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RECENT RESULTS ON CARDINALITY ESTIMATION AND
INFORMATION THEORETIC INEQUALITIES

HUNG Q. NGO
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Abstract. In the past 15 years or so, new and exciting connections between fundamental problems

in database theory and information theory have emerged. There are several angles one can take

to describe this connection. This paper takes one such angle, influenced by the author’s own bias

and research results. In particular, we will describe how the cardinality estimation problem – a

corner-stone problem for query optimizers – is deeply connected to information theoretic inequalities.

Furthermore, we explain how inequalities can also be used to derive a couple of classic geometric

inequalities such as the Loomis-Whitney inequality.

A purpose of the article is to introduce the reader to these new connections, where theory and

practice meet in a wonderful way. Another objective is to point the reader to a research area with

many new open questions.

Keywords. Shannon-type inequalities, cardinality estimation, conjunctive queries, information

theory.

1. INTRODUCTION

Database theory. Cardinality estimation [1] is a crucial component of the query optimiza-
tion pipeline. The main question is “given a conjunctive query, return the best estimate of
the output size as quickly as possible”. There are many approaches to cardinality estimation
(see [2, 3] and references thereof).

One approach to cardinality estimation is to give a worst-case upper-bound on the cardi-
nality estimates. Guaranteed worst-case cardinality bounds help make the query optimizer
robust to outlier, avoiding a query plan which explodes in runtime under bad inputs. There
are recent evidence that these “pessimistic” cost estimators work well in practice [2, 4].

Deriving tight upper-bounds on the output size of a conjunctive query this is where our
story begins. We shall see a fascinating connection to information inequalities, geometric
inequalities, and how they play a crucial role in the seemingly disjoint and different field
of query optimization in databases. In fact, at Relational AI where the author works and
leads the query optimization group, these worst-case size bounds are implemented in the
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production system to great effect. Making real Mathematics work in practice is a wonderful
feeling.

To briefly introduce the readers into these ideas, let us consider a simple example of a
conjunctive query: given a directed graph G = (V,E), how many directed triangles does it
have? This is the simplest example of the conjunctive query cardinality estimation problem,
because the “list all triangles of a graph” query can be expressed as a conjunctive query [5]
of the form

Q∆(a, b, c)← E(a, b) ∧ E(b, c) ∧ E(c, a). (1)

For the reader who is not familiar with database theory, the query (1) asks the following.
There is an input relation E which is a binary relation, (u, v) ∈ E if and only (u, v) is an
edge in the input graph. The output of the query, denoted by Q∆(a, b, c), includes all triples
(a, b, c) for which (a, b) ∈ E, (b, c) ∈ E, and (c, a) ∈ E. The question is, if we know some
statistics about the input graph, can we derive a meaningful bound/estimate of |Q∆|?

Information theory. To answer the above question, here is an argument from an influ-
ential paper by Chung et al. [6] in extremal set theory. The paper proved the “Product
Theorem” which uses the entropy argument connecting a count estimation problem to an
entropic inequality. For the purpose of this introduction, we specialize the argument to Q∆,
leaving the more general argument to Section 3.

Fix the input graph G = (V,E). Let Q∆ be the set of all triangles (a, b, c) in the graph.
Construct a joint distribution on V × V × V by selecting a triangle uniformly at random
from Q∆. Let (A,B,C) denote the corresponding tuple of random variables. Let H denote
the entropy of this particular distribution. Then, due to uniformity, the first fact we know
is that

log2 |Q∆| = H[A,B,C]. (2)

Secondly, the support of the marginal distribution on (A,B) is a subset of E. Hence, the
marginal entropy on (A,B) can be bounded by H[A,B] ≤ log2 |E|. By symmetry, we have

H[A,B] ≤ log2 |E|, H[B,C] ≤ log2 |E|, H[A,C] ≤ log2 |E|. (3)

Finally, thanks to Shannon [7], we know that the function H is non-negative, monotone, and
submodular. In particular, H satisfies the following basic Shannon inequalities

0 = H[∅], (4)

0 ≤ H[X] ∀X ⊆ {A,B,C}, (5)

H[X] ≤ H[Y ] ∀X,Y where X ⊆ Y, and X,Y ⊆ {A,B,C}, (6)

H[X ∪ Y |X] ≤ H[Y |X ∩ Y ] ∀X,Y ⊆ {A,B,C}. (7)

In the above, for Z ⊆W , H[Z|W ] := H[Z]−H[W ] denotes the conditional entropy. Let Γ3

denote the set of all functions h : 2{A,B,C} → R satisfying (5), (6), and (7), with h(∅) = 0.
Then, H ∈ Γ3 and H satisfies (3) and (2). Hence, we can bound |Q∆| via log2 |Q∆| by

log2 |Q∆| ≤ max h(A,B,C),

s.t. h(A,B) ≤ log2 |E|, h(B,C) ≤ log2 |E|, h(C,A) ≤ log2 |E|, (8)

h ∈ Γ3.
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Note that (8) is simply a linear program over 7 variables h(X), one for each non-empty
subset X ⊆ {A,B,C}. Hence, solving for this linear program would be a way to obtain a
bound. However, this is not completely satisfactory because algorithmic bounds do not give
us insights into the magnitude of the attained bound.

Fortunately, there is a way to derive a more explicit bound from the above linear pro-
gram. The following derivation line is due to Radhakrishnan [8]. From the basic Shannon
inequalities that h ∈ Γ3 satisfies, it follows that

h(A,B,C) = h(A) + h(AB | A) + h(ABC | AB)

=
1

2
(h(A) + h(AB | A) + h(A) + h(ABC | AB) + h(AB | A) + h(ABC | AB))

≤ 1

2
(h(A) + h(AB | A) + h(A) + h(AC | A) + h(B | ∅) + h(BC | B))

=
1

2
(h(A,B) + h(B,C) + h(B,C)).

The inequality

h(A,B,C) ≤ 1

2
(h(A,B) + h(B,C) + h(B,C)) (9)

is a special case of the famous Shearer’s inequality [6]. The inequality is a characterization of
points in the the polyhedron Γ3. Since H ∈ Γ3, it satisfies Shearer’s inequality, from which
we can now derive an explicit upper-bound

log2 |Q∆| = H[A,B,C], (10)

(from (9)) ≤ 1

2
(H[A,B] +H[B,C] +H[A,C]) (11)

≤ 1

2
(log2 |E|+ log2 |E|+ log2 |E|) . (12)

In other words, the number of triangles in a directed graph is bounded by |Q∆| ≤ |E|3/2.
This beautiful result has been rediscovered a few times [9] in different contexts (see [10] for
a small survey).

Geometric inequalities. One way to think about the output size bound is to think of Q△
as containing points (a, b, c) in a three-dimensional space, whose projection onto the (A,B)-
plane is contained in the two-dimensional point-set E, onto the (B,C) plane is contained
in E, and onto the (A,C)-plane is contained in E. There is a known geometric inequality
shown by Loomis and Whitney in 1949 [11] which addresses a more general problem: bound
the volume of a convex body in space whose shadows on the coordinate hyperplanes have
bounded areas. The triangle query above corresponds to the discrete measure case, where
“volume” becomes “count”. Specializing to the triangle, Loomis-Whitney states that

|Q△| ≤
√
|E| · |E| · |E| = |E|3/2, (13)

which is exactly what we derived while taking the information theoretic route.
Thus, while studied in a completely different context, Loomis-Whitney’s inequality is

our earliest known answer to determining the worst-case size bound of a special class of
conjunctive queries. The class of queries coming from Loomis-Whitney setup are now referred
to as Loomis-Whitney queries [12, 13].
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Paper organization. We aim for the paper to be somewhat self-contained. However,
that can only be accomplished given that the reader is willing to forego certain level of rigor,
or that the reader is somewhat familiar with elementary database theory and information
theory. Hence, we will be almost always brief in presenting materials, favoring to convey the
main ideas instead of being correct the complete to the last detail. The reader is encouraged
to refer to the references (such as [5, 7, 10, 13]) for more background and survey presentations.

The rest of the paper is organized as follows. Section 2 presents basic setup from database
theory and information theory. Section 3 describes the information theoretic approach to the
cardinality bound problem by deriving the bound using the entropy argument. This section
generalizes the above Q∆ example in two ways: the input query is arbitrary, and the set of
constraints (such as h(A,B) ≤ log |E| constraint) is much more general. We will explain
what is known and not known about computing these bounds, and discuss the computational
problem of computing the bound efficiently. More efficient formulations of the bounds are
then discussed in Section 4. Section 5 concludes the paper.

2. BACKGROUND

Throughout the paper, we use the following convention. The non-negative reals, rationals,
and integers are denoted by R+,Q+, and N respectively. For a positive integer n, [n] denotes
the set {1, . . . , n}.

Functions log without a base specified are base-2, i.e. log = log2. Uppercase Ai denotes
a variable/attribute, and lowercase ai denotes a value in the discrete domain Dom(Ai) of the
variable. For any subset S ⊆ [n], define AS = (Ai)i∈S , aS = (ai)i∈S ∈

∏
i∈S Dom(Ai). In

particular, AS is a tuple of variables and aS is a tuple of specific values with support S. We
also use XS to denote variables and xS , tS to denote value tuples in the same way.

A multi-hypergraph is a hypergraph where edges may occur more than once. Given a
multi-hypergraph H = ([n], E), a vector δ ∈ RE is called a fractional edge cover of H if it
is non-negative (i.e. δ ≥ 0 component-wise), and every vertex is “fractionally covered” at
least 1, i.e.

∑
F :v∈F δF ≥ 1, for all v ∈ [n].

2.1. Database theory

We associate a full conjunctive query Q to a multi-hypergraph H := ([n], E), E ⊆ 2[n],
the query is written as

Q(A[n])←
∧
F∈E

RF (AF ), (14)

with variables Ai, i ∈ [n], and atoms RF , F ∈ E . The atoms RF represent (relational) tables
whose columns are variables AF . The answer to the query consists of all tuples a[n] whose
projections onto the coordinates F ∈ E belong to the corresponding table RF , i.e. aF ∈ RF

for all F ∈ E .
In the triangle query example (1), the hypergraph has n = 3 vertices, and the query (1)

is isomorphic to the following, presented in the form of the general conjunctive query (14)

Q∆(A1, A2, A3)← R12(A1, A2) ∧R13(A1, A3) ∧R31(A3, A1). (15)

Each atom Rij refers to the underlying “table” E which is the table of all edges of the graph
that we want to count the number of triangles of.
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When proving |Q∆| ≤ |E|3/2 in the previous section, we use the query structure (1) and
the fact that every input relation has size (at most) |E|. This is an example of a constraint
that the input satisfies. We now generalize and formalize this notion of constraints, serving
as inputs to our cardinality estimation problem.

A degree constraint is a triple (X,Y,NY |X), where X ⊊ Y ⊆ [n] and NY |X ∈ N. The
relation RF is said to guard the degree constraint (X,Y,NY |X) if Y ⊆ F and

degF (AY |AX) := max
t
|πAY

(σAX=t(RF ))| ≤ NY |X . (16)

Here, π denotes the “projection operator” and σ the “selection operator” in relational alge-
bra [5]. In plain language, the degree constraint states that: “in the relation RF , for every
fixed binding AX = t, there are at most NY |X bindings of AY .

Note that a given relation may guard multiple degree constraints. Let DC denote a set of
degree constraints. The input database D is said to satisfy DC if every constraint in DC has
a guard, in which case we write D |= DC. (The database assigns, to each relation symbol
RF , an actual relation typically denoted by RD

F . To avoid cumbersome notations we avoid
adding super-scripts.)

A cardinality constraint is an assertion of the form |RF | ≤ NF , for some F ∈ E ; it is
exactly the degree constraint (∅, F,NF |∅) guarded by RF . A functional dependency AX →
AY is a degree constraint with NX∪Y |X = 1. In particular, degree constraints strictly
generalize both cardinality constraints and functional dependencies.

In the triangle query (15), suppose in addition to knowing that |E| = N we also know
that the out-degree of every vertex is bounded by D. Then this database (i.e. the graph
G) satisfies the following degree constraints: (∅, {u, v}, N) for every pair u, v ∈ [3]. and
({1}, {1, 2}, D) ({2}, {2, 3}, D) and ({3}, {3, 1}, D).

Our problem setting is general, where we are given a query of the form (14) and a set DC
of degree constraints satisfied by the input database D. The first task is to find a good upper
bound of, or to determine exactly the quantity supD|=DC |Q(D)|, the worst-case output size
of the query given that the input satisfies the degree constraints. The second task is to
design an algorithm running in time as close to the bound as possible.

2.2. Information theory

We present simple facts about entropies that are needed in the rest of this paper. (See [7,
14] for a more formal treatment.)

Consider a joint probability distribution D on n discrete variables A = (Ai)i∈[n] and
a probability mass function Pr. The entropy function associated with D is a function H :
2A → R+, where

H[AF ] :=
∑

aF∈
∏

i∈F Dom(Ai)

Pr[AF = aF ] log
1

Pr[AF = aF ]
(17)

is the entropy of the marginal distribution on AF . To simplify notations, we will also write
H[F ] for H[AF ], turning H into a set function H : 2[n] → R+. For any F ⊆ [n], define the
“support” of the marginal distribution on AF to be

suppF (D) :=

{
xF ∈

∏
i∈F

Dom(Ai) | Pr[AF = xF ] > 0

}
. (18)

Given X ⊆ Y ⊆ [n], define the conditional entropy to be
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H[Y | X] := H[Y ]−H[X]. (19)

This is also known as the chain rule of entropy, which – for the purpose for this paper –
we took as the definition of conditional entropy. Note that we chose to define conditional
entropies (19) only for X ⊆ Y . This is without loss of generality and for the brevity of later
sections. In general, the chain rule for conditional entropies can be written as, for arbitrary
X,Z

H[Z | X] := H[Z ∪X | X].

In our sense (19), we can pick Y = Z ∪X to recover the above more standard expression for
conditional entropies.

The following facts are basic and fundamental in information theory

H[∅] = 0, (20)

H[X] ≤ log |suppX(D)| ∀X ⊆ [n], (21)

H[X] ≤ H[Y ] ∀X ⊆ Y ⊆ [n], (22)

H[X ∪ Y | Y ] ≤ H[X | X ∩ Y ] ∀X,Y ⊆ [n]. (23)

Inequality (21) follows from Jensen’s inequality and the concavity of the entropy function.
Equality holds if and only if the marginal distribution on X is uniform. Entropy measures
the “amount of uncertainty” we have: The more uniform the distribution, the less certain
we are about where a random point is in the space. Inequality (22) is the monotonicity
property: Adding more variables increases uncertainty. Inequality (23) is the submodularity
property: Conditioning on more variables reduces uncertainty.1

For any three sets of variables X,Y, Z, the conditional mutual information I(X;Y | Z)
is defined by

I(X;Y | Z) := H[XZ | Z]−H[XY Z | Y Z]. (24)

From submodularity of H, it follows that conditional mutual information is non-negative.
When writing entropies, it is customary to drop the union ∪, writing H[XY | Z] instead

of H[X ∪ Y | Z], for example. The formula (24) above used this convention.

2.3. Set functions and polymatroids

A function f : 2V → R+ is called a (non-negative) set function on V. A set function f
on V is modular if f(S) =

∑
v∈S f({v}) for all S ⊆ V, is monotone if f(X) ≤ f(Y ) whenever

X ⊆ Y , and is submodular if f(X ∪ Y ) + f(X ∩ Y ) ≤ f(X) + f(Y ) for all X,Y ⊆ V.
Let n be a positive integer. A function h : 2[n] → R+ is said to be entropic if there is a

joint distribution on A[n] with entropy function H such that h(S) = H[S] for all S ⊆ [n].
We will write h(S) and h(AS) interchangeably, depending on context.

Unless specified otherwise, we will only consider non-negative and monotone set functions
f for which f(∅) = 0; this assumption will be implicit in the entire paper. Furthermore, for
X ⊆ Y , we will write

h(Y | X) := h(Y )− h(X) (25)

for all our set functions h.

1H[X | X ∩ Y ] ≥ H[X | (X ∩ Y ) ∪ (Y \X)] = H[X | Y ] = H[X ∪ Y | Y ].
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Let Mn, and Γn denote the set of all (non-negative and monotone) modular and submod-
ular set functions on V, respectively. The set Γn is called the set of polymatroidal functions,
or simply polymatroids. Let Γ∗

n denote the set of all entropic functions on n variables, and
Γ
∗
n denote its topological closure.

The notations Γn,Γ
∗
n,Γ

∗
n are standard in information theory. It is known [14] that Γ∗

n is
a cone which is not topologically closed. And hence, when optimizing over this cone we take
its topological closure Γ

∗
n, which is convex. It is easy to see that Mn and Γn are polyhedral

cones. (Note that we can view them as either functions or vectors in R2n−1.)

There is another interesting class of set functions called normal functions [15, 16], defined
as follows. For every ∅ ≠ W ⊆ [n], a step function sW : 2[n] → R+ is defined by

sW (X) =

{
0 X ⊆W,

1 otherwise.
(26)

A function is normal if it is a non-negative linear combination of step functions. Let Nn

denote the set of normal functions on [n].

As mentioned above, entropic functions satisfy non-negativity, monotonicity, and sub-
modularity. Linear inequalities regarding entropic functions derived from these three prop-
erties are called Shannon-type inequalities. For a very long time, it was widely believed that
Shannon-type inequalities form a complete set of linear inequalities satisfied by entropic
functions, namely Γ

∗
n = Γn. This indeed holds for n ≤ 3, for example. However, in 1998, in a

breakthrough paper in information theory, Zhang and Yeung [17] presented a new inequality
which cannot be inferred from Shannon-type inequalities. Their result proved that, Γ

∗
n ⊊ Γn

for any n ≥ 4.

The following inclusion chain can be found in a combination of [15, 14].

Theorem 2.1. The following chain of inclusion holds

Mn ⊆ Nn ⊆ Γ∗
n ⊆ Γ

∗
n ⊆ Γn. (27)

When n ≥ 4, all of the containments are strict.

We intuitively explain the first two inclusions. Fix a non-empty set W ⊆ [n]. Let
b = (bi)i∈[n] denote the binary vector defined by bi = 1i∈W . Let 1 denote the all-1 vector.
Consider the n-dimensional distribution constructed by picking b or 1 uniformly with prob-
ability 0.5. For any set X of variables, the marginal entropy on X is 0 if X ⊆ W , and is 1
otherwise. Thus, the step function sW is entropic! The fact that all normal functions are
entropic follows from this, with a bit of extra complication [15].

To explain the first inclusion, consider a modular function h, where

h(X) =
∑
i∈X

h({i}) ∀X.

Define the normal function g by

g(X) :=
∑
i∈[n]

h({i}) · s[n]−{i}(X), X ⊆ [n]. (28)

Since s[n]−{i}(X) = 1 iff i ∈ X, it follows that g ≡ h, which means h is normal.
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3. INFORMATION THEORETIC BOUNDS

Given a set of degree constraints DC. Recall that we write D |= DC to denote the fact
that the database D satisfies the degree constraints DC. The cardinality bound problem is
to determine the quantity

sup
D|=DC

|Q(D)|. (29)

This quantity is called the (worst-case output size) of the query, over databases satisfying the
input degree constraints. Algorithms evaluating Q running in time Õ(|D|+supD|=DC |Q(D)|)
are called worst-case optimal join algorithms [10].

To obtain a bound in the general case, we employ the entropy argument, which by now is
widely used in extremal combinatorics [6, 18, 8]. (The argument applied to the triangle query
was already presented in Section 1.) The particular argument below can be found in the first
paper mentioning Shearer’s inequality [6], and a line of follow-up work [16, 19, 20, 21, 8].

Define the collection HDC of set functions satisfying the degree constraints DC

HDC := {h | h : 2[n] → R, h(Y )− h(X) ≤ logNY |X , ∀(X,Y,NY |X) ∈ DC}. (30)

Then, the entropy argument immediately gives the following result, first explicitly formulated
in [19].

Theorem 3.1. (From [16, 19]) Let Q be a conjunctive query and DC be a given set of degree
constraints, then for any database D satisfying DC, we have

sup
D|=DC

log |Q(D)| = max
h∈Γ∗

n∩HDC
h([n]) (entropic bound) (31)

≤ max
h∈Γn∩HDC

h([n]). (polymatroid bound) (32)

Furthermore, the entropic bound is asymptotically tight (equality (31) is asymptotic) and the
polymatroid bound is not.

Proof. (Sketch of proof) Let D |= DC be any database instance satisfying the input de-
gree constraints. Construct a distribution D on

∏
i∈[n]Dom(Ai) by picking uniformly a

tuple a[n] from the output Q(D). Let H denote the corresponding entropy function. Then,
due to uniformity we have log2 |Q(D)| = H([n]). Now, consider any degree constraint
(X,Y,NY |X) ∈ DC. From (21) it follows that H[Y | X] ≤ logNY |X . Since H ∈ Γ∗

n, this
proves the entropic bound. The polymatroid relaxation follows from the chain of inclu-
sion (27).

The proof that the entropic bound is asymptotically tight (i.e. the equality in (31)) is
more involved, requiring a detour to group-theoretic constructions. The connection between
information theory and group theory first observed in Chan and Yeung [22]. Basically, given
any entropic function h ∈ Γ

∗
n ∈ HDC, one can construct a database instance D which satisfies

all degree constrains DC and log |Q(D)| ≥ h([n]). The database instance is constructed from
a system of (algebraic) groups derived from the entropic function. The reader is referred
to [19] for more details.

The looseness of the polymatroid bound follows from exploiting the breakthrough result
from Zhang and Yeung [17] on non-Shannon-type inequalities, which we already mentioned
in Section 2.2. They showed that the following inequality is non-Shannon-type,
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2I(A;B) ≤ I(C;D) + I(C;A,B) + 3I(A;B | C) + I(A;B | D), (33)

which means that every distribution on four variables (A,B,C,D) satisfies (33), and that
there is a polymatroid in Γ4 which does not. Before describing the polymatroid not satisfy-
ing (33), we first use the definition of (conditional) mutual information (24) to rearrange (33)
into a form that is conductive for us to finish the proof

2(h(A)− h(AB | B)) ≤ (h(C)− h(CD | D)) + (h(C)− h(ABC | AB))

+ 3(h(AC | C)− h(ABC | BC)) + (h(AD | D)− h(ABD | BD)),

which is equivalent to

0 ≤ 3h(AC) + 3h(AB) + 3h(BC) + h(AD) + h(BD)

− 2h(A)− 2h(B)− h(C)− 4h(ABC)− h(CD)− h(ABD).

We now convert the inequality into a form we can use in the proof, by adding 11h(ABCD)
to both sides

11h(ABCD) ≤ 3h(AC) + 3h(AB) + 3h(BC) + h(AD) + h(BD)

+ 2h(ABCD | A) + 2h(ABCD | B) + h(ABCD | C) (34)

+ 4h(ABCD | ABC) + h(ABCD | CD) + h(ABCD | ABD).

Note again that (34) is completely equivalent to (33), which means every h ∈ Γ∗
n satis-

fies (34). Furthermore, they showed that, for any θ > 0, the following function in Γ4 does
not satisfy (34)

hθ(X) = 2θ ∀X ∈ {A,B,C,D}, (35)

hθ(CD) = 3θ, (36)

hθ(XY ) = 2θ ∀X,Y ∈ {A,B,C,D}, |{X,Y }| = 2, XY ̸= CD, (37)

hθ(ABCD) = hθ(XY Z) = 4θ ∀X,Y, Z ∈ {A,B,C,D}, |{X,Y, Z}| = 3. (38)

It is not hard, although somewhat tedious, to show that hθ is a polymatroid.
Now, to complete the proof that the polymatroid bound is not tight, consider the following

set of degree constraints, which are read off from (34) and from the values of hθ:

• Cardinality constraints (∅, XY,N2), for XY ∈ {AC,AB,BC,AD,BD},
• Degree constraints (X,ABCD,N2), for X ∈ {A,B,C},
• Degree constraint (CD,ABCD,N).

• Functional dependency constraints (ABC,ABCD, 1) and (ABD,ABCD, 1).

For this set of constraints, from (31) and (34) we have

log |Q| = H[ABCD] ≤ 1

11
(22× logN + 10× logN + logN) = 3 logN. (39)

On the other hand, the function hθ with θ = logN is a solution to (32) with objective value
hθ(ABCD) = 4 logN , proving the gap. As N →∞, the gap can grow arbitrary large. ■

The entropic bound is tight; unfortunately it is not known whether it is even com-
putable [23]. The main reason is that the geometric object Γ̄∗

n is highly complex, requiring
an infinite number of inequalities to characterize [24]. The characterization of Γ̄∗

n is an active
and fascinating research topic [25, 26].

The polymatroid bound is computable, because (32) is just a linear program. However,
it raises three natural questions:
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• What is the exact computational complexity of computing the polymatroid bound?

• For which class of input degree constraints can we compute the polymatroid bound
more efficiently than solving the linear program (32)? Preferrably, we’d like to compute
it in polynomial time.

• For which class of input degree constraints is the polymatroid bound (32) tight?

For the first question, it is not known whether the problem is NP-hard. We do know partial
answers to the next two questions, in the sense that there are sufficient conditions under
which we can compute the polymatroid bound in poly-time and for which the bound are is
tight. We explore these partial answers in the next section.

4. COMPUTATIONAL ISSUES

This section focuses on cases where we can compute the polymatroid bound (32) more
efficiently. While we can expect the number of degree constraints to be small (in practice),
say a polynomial in n, the number of submodularity constraints is exponential. We can
reduce the number of constraints a little, by observing that monotonicity and submodularity
can be replaced equivalently by the following

h(X) ≤ h(X ∪ {i}) ∀X ∈ 2[n] and i ∈ [n] \X, (40)

h(X ∪ {i, j}) + h(X) ≤ h(X ∪ {i}) + h(X ∪ {j}) ∀X ∈ 2[n], and i, j ∈ [n] \X. (41)

(These imply all other monotonicity and submodularity constraints). Even with the re-
duction, there still are O(2nn2) many constraints. We explore next some sufficient conditions
under which we can reduce the number of constraints further.

4.1. Useful sub-classes of polymatroids

From the chain of inclusion (27), we know the following

sup{h([n]) | h ∈ HDC ∩ Γn} polymatroid bound, not tight! (42)

≥ sup{h([n]) | h ∈ HDC ∩ Γ∗
n} entropic bound, tight! (43)

≥ sup{h([n]) | h ∈ HDC ∩ Nn} (44)

≥ sup{h([n]) | h ∈ HDC ∩Mn}. (45)

The nice thing about the sets Nn and Mn is that they require less number of (linear)
constraints to describe. Furthermore, if we can show that (44) and (42) collapse, then the
polymatroid bound is tight! Similarly, if (45) and (42) collapse, then the bound is tight. We
next prove two sufficient conditions on the input degree constraints so that these bounds
collapse.

The first result is implicit in [15]. A set DC of degree constraints is simple if (X,Y,NY |X) ∈
DC implies |X| ≤ 1.

Theorem 4.1. (From [15]) Let DC be a set of simple degree constraints, then

sup{h([n]) | h ∈ HDC ∩ Γn} = sup{h([n]) | h ∈ HDC ∩ Nn} (46)

In particular, the polymatroid bound is tight for this class of degree constraints.
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Proof. (Sketch of proof) Let h be an arbitrary polymatroid. In [15] we showed that we can
always construct a normal function g for which

g([n]) = h([n]), (47)

g({i}) = h({i}) ∀i ∈ [n], (48)

g(X) ≤ h(X) ∀X ⊆ [n]. (49)

Thus, if h ∈ HDC then g ∈ HDC because g(Y | X) ≤ h(Y | X) for all |X| ≤ 1. This
means, for any solution h to the polymatroid linear program, we can construct a solution g
to the normal linear program with the same cost. ■

How much did we save by assuming DC is simple? The description of members of Nn

requires O(2n) non-negative coefficients λW , where

h(X) =
∑

W⊆[n]

λW · sW (X) =
∑
X ̸⊆W

λW . (50)

Hence, computing the normal bound (44) is to solve the linear program

max λ[n] (51)

s.t.
∑

W :Y ̸⊆W,X⊆W

λW ≤ log2NY |X , (X,Y,NY |X) ∈ DC, (52)

λ ≥ 0. (53)

This linear program has size roughly O(2n) (modulo the degree constraints). This is an
improvement over O(2nn2), but probably not enough for practical usage.

The second result is implicit in [10]. A set DC of degree constraints is acyclic if there
exists a permutation π of [n] for which every member of X preceeds every member of Y −X
in the permutation, for every degree constraint (X,Y,NY |X) ∈ DC. In that case we say that
DC is compatible with π.

Theorem 4.2. (From [10]) Let DC be a set of acyclic degree constraints, then

sup{h([n]) | h ∈ HDC ∩ Γn} = sup{h([n]) | h ∈ HDC ∩Mn}. (54)

In particular, the polymatroid bound is tight for acyclic degree constraints.

Proof. Let h be an arbitrary polymatroid. It is sufficient to construct a modular function g
for which the following hold

g([n]) = h([n]), (55)

g(Y |X) ≤ h(Y |X) ∀(X,Y,NY |X) ∈ DC. (56)

Without loss of generality, assume the identity permutation is compatible with DC, i.e.
for every (X,Y,NY |X) ∈ DC, we have x < y for all x ∈ X and y ∈ Y −X. Define

g(S) :=


0 if S = ∅,
h([i])− h([i− 1]) if S = {i}, i ∈ [n],∑

i∈S g(i) if S ⊆ [n], |S| > 1.

(57)

The function g is clearly modular because h is monotone. The fact that g([n]) = h([n])
follows from the telescoping sum. We will show by induction on |Y − X| that g(Y |X) ≤
h(Y |X) for any degree constraint (X,Y,NY |X) ∈ DC. The base case when Y = X holds
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trivially. Let (X,Y,NY |X) be any degree constraint in DC where |Y −X| > 0. Let j be the
largest integer in Y −X. We have

g(Y | X) = h([j] | [j − 1]) + g(Y − {j} | X) (58)

(induction hypothesis) ≤ h([j] | [j − 1]) + h(Y − {j} | X) (59)

= h([j − 1] ∪ Y | [j − 1]) + h(Y − {j} | X) (60)

(submodularity of h) ≤ h(Y | Y ∩ [j − 1]) + h(Y − {j} | X) (61)

= h(Y | Y − {j}) + h(Y − {j} | X) (62)

= h(Y | X). (63)
■

Acyclic degree constraints are thus very nice, because the size of the modular linear
program (45) is polynomial in n. Explicitly, setting νi = h({i}) the linear program is

max
∑
i∈[n]

νi (64)

s.t.
∑

i∈Y \X

νi ≤ log2NY |X (X,Y,NY |X) ∈ DC

ν ≥ 0.

Note that if the set DC contains only cardinality constraints, i.e. X = ∅ for all (X,Y,NY |X) ∈
DC, then DC is trivially acyclic. The triangle query example (1) has acyclic constraints, be-
cause all we had was the cardinality constraint on |E|.

4.2. Connection to geometric inequalities and information inequalities

Studying the linear program (64) leads to further interesting connections. Associate a
dual variable δY |X for every (X,Y,NY |X) ∈ DC. In what follows for brevity we sometimes
write (X,Y ) ∈ DC instead of the lengthier (X,Y,NY |X) ∈ DC. The dual LP of (64) is

min
∑

(X,Y,NY |X)∈DC

δY |X log2NY |X (65)

s.t.
∑

(X,Y )∈DC
i∈Y−X

δY |X ≥ 1 ∀i ∈ [n]

δY |X ≥ 0 ∀(X,Y ) ∈ DC.

Weak duality and Theorem 4.1 leads to the following simple observation.

Proposition 4.1. Given a query Q with a set DC of acyclic degree constraints, then

|Q| ≤
∏

(X,Y,NY |X)∈DC

N
δY |X
Y |X (66)

for any vector δ which is feasible to (65).

When DC contains only cardinality constraint (and thus it is acyclic), the above propo-
sition specialises to the following:

• The Bollobás-Thomason inequality [27] for discrete measures. The statement of the
bound is simpler when X = ∅ for all degree constraints. We write NY instead of NY |∅,
and δY instead of δY |∅. Let H = ([n], E) be the hypergraph whose edges are exactly
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the Y from the degree constraints (∅, Y,NY ). Then, δ is a fesible solution to (65) if
and only if it is a fractional edge cover of H. Bollobás-Thomason proved that

|Q| ≤
∏
Y ∈E

N δY
Y , (67)

whenever δ is a fractional edge cover for E . The statement in their paper is a little
different, but can be shown easily to be equiavlent to the above.

• Furthermore, if we restrict the instance to degree constraints of the form (∅, Y,NY ),
with |Y | = n − 1, then we get the Loomis-Whitney inequality for discrete measures.
The Loomis-Whitney bound is often stated with a specific fractional edge cover δY =
1/(n− 1) for all Y ∈

(
[n]
n−1

)
.

• The bound (67) is now known as the AGM-bound in database theory [28].

5. CONCLUSIONS

We surveyed recent developments in the connection between information theory and
database theory. There are many exciting discoveries which we were not able to cover within
the scope of this article. There also are many interesting open problems arising naturally
from the setup presented here.

Our work [16, 19] developed the family of information-theoretic bounds for a much more
general class of queries called disjunctive datalog queries. The connection to information
inequalities such as Shearer’s lemma and its generalizations is established in a systematic
manner. Information theoretic inequalities also have other applications in databases [15] and
beyond in Computer Science. In [23] we formulated a large class of (decision) problems in
information theory with a wide range of applications in various areas of Computer Science.

The problems related to efficiently computing the polymatroid bound are open. It is
not known whether computing the bound is NP-hard. We believe it is NP-hard. Then, the
problems are to identify sub-classes of input degere constraints for which the bound can be
efficiently computed. We took the first steps in Section 4., but much is left to be desired.

In addition to deriving cardinality bounds, query optimization and evaluation algorithms
meeting those bounds are deep and exciting subjects of algorithmic research, where there
is great synergy between statistics (graphical models), constraint satisfaction, logic, and
database. The reader is referred to [29, 10] and references thereof for more information.

The entropy argument we used is only one form of entropy argument. By now this
argument is widely used in extremal combinatorics to prove a wide variety of results [18].
Most closely related to our setting is an inequality from FriedGut which uses a more refined
argument – moving beyond the uniform distribution – but otherwise similar to the one we
presented [30].

These results are used in the implementation of a production-grade query optimizer,
illustrating a beautiful application of Mathematics to a production system. I am certain
that Prof. Phan would be proud of such applications.
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