in many practical scenarios. Recent approaches in the literature have focused on
active learning methods to solicit human supervision more effectively [42]. A pro-mising
direction is to understand how these methods relate to weak supervision methods recently
introduced in the machine learning community [91]. Overall, there is an immediate need for
new algorithmic frameworks and systems for collecting large amounts of training data for DI
more effectively.

What makes this challenge unique to semantic matching is that existing weak supervi-
sion approaches have focused primarily on textual data for tasks such as that of information
extraction [90], or visual data for tasks such as image classification [70]. As such, a funda-
mental challenge for deep learning-based semantic matching solutions is to devise new weak
supervision methods tailored to structured data as well as methods that are more robust to
the class imbalance (between positive and negative examples) in semantic matching.

Figure 19: An example of matching product descriptions

Semantic-aware word embeddings. Deep learning models have limited capability of
capturing domain-specific semantics. A promising research direction is to explore mecha-
nisms for introducing domain-specific knowledge to deep learning models. We envision this
to be possible either via new weak-supervision methods [124] or by integrating domain-
knowledge in the architecture of deep learning models [19]. We envision the design of new
domain-specific representation learning models, such as domain-specific word embeddings
for semantic matching. For example, consider matching the two records shown in Figure 19.
The product serial code “ts4gcf133” shown in the figure a description of product features
included in other parts of the description, i.e., its capacity of “4GB” and speed of “133x”. As
a result the embedding for this token should capture this semantic information with respect
to the structure of the product serial key.

Deep learning for schema alignment. Schema alignment matches types and attributes.
Although automatic schema mapping seems an overkill when we align data between two data
sources with typical sizes of schemas, it is important when we consider millions of sources
from the web. For example, Pimplikar et al. [86] study how to apply graphical model to
align webtables with knowledge bases, by aligning entities and schemas at the same time.

Universal schema [92, 113] has revolutionized schema alignment. It is motivated by Ope-

394 HAN LI et al.

nIE knowledge extraction: unlike traditional information extraction that extracts knowledge
according to a predefined ontology (i.e., schema), OpenIE extracts (subject, predicate, ob-
ject) triples, where the predicate can be any word or phrase from texts. Reasoning over
the predicates and mapping them to existing ontology predicates is important to broaden
applications for OpenIE results. Overall, deep learning solutions to schema alignment have
focused mainly on knowledge base construction and little work has been done for structured
data sources. Exploring the use of deep learning for schema matching and alignment further
is a promising direction.

Human-in-the-loop semantic matching. Machine learning models, or any other auto-
matic approaches, can hardly obtain a 100% accuracy on semantic matching, which is a
very complex task. It is thus important to involve human in the loop, conducting labeling,
verifications, and auditing. A future direction is for a system to automatically identify when,
where, and how to get human involved, by applying active learning, transfer learning, and
reinforcement learning.

Efficient model serving for semantic matching. Model serving for semantic matching
entails several resource intensive operations such as data normalization and blocking before
entity resolution or data fusion is performed. Existing methods execute each step in iso-
lation without taking into account the computation performed in subsequent steps along
the semantic matching pipeline. Open questions here include abstractions that will enable
RDBMS-style plan generation and optimization to serve semantic matching models efficiently
by avoiding redundant computation or by reusing computation across different steps.

Micro-services for semantic matching. Historically, semantic matching solutions have
focused on isolated problems, such as entity resolution or schema mapping, rather than end-
to-end solutions. However, the recent results in semantic matching suggest that machine
learning can provide a common formal footing for all different problems along the data
integration stack. A systematic study is required to identify the common abstractions across
different ML-based solutions in semantic matching (e.g., data labeling, data partitioning,
training, testing, etc.). These abstractions can in turn lead to a framework of elastic micro-
services for semantic matching [45].

5. CONCLUSIONS

Semantic matching encompasses a broad range of problems, including entity matching,
entity linking, textual entailment, question answering, schema/ontology matching, and more.
Over the past few years, numerous works have applied deep learning to semantic matching.
Yet, this is just the beginning. In the foreseeable future it is likely that there will be even
more interest in this topic.

To address this growing interest, in this paper we have provided a comprehensive survey of
deep learning works for semantic matching. We have discussed semantic matching problems,
DL building blocks, and how these blocks have been used to develop DL solutions. It is
our hope that this survey will be beneficial to a broad range of readers, including seasoned
researchers, new researchers entering this area, graduate students, and practitioners seeking
to implement DL solutions for semantic matching.

DEEP LEARNING FOR SEMANTIC MATCHING: A SURVEY 395

REFERENCES

[1] E. Agirre, M. Diab, D. Cer, and A. Gonzalez-Agirre, “Semeval-2012 task 6: A pilot on semantic
textual similarity,” in Proceedings of the First Joint Conference on Lexical and Computational
Semantics. Association for Computational Linguistics, 2012, pp. 385–393.

[2] I. Androutsopoulos and P. Malakasiotis, “A survey of paraphrasing and textual entailment
methods,” Journal of Artificial Intelligence Research, vol. 38, pp. 135–187, 2010.

[3] K. Arivuchel Van and K. Lakahmi, “Reading comprehension system-a review,” Indian J. Sci.
Res, vol. 14, no. 1, pp. 83–90, 2017.

[4] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives, “Dbpedia: A nucleus
for a web of open data,” in The Semantic Web. Springer, 2007, pp. 722–735.

[5] Y. Bachrach, A. Zukov-Gregoric, S. Coope, E. Tovell, B. Maksak, J. Rodriguez, and C. Mc-
Murtie, “An attention mechanism for answer selection using a combined global and local view,”
arXiv preprint arXiv:1707.01378, 2017.

[6] S. Bergler, R. Witte, M. Khalife, Z. Li, and F. Rudzicz, “Using knowledge-poor coreference
resolution for text summarization,” in Proceedings of DUC, vol. 3, 2003.

[7] M. Bernstein, A. Doan, and C. N. Dewey, “MetaSRA: normalized human sample-specific meta-
data for the sequence read archive,” Bioinformatics, vol. 33, no. 18, pp. 2914–2923, 2017.

[8] P. A. Bernstein, J. Madhavan, and E. Rahm, “Generic schema matching, ten years later,”
Proceedings of the VLDB Endowment, vol. 4, no. 11, pp. 695–701, 2011.

[9] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors with subword
information,” arXiv preprint arXiv:1607.04606, 2016.

[10] S. R. Bowman, J. Gauthier, A. Rastogi, R. Gupta, C. D. Manning, and C. Potts, “A fast unified
model for parsing and sentence understanding,” in Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, 2016, pp.
1466–1477.

[11] Y. Cao, L. Hou, J. Li, and Z. Liu, “Neural collective entity linking,” in Proceedings of the 27th
International Conference on Computational Linguistics, 2018, pp. 675–686.

[12] Q. Chen, Z.-H. Ling, and X. Zhu, “Enhancing sentence embedding with generalized pooling,”
in Proceedings of the 27th International Conference on Computational Linguistics, 2018, pp.
1815–1826.

[13] T. Cheng, X. Yan, and K. C.-C. Chang, “Entityrank: searching entities directly and holisti-
cally,” in Proceedings of The 33rd International Conference on Very Large Data Bases. VLDB
Endowment, 2007, pp. 387–398.

[14] E. Choi, H. He, M. Iyyer, M. Yatskar, W.-t. Yih, Y. Choi, P. Liang, and L. Zettlemoyer, “Quac:
Question answering in context,” arXiv preprint arXiv:1808.07036, 2018.

[15] J. Choi, K. M. Yoo, and S.-g. Lee, “Learning to compose task-specific tree structures,” in
Proceedings of the 2018 Association for the Advancement of Artificial Intelligence (AAAI). and
the 7th International Joint Conference on Natural Language Processing (ACL-IJCNLP), 2018.

[16] P. Christen, Data Matching - Concepts and Techniques for Record Linkage, Entity Resolution,
and Duplicate Detection, ser. Data-Centric Systems and Applications. Springer, 2012.

396 HAN LI et al.

[17] K. Clark and C. D. Manning, “Deep reinforcement learning for mention-ranking coreference
models,” in Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, 2016, pp. 2256–2262.

[18] ——, “Improving coreference resolution by learning entity-level distributed representations,”
in Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), vol. 1, 2016, pp. 643–653.

[19] W. W. Cohen, “Tensorlog: A differentiable deductive database,” CoRR, vol. abs/1605.06523,
2016.

[20] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bordes, “Supervised learning of univer-
sal sentence representations from natural language inference data,” in Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing, 2017, pp. 670–680.

[21] W. Cui, Y. Xiao, H. Wang, Y. Song, S.-w. Hwang, and W. Wang, “Kbqa: learning question
answering over qa corpora and knowledge bases,” Proceedings of the VLDB Endowment, vol. 10,
no. 5, pp. 565–576, 2017.

[22] I. Dagan, D. Roth, and F. M. Zanzotto, “Textual entailment,” http://u.cs.biu.ac.il/%7Edagan/
TE-Tutorial-ACL07.ppt, 2017.

[23] R. Das, M. Zaheer, S. Reddy, and A. McCallum, “Question answering on knowledge bases and
text using universal schema and memory networks,” arXiv preprint arXiv:1704.08384, 2017.

[24] H. Daumé, J. Langford, and D. Marcu, “Search-based structured prediction,” Machine Learn-
ing, vol. 75, no. 3, pp. 297–325, 2009.

[25] G. Demartini, T. Iofciu, and A. P. De Vries, “Overview of the inex 2009 entity ranking track,”
in International Workshop of the Initiative for the Evaluation of XML Retrieval. Springer,
2009, pp. 254–264.

[26] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional
transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.

[27] D. Diefenbach, V. Lopez, K. Singh, and P. Maret, “Core techniques of question answering
systems over knowledge bases: a survey,” Knowledge and Information Systems, vol. 55, no. 3,
pp. 529–569, 2018.

[28] Z. Ding, Q. Zhang, and X. Huang, “Automatic hashtag recommendation for microblogs using
topic-specific translation model,” Proceedings of COLING 2012: Posters, pp. 265–274, 2012.

[29] J. Dittrich, “Deep learning (m)eats databases.” VLDB Keynote, 2017.

[30] A. Doan, A. Y. Halevy, and Z. G. Ives, Principles of Data Integration. Morgan Kaufmann,
2012.

[31] A. Doan, J. Madhavan, P. Domingos, and A. Halevy, “Ontology matching: A machine learning
approach,” in Handbook on Ontologies. Springer, 2004, pp. 385–403.

[32] G. Durrett and D. Klein, “A joint model for entity analysis: Coreference, typing, and linking,”
Transactions of the Association for Computational Linguistics, vol. 2, pp. 477–490, 2014.

[33] M. Ebraheem, S. Thirumuruganathan, S. Joty, M. Ouzzani, and N. Tang, “Distributed repre-
sentations of tuples for entity resolution,” Proceedings of the VLDB Endowment, vol. 11, no. 11,
pp. 1454–1467, 2018.

http://u.cs.biu.ac.il/%7Edagan/TE-Tutorial-ACL07.ppt
http://u.cs.biu.ac.il/%7Edagan/TE-Tutorial-ACL07.ppt

DEEP LEARNING FOR SEMANTIC MATCHING: A SURVEY 397

[34] P. Elango, “Coreference resolution: A survey,” University of Wisconsin, Madison, WI, 2005.

[35] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate record detection: A survey,”
IEEE Transactions on Knowledge and Data Engineering, vol. 19, no. 1, pp. 1–16, 2007.

[36] M. Feng, B. Xiang, M. R. Glass, L. Wang, and B. Zhou, “Applying deep learning to answer
selection: A study and an open task,” arXiv preprint arXiv:1508.01585, 2015.

[37] M. Francis-Landau, G. Durrett, and D. Klein, “Capturing semantic similarity for entity linking
with convolutional neural networks,” in Proceedings of NAACL-HLT, 2016, pp. 1256–1261.

[38] O.-E. Ganea and T. Hofmann, “Deep joint entity disambiguation with local neural attention,”
in Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,
2017, pp. 2619–2629.

[39] A. Gattani, D. S. Lamba, N. Garera, M. Tiwari, X. Chai, S. Das, S. Subramaniam, A. Ra-
jaraman, V. Harinarayan, and A. Doan, “Entity extraction, linking, classification, and tagging
for social media: a wikipedia-based approach,” Proceedings of the VLDB Endowment, vol. 6,
no. 11, pp. 1126–1137, 2013.

[40] T. P. George Papadakis, “Web-scale, schema-agnostic, end-to-end entity resolution (tutorial),”
in Proceedings of The International Conference on World Wide Web, 2018.

[41] L. Getoor and A. Machanavajjhala, “Entity resolution: theory, practice & open challenges,”
Proceedings of The VLDB Endowment, vol. 5, no. 12, pp. 2018–2019, 2012.

[42] C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli, J. Shavlik, and X. Zhu, “Corleone:
hands-off crowdsourcing for entity matching,” in Proceedings of The 2014 ACM SIGMOD In-
ternational Conference on Management of Data. ACM, 2014, pp. 601–612.

[43] W. H. Gomaa and A. A. Fahmy, “A survey of text similarity approaches,” International Journal
of Computer Applications, vol. 68, no. 13, pp. 13–18, 2013.

[44] I. Goodfellow et al., Deep Learning. MIT Press, 2016.

[45] Y. Govind, E. Paulson, M. Ashok, P. S. GC, A. Hitawala, A. Doan, Y. Park, P. L. Peissig,
E. LaRose, and J. C. Badger, “Cloudmatcher: A cloud/crowd service for entity matching.”

[46] M. Gupta, R. Li, Z. Yin, and J. Han, “Survey on social tagging techniques,” ACM Sigkdd
Explorations Newsletter, vol. 12, no. 1, pp. 58–72, 2010.

[47] N. Gupta, S. Singh, and D. Roth, “Entity linking via joint encoding of types, descriptions, and
context,” in Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, 2017, pp. 2681–2690.

[48] S. Harabagiu and A. Hickl, “Methods for using textual entailment in open-domain question
answering,” in Proceedings of the 21st International Conference on Computational Linguistics
and the 44th annual meeting of the Association for Computational Linguistics. Association
for Computational Linguistics, 2006, pp. 905–912.

[49] H. He, K. Gimpel, and J. Lin, “Multi-perspective sentence similarity modeling with convolu-
tional neural networks,” in Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, 2015, pp. 1576–1586.

398 HAN LI et al.

[50] H. He and J. Lin, “Pairwise word interaction modeling with deep neural networks for semantic
similarity measurement,” in Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, 2016, pp.
937–948.

[51] J. Im and S. Cho, “Distance-based self-attention network for natural language inference,” arXiv
preprint arXiv:1712.02047, 2017.

[52] D. Jurafsky and J. H. Martin, Speech and Language Processing (2nd Edition). Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 2009.

[53] D. Jurgens and M. T. Pilehvar, “Semantic similarity frontiers: From concepts to documents,”
in Conference on Empirical Methods in Natural Language Processing EMNLP, 2015, p. 269.

[54] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for one-shot image recog-
nition,” in ICML Deep Learning Workshop, vol. 2, 2015.

[55] T. Kočiskỳ, J. Schwarz, P. Blunsom, C. Dyer, K. M. Hermann, G. Melis, and E. Grefenstette,
“The narrativeqa reading comprehension challenge,” Transactions of the Association of Com-
putational Linguistics, vol. 6, pp. 317–328, 2018.

[56] N. Kolitsas, O.-E. Ganea, and T. Hofmann, “End-to-end neural entity linking,”
in Proceedings of the 22nd Conference on Computational Natural Language Learning.
Association for Computational Linguistics, 2018, pp. 519–529. [Online]. Available:
http://aclweb.org/anthology/K18-1050

[57] P. Konda, S. Das, P. Suganthan GC, A. Doan, A. Ardalan, J. R. Ballard, H. Li, F. Panahi,
H. Zhang, J. Naughton et al., “Magellan: Toward building entity matching management sys-
tems,” Proceedings of the VLDB Endowment, vol. 9, no. 12, pp. 1197–1208, 2016.

[58] H. Köpcke and E. Rahm, “Frameworks for entity matching: A comparison,” Data & Knowledge
Engineering, vol. 69, no. 2, pp. 197–210, 2010.

[59] G. Kundu, A. Sil, R. Florian, and W. Hamza, “Neural cross-lingual coreference resolution and
its application to entity linking,” arXiv preprint arXiv:1806.10201, 2018.

[60] T. M. Lai, T. Bui, and S. Li, “A review on deep learning techniques applied to answer selection,”
in Proceedings of the 27th International Conference on Computational Linguistics, 2018, pp.
2132–2144.

[61] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444,
2015.

[62] K. Lee, L. He, M. Lewis, and L. Zettlemoyer, “End-to-end neural coreference resolution,” in
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,
2017, pp. 188–197.

[63] C. W. Leong, R. Mihalcea, and S. Hassan, “Text mining for automatic image tagging,” in
Proceedings of the 23rd International Conference on Computational Linguistics: Posters. As-
sociation for Computational Linguistics, 2010, pp. 647–655.

[64] T. Lin, O. Etzioni et al., “Entity linking at web scale,” in Proceedings of the Joint Workshop on
Automatic Knowledge Base Construction and Web-scale Knowledge Extraction. Association
for Computational Linguistics, 2012, pp. 84–88.

http://aclweb.org/anthology/K18-1050

DEEP LEARNING FOR SEMANTIC MATCHING: A SURVEY 399

[65] K. Liu, J. Zhao, S. He, and Y. Zhang, “Question answering over knowledge bases,” IEEE
Intelligent Systems, vol. 30, no. 5, pp. 26–35, 2015.

[66] Y. Liu, C. Sun, L. Lin, and X. Wang, “Learning natural language inference using bidirectional
lstm model and inner-attention,” arXiv preprint arXiv:1605.09090, 2016.

[67] Z. Liu, X. Chen, and M. Sun, “A simple word trigger method for social tag suggestion,” in Pro-
ceedings of the Conference on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, 2011, pp. 1577–1588.

[68] M. Michelson and S. A. Macskassy, “Discovering users’ topics of interest on twitter: a first
look,” in Proceedings of The Fourth Workshop on Analytics for Noisy Unstructured Text Data.
ACM, 2010, pp. 73–80.

[69] A. Mishra and S. K. Jain, “A survey on question answering systems with classification,” Journal
of King Saud University-Computer and Information Sciences, vol. 28, no. 3, pp. 345–361, 2016.

[70] V. Mnih and G. E. Hinton, “Learning to label aerial images from noisy data.” ICML, 2012.

[71] T. S. Morton, “Using coreference for question answering,” in Proceedings of the Workshop on
Coreference and its Applications. Association for Computational Linguistics, 1999, pp. 85–89.

[72] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep, E. Arcaute, and
V. Raghavendra, “Deep learning for entity matching: A design space exploration,” in Proceed-
ings of the 2018 International Conference on Management of Data. ACM, 2018, pp. 19–34.

[73] J. Mueller and A. Thyagarajan, “Siamese recurrent architectures for learning sentence similar-
ity.” in AAAI, vol. 16, 2016, pp. 2786–2792.

[74] N. Nakashole, G. Weikum, and F. Suchanek, “Patty: a taxonomy of relational patterns with
semantic types,” in Proceedings of the 2012 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning. Association for Compu-
tational Linguistics, 2012, pp. 1135–1145.

[75] P. Neculoiu, M. Versteegh, and M. Rotaru, “Learning text similarity with siamese recurrent
networks,” in Proceedings of the 1st Workshop on Representation Learning for NLP, 2016, pp.
148–157.

[76] V. Ng, “Coreference resolution: Successes and challenges,” http://www.hlt.utdallas.edu/
%7Evince/ijcai-2016/coreference/slides.pdf, 2016.

[77] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng, “Multimodal deep
learning,” in Proceedings of the 28th International Conference on International Conference on
Machine Learning, ser. ICML’11. USA: Omnipress, 2011, pp. 689–696. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3104482.3104569

[78] T. H. Nguyen, N. Fauceglia, M. R. Muro, O. Hassanzadeh, A. M. Gliozzo, and M. Sadoghi,
“Joint learning of local and global features for entity linking via neural networks,” in Proceedings
of COLING 2016, the 26th International Conference on Computational Linguistics: Technical
Papers, 2016, pp. 2310–2320.

[79] M. Nicosia and A. Moschitti, “Accurate sentence matching with hybrid siamese networks,”
in Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.
ACM, 2017, pp. 2235–2238.

http://www.hlt.utdallas.edu/%7Evince/ijcai-2016/coreference/slides.pdf
http://www.hlt.utdallas.edu/%7Evince/ijcai-2016/coreference/slides.pdf
http://dl.acm.org/citation.cfm?id=3104482.3104569

400 HAN LI et al.

[80] M. Novák, “Utilization of anaphora in machine translation,” Proceedings of Contributed Papers,
Week of Doctoral Students, pp. 155–160, 2011.

[81] N. F. Noy, “Semantic integration: a survey of ontology-based approaches,” ACM Sigmod Record,
vol. 33, no. 4, pp. 65–70, 2004.

[82] S. Padó, M. Galley, D. Jurafsky, and C. Manning, “Robust machine translation evaluation
with entailment features,” in Proceedings of the Joint Conference of the 47th Annual Meeting
of the ACL and the 4th International Joint Conference on Natural Language Processing of the
AFNLP: Volume 1-Volume 1. Association for Computational Linguistics, 2009, pp. 297–305.

[83] G. Papadakis, J. Svirsky, A. Gal, and T. Palpanas, “Comparative analysis of approximate
blocking techniques for entity resolution,” PVLDB, vol. 9, no. 9, pp. 684–695, 2016.

[84] A. P. Parikh, O. Täckström, D. Das, and J. Uszkoreit, “A decomposable attention model for
natural language inference,” arXiv preprint arXiv:1606.01933, 2016.

[85] O. Phelan, K. McCarthy, and B. Smyth, “Using twitter to recommend real-time topical news,”
in Proceedings of The Third ACM Conference on Recommender Systems. ACM, 2009, pp.
385–388.

[86] R. Pimplikar and S. Sarawagi, “Answering table queries on the web using column keywords,”
PVLDB, vol. 5, no. 10, pp. 908–919, 2012.

[87] E. Rahm and P. A. Bernstein, “A survey of approaches to automatic schema matching,” The
VLDB Journal, vol. 10, no. 4, pp. 334–350, 2001.

[88] J. Raiman and O. Raiman, “Deeptype: Multilingual entity linking by neural type system
evolution,” arXiv preprint arXiv:1802.01021, 2018.

[89] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+ questions for machine
comprehension of text,” in Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, 2016, pp. 2383–2392.

[90] A. Ratner, S. H. Bach, H. Ehrenberg et al., “Snorkel: Rapid training data creation with weak
supervision.” VLDB, 2017.

[91] A. J. Ratner, C. M. De Sa, S. Wu, D. Selsam, and C. Ré, “Data programming: Creating
large training sets, quickly,” in Advances in Neural Information Processing Systems, 2016, pp.
3567–3575.

[92] S. Riedel, L. Yao, B. M. Marlin, and A. McCallum, “Relation extraction with matrix factor-
ization and universal schemas,” in HLT-NAACL, 2013.

[93] M. Sammons, V. Vydiswaran, and D. Roth, “Recognizing textual entailment,” Multilingual
Natural Language Applications: From Theory to Practice, pp. 209–258, 2012.

[94] R. Sarikaya, P. A. Crook, A. Marin, M. Jeong, J.-P. Robichaud, A. Celikyilmaz, Y.-B. Kim,
A. Rochette, O. Z. Khan, X. Liu et al., “An overview of end-to-end language understanding and
dialog management for personal digital assistants,” in Spoken Language Technology Workshop
(SLT), 2016 IEEE. IEEE, 2016, pp. 391–397.

[95] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks, vol. 61,
pp. 85–117, 2015.

DEEP LEARNING FOR SEMANTIC MATCHING: A SURVEY 401

[96] S. Sedhai and A. Sun, “Hashtag recommendation for hyperlinked tweets,” in Proceedings of
The 37th International ACM SIGIR Conference on Research & Development in Information
Retrieval. ACM, 2014, pp. 831–834.

[97] A. Severyn and A. Moschitti, “Learning to rank short text pairs with convolutional deep neural
networks,” in Proceedings of The 38th International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM, 2015, pp. 373–382.

[98] R. Sharnagat, “Named entity recognition: A literature survey,” Center For Indian Language
Technology, 2014.

[99] G. Shen, Y. Yang, and Z.-H. Deng, “Inter-weighted alignment network for sentence pair mod-
eling,” in Proceedings of the 2017 Conference on Empirical Methods in Natural Language Pro-
cessing, 2017, pp. 1179–1189.

[100] T. Shen, T. Zhou, G. Long, J. Jiang, S. Pan, and C. Zhang, “Disan: Directional self-attention
network for rnn/cnn-free language understanding,” arXiv preprint arXiv:1709.04696, 2017.

[101] W. Shen, J. Wang, and J. Han, “Entity linking with a knowledge base: Issues, techniques, and
solutions,” IEEE Transactions on Knowledge and Data Engineering, vol. 27, no. 2, pp. 443–460,
2015.

[102] P. Shvaiko and J. Euzenat, “A survey of schema-based matching approaches,” in Journal on
Data Semantics IV. Springer, 2005, pp. 146–171.

[103] A. Sil, G. Kundu, R. Florian, and W. Hamza, “Neural cross-lingual entity linking,” arXiv
preprint arXiv:1712.01813, 2017.

[104] R. Socher, D. Chen, C. D. Manning, and A. Ng, “Reasoning with neural tensor networks for
knowledge base completion,” in Advances in Neural Information Processing Systems, 2013, pp.
926–934.

[105] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks,” arXiv preprint
arXiv:1505.00387, 2015.

[106] J. Steinberger, M. Poesio, M. A. Kabadjov, and K. Ježek, “Two uses of anaphora resolution in
summarization,” Information Processing & Management, vol. 43, no. 6, pp. 1663–1680, 2007.

[107] R. Stuckardt, “Coreference-based summarization and question answering: a case for high pre-
cision anaphor resolution,” in International Symposium on Reference Resolution, 2003.

[108] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: a core of semantic knowledge,” in Pro-
ceedings of The 16th International Conference on World Wide Web. ACM, 2007, pp. 697–706.

[109] R. Sukthanker, S. Poria, E. Cambria, and R. Thirunavukarasu, “Anaphora and coreference
resolution: A review,” arXiv preprint arXiv:1805.11824, 2018.

[110] Y. Sun, L. Lin, D. Tang, N. Yang, Z. Ji, and X. Wang, “Modeling mention, context and entity
with neural networks for entity disambiguation,” in IJCAI, 2015, pp. 1333–1339.

[111] A. Talman, A. Yli-Jyrä, and J. Tiedemann, “Natural language inference with hierarchical bilstm
max pooling architecture,” arXiv preprint arXiv:1808.08762, 2018.

[112] M. Tan, C. Dos Santos, B. Xiang, and B. Zhou, “Improved representation learning for question
answer matching,” in Proceedings of the 54th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), vol. 1, 2016, pp. 464–473.

402 HAN LI et al.

[113] K. Toutanova, D. Chen, P. Pantel, H. Poon, P. Choudhury, and M. Gamon, “Representing text
for joint embedding of text and knowledge bases,” in EMNLP, 2015.

[114] J. L. Vicedo and A. Ferrández, “Importance of pronominal anaphora resolution in question an-
swering systems,” in Proceedings of the 38th Annual Meeting on Association for Computational
Linguistics. Association for Computational Linguistics, 2000, pp. 555–562.

[115] S. Wan, Y. Lan, J. Guo, J. Xu, L. Pang, and X. Cheng, “A deep architecture for semantic
matching with multiple positional sentence representations.” in AAAI, vol. 16, 2016, pp. 2835–
2841.

[116] J. Wang, H. T. Shen, J. Song, and J. Ji, “Hashing for similarity search: A survey,” arXiv
preprint arXiv:1408.2927, 2014.

[117] M. Wang and C. D. Manning, “Probabilistic tree-edit models with structured latent variables for
textual entailment and question answering,” in Proceedings of the 23rd International Conference
on Computational Linguistics. Association for Computational Linguistics, 2010, pp. 1164–1172.

[118] W. Wang et al., “Database meets deep learning: Challenges and opportunities,” ACM SIGMOD
Record, vol. 45, no. 2, pp. 17–22, 2016.

[119] W. Wang, N. Yang, F. Wei, B. Chang, and M. Zhou, “Gated self-matching networks for reading
comprehension and question answering,” in Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, 2017, pp. 189–198.

[120] Z. Wang, W. Hamza, and R. Florian, “Bilateral multi-perspective matching for natural language
sentences,” arXiv preprint arXiv:1702.03814, 2017.

[121] L. M. Werlen and A. Popescu-Belis, “Using coreference links to improve spanish-to-english
machine translation,” in Proceedings of the 2nd Workshop on Coreference Resolution Beyond
OntoNotes (CORBON 2017), 2017, pp. 30–40.

[122] S. Wiseman, A. M. Rush, and S. M. Shieber, “Learning global features for coreference resolu-
tion,” in Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, 2016, pp. 994–1004.

[123] S. J. Wiseman, A. M. Rush, S. M. Shieber, and J. Weston, “Learning anaphoricity and an-
tecedent ranking features for coreference resolution.” Association for Computational Linguis-
tics, 2015.

[124] S. Wu, L. Hsiao, X. Cheng, B. Hancock, T. Rekatsinas, P. Levis, and C. Ré, “Fonduer: Knowl-
edge base construction from richly formatted data,” in SIGMOD, ser. SIGMOD ’18, 2018.

[125] Y. Yang, W.-t. Yih, and C. Meek, “Wikiqa: A challenge dataset for open-domain question
answering,” in Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, 2015, pp. 2013–2018.

[126] A. W. Yu, D. Dohan, M.-T. Luong, R. Zhao, K. Chen, M. Norouzi, and Q. V. Le, “Qanet: Com-
bining local convolution with global self-attention for reading comprehension,” arXiv preprint
arXiv:1804.09541, 2018.

[127] R. Zhang, C. N. d. Santos, M. Yasunaga, B. Xiang, and D. Radev, “Neural coreference resolution
with deep biaffine attention by joint mention detection and mention clustering,” arXiv preprint
arXiv:1805.04893, 2018.

Received on July 20, 2021
Accepted on September 03, 2021

	Introduction
	The Semantic Matching Problem Landscape
	Defining semantic matching
	A Taxonomy of semantic matching
	Finding semantic identity relationships
	Finding semantic equivalence relationships
	Finding more complex semantic Relationships

	Deep Learning Solutions for Semantic Matching Problems
	Entity linking
	Textual entailment
	Semantic text similarity
	Question answering
	Entity matching
	Coreference resolution

	Discussion and Future Directions
	Conclusions

