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Abstract. To save energy consumption of Ethernet switches, IEEE has standardized a new energy-

efficient operation for Ethernet links with a low-power state and transition mechanisms between

the high-power state for transporting traffic and the low-power state. In this paper, we propose a

queueing model with the Markov Modulated Compound Poisson Process that is able to characterize

backbone packet traffic. We derive a closed-form solution for the stationary distribution of the

proposed queueing model. We show that our model can capture an entire system where the transition

times are constant.

Keywords. Energy efficient Ethernet, queueing model, Markov modulated compound Poission

process.

1. INTRODUCTION

Legacy Ethernet links are active during non-traffic periods, which could lead to the waste
of energy [1, 2]. The IEEE 802.3az Energy Efficient Ethernet (EEE) standard specifies
four states for the operation of green Ethernet links: Active (A), Sleep (S), Wake (W )
and Low Power Idle (L). The energy-efficient operation for Ethernet links standardized by
IEEE [3, 4, 5, 6, 7] consists of a low-power state and transition mechanisms between the active
state with high power consumption and the low-power state. Reviriego et al. [8] reported
90% power save in state L where there is no traffic. IEEE, however, did not standardize
the triggering mechanism on which conditions state L should be reached. As a result, many
algorithms have been proposed for better L state usage, like frame transmission [6] and burst
transmission [9] algorithm.

Herreria-Alonso et al. [5], Reviriego et al. [6] and Ajmone Marsan et al. [10] reported
performance evaluations using simulation models and simple analytical models (with Poisson
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traffic and a fixed batch packet size) for Ethernet links based on new standards. These
models provided a qualitative comparison between algorithms and evaluated the effect of
configuration parameters. Herreria-Alonso et al. [11] provided an analytical model for both
frames and burst transmission algorithms. Larrabeiti et al. [12] proposed an analytical
model to estimate the energy consumption of a two-state link and presented a performance
comparison of cooper based versus optical Ethernet. The links’ bidirectional behaviour is
considered in the M/G/1 model described by Chatzipapas et al. [13]. Although their model
shows a good approximation, minor discrepancies appear when burst traffic alters from
the Poisson assumption. An additional effective triggering mechanism to reach state L is
considered using traffic prediction in a work by Cenedese et al. [14]. Similarly, Jiang et al. [15]
proposed a generalized predictive control mechanism to adjust the time window parameter
automatically. However, there are no available analytical models with stochastic processes
(like Markov Modulated Poisson Process [16]) that can characterize IP packet traffic.

In this paper, we propose a new model that assumes packet arrivals according to the
Markov Modulated Compound Poisson Process, which is a generalization of the Markov
Modulated Poisson Process – an attractive model for characterizing backbone packet traffic.
It is worth emphasizing that only approximate Markov models are possible due to the fixed
transition times between the modes of energy-efficient Ethernet links. Therefore, we assume
that the transition times between the states of Ethernet links are exponentially distributed
to obtain a tractable model. We validate our model with the exact simulation of energy-
efficient Ethernet links. Furthermore, we derive the exact solution for the proposed analytical
model to compare alternatives concerning the operation modes of green Ethernet links in an
efficient way.

The rest of this paper is organized as follows. A queueing model is proposed in Section 2.
Numerical results are shown in Section 3. Finally, Section 4 concludes our paper.

2. A NEW ANALYTICAL MODEL

Green Ethernet links have four states: Active (A), Sleep (S), Wake (W ) and Low Power
Idle (L). The transitions between the states for EEE 10GBASE-T links and for EEE
100BASE-TX or 1000BASE-T links are illustrated in Figure 1 (a) and (b). Ts and Tw
are the transition times between the modes of energy efficient Ethernet links.

We assume that packets arrive at an Ethernet link according to the Markov Modulated
Compound Poisson Process (MMCPP).

• The modulating Markov process has two states ON and OFF with parameters α and β.

• In the OFF state, there are no packet arrivals.

• In the ON state, packets arrive according to the CPP with parameters (λ, ω). Note that
0 ≤ ω < 1. The probability distribution function of inter-arrival times τ for customers
is defined by Pr(τ = 0) = ω and Pr(0 < τ < t) = (1 − ω)(1 − e−λt). Therefore,
during ON state, the arrival process can be seen as batch-Poisson, with batches having
geometric size distribution. The probability that a batch is of size s is (1− ω)ωs−1.

Similarly, to [10], the size of the transmission buffer of a specific link is assumed to be infinite.
Let J(t) be the number of packets in the system heading for the specific link (including the
number of packet in the transmission buffer and a packet being transmitted) at time instant t.
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Figure 1: The state transitions

To jointly describe the state of the link and the state of the modulating process at time
instant t, random variable I(t) is introduced. From the operation rule [3, 4] (illustrated in
Figure 1) it is observed that the link

• is never in state L when there are packets heading for the link (i.e., when J(t) > 0),

• is never in state W when no packet is in the system (i.e., when J(t) = 0).

Therefore, we join state L and W in our analytical model into state LW . If J(t) = 0 and
the model is in state LW then the link is in state L. If J(t) ≥ 1 and the model is in state
LW , then the link is in state W . We assume that the transition times between the states
of Ethernet links are exponentially distributed to obtain a tractable model. The transition
times from the state S to state L and the transition times from the state W to state A are
exponentially distributed with rate νs and νW , respectively. Note that νs = Ts and νw = Tw.

Now it is easy to identify the value set of I(t) if we lexicographically sort the states
representing the link and the modulating process as in Table 1. The system is described by
continuous time Markov chain (CTMC) {I(t), J(t)}. The possible transitions of the CTMC
for EEE 10GBASE-T links when 1 ≤ I(t) ≤ 3 are illustrated in Figure 1 (c). The possible
transitions of the CTMC for EEE 100BASE-TX or 1000BASE-T links when 1 ≤ I(t) ≤ 3
are depicted in Figure 1 (d).

Table 1: Values of I(t)

I(t) 1 2 3 4 5 6
The state of the link A S LW A S LW
The state of the modulating Markov process ON OFF

Let the steady state probabilities of CTMC {I(t), J(t)} be denoted by
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πi,j = lim
t→∞

Pr(I(t) = i, J(t) = j).

Define the row vector vj = [π1,j , . . . , π6,j ]. We have π1,0 = π4,0 = 0 due to the operation rule
of the link.

The infinitesimal matrix Q of CTMC {I(t), J(t)} is a block matrix (see Table 4). The
blocks contain the transitions of the Markov chain as follows.

(a) Block Q
(j)
0,s includes element Q

(j)
0,s(i, k) that is the s−step upward transition from state

(i, j) to state (k, j + s) (1 ≤ i, k ≤ 6; j = 0, 1, . . .). These transitions are caused by the
arrivals of customers.

(b) Block Q
(j)
1 consists of element Q

(j)
1 (i, k) that denotes the purely phase transition from

state (i, j) to state (k, j) (1 ≤ i, k ≤ 6, k ̸= i; j = 0, 1, . . .).

(c) Block Q
(j)
2 contains element Q

(j)
2 (i, k) that is the one−step downward transition from

state (i, j) to state (k, j − 1) (1 ≤ i, k ≤ 6; j = 1, . . .). These transitions are caused by
the departures of customers from the system.

Based on the operation of the link, we can write the transition matrices and the infinitesimal

generator matrix in Tables 2, 3 and 4. Note that matrices Q
(j)
2 , j ≥ 0, are the same for EEE

10GBASE-T, EEE 100BASE-TX and EEE 1000BASE-T links.
The balance equations and the normalization equation can be written as follows

v0Q
(0)
1 + v1Q

(1)
2 = 0, (1)

v0Q
(0)
0,j +

j−1∑
s=1

vj−sQ
(j−s)
0,s + vjQ1 + vj+1Q2 = 0, j ≥ 1,

∞∑
j=0

6∑
i=1

πi,j = 1. (2)

Theorem 1. For j > 1, the following equation holds between the stationary probabilities

vj−1Q̃0 + vjQ̃1 + vj+1Q̃2 = 0, (3)

where Q̃0 = (Q0,1 −Q1Ω), Q̃1 = (Q1 −Q2Ω) and Q̃2 = Q2.

Proof. Let us define ωs = λ(1 − ω)ωs−1, Ω = Diag[ω, ω, ω, 0, 0, 0], Λ = Diag[λ, λ, λ, 0, 0, 0]
Then, we obtain

Q
(j)
0,s = Λ(I − Ω)Ωs−1 = Q

(j)
0,s−1Ω, (4)

Q
(0)
0,j = Q

(0)
0,j−1Ω. (5)

Multiplying balance equation concerning level j − 1, j ≥ 2, with Ω, we get

v0Q
(0)
0,j−1Ω+

j−2∑
s=1

vj−1−sQ
(j−1−s)
0,s Ω = −vj−1Q1Ω− vjQ2Ω = 0, j ≥ 2.

We substitute (6) into (2), and utilize equations (4) and (5). After some algebraic steps, we

get −vj−1Q1Ω− vjQ2Ω+ vj−1Q
(j−1)
0,1 + vjQ1 + vj+1Q2 = 0, which yields (3). ■
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Table 2: Transition matrices for modeling an EEE 10GBASE-T link

Q
(0)
0,s =



0 0 0 0 0 0
0 ωs 0 0 0 0
0 0 ωs 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , s ≥ 1 ;

Q
(j)
0,s = Q0,s =



ωs 0 0 0 0 0
0 ωs 0 0 0 0
0 0 ωs 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , j ≥ 1, s ≥ 1;

Q
(0)
1 =



0 0 0 0 0 0
0 −λ− α− νs νs 0 α 0
0 0 −λ− α 0 0 α
0 0 0 0 0 0
0 β 0 0 −β − νs νs
0 0 β 0 0 −β

 ,

Q
(j)
1 = Q1 =



−λ− α− µ 0 0 α 0 0
0 −λ− α− νs νs 0 α 0
νw 0 −λ− α− νw 0 0 α
β 0 0 −β − µ 0 0
0 β 0 0 −β − νs νs
0 0 β νw 0 −β − νw

 ,

j ≥ 1,

Q
(1)
2 =



0 µ 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 µ 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

Q
(j)
2 = Q2 =



µ 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 µ 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , j > 1.
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Table 3: Transition matrices for modeling an EEE 100BASE-TX or 1000BASE-T link

Q
(0)
0,s =



0 0 0 0 0 0
ωs 0 0 0 0 0
0 0 ωs 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , s ≥ 1,

Q
(j)
0,s = Q0,s =



ωs 0 0 0 0 0
0 0 0 0 0 0
0 0 ωs 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , j ≥ 1, s ≥ 1,

Q
(0)
1 =



0 0 0 0 0 0
0 −λ− α− νs νs 0 α 0
0 0 −λ− α 0 0 α
0 0 0 0 0 0
0 β 0 0 −β − νs νs
0 0 β 0 0 −β

 ,

Q
(j)
1 = Q1 =



−λ− α− µ 0 0 α 0 0
0 −α 0 0 α 0
νw 0 −λ− α− νw 0 0 α
β 0 0 −β − µ 0 0
0 β 0 0 −β − νs νs
0 0 β νw 0 −β − νw

 , j ≥ 1,

Table 4: Infinitesimal generator matrix

Q =



Q
(0)
1 Q

(0)
0,1 Q

(0)
0,2 . . . Q

(0)
0,j−1 Q

(0)
0,j Q

(0)
0,j+1 Q

(0)
0,j+2 Q

(0)
0,j+3 . . .

Q
(1)
2 Q

(1)
1 Q

(1)
0,1 . . . Q

(1)
0,j−2 Q

(1)
0,j−1 Q

(1)
0,j Q

(1)
0,j+1 Q

(1)
0,j+2 . . .

0 Q
(2)
2 Q

(2)
1 . . . Q

(2)
0,j−3 Q

(2)
0,j−2 Q

(2)
0,j−1 Q

(2)
0,j Q

(2)
0,j+1 . . .

0 0 Q
(3)
2 . . . Q

(3)
0,j−4 Q

(3)
0,j−3 Q

(3)
0,j−2 Q

(3)
0,j−1 Q

(3)
0,j . . . . . .

...
...

...
...

...
...

...
...

...
...

. . . . . . . . . . . . Q
(j)
2 Q

(j)
1 Q

(j)
0,1 Q

(j)
0,2 Q

(j)
0,3

. . . . . . . . . . . . . . . Q
(j+1)
2 Q

(j+1)
1 Q

(j+1)
0,1 Q

(j+1)
0,2 . . .

. . . . . . . . . . . . . . . . . . Q
(j+2)
2 Q

(j+2)
1 Q

(j+2)
0 . . .

...
...

...
...

...
...

...
...

...
...


,
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The consequence of Theorem 1 is that vj , j ≥ 1, is the solution of quadratic matrix
equation (3) as

vj =
6∑

k=1

bkψkx
j−1
k (j ≥ 1); (6)

where
• bk are suitable coefficients to be determined using balance equation (1), balance equa-
tion (2) for j = 1, and the normalization equation,

• (xk,ψk), k = 1, . . . , 6 are the left eigenvalue-eigenvector pairs of Q(x) = Q̃0 + Q̃1x +
Q̃2x

2 inside the unit circle (see [17]). Let ψk = [ψk,1, ψk,2, ψk,3, ψk,4, ψk,5, ψk,6]. Note
that the left eigenvalue-eigenvector pairs satisfy ψkQ(xk) = 0 and det[Q(xk)] = 0, k =
1, . . . , 6.

Remarks. One may observe that equation (3) looks like the balance equation of homoge-
neous quasi-birth-death processes [18]. Therefore, one may express vj as the function of the
so-called rate matrix R ( see [18] for the matrix geometric solution). However, some proper-
ties (e.g., the non-negative elements) of the rate matrix do not hold because Q̃0 + Q̃1 + Q̃2

is not a stochastic matrix.
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Figure 2: Probability vs ω for ρ = 0.1

2.1. The left-eigenvalues for an EEE 10GBASE-T link model

Utilizing Theorem 1, we obtain

det[Q(x)] = det[Q̃0 + Q̃1x+ Q̃2x
2] = (x− 1)x3f1(x)f2(x)f3(x),
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Figure 3: Probability vs ω for ρ = 0.2

where

f1(x) = µ2x2 − (αµ+ βµ+ λµ+ µ2 + µ2ω)x+ βλ+ λµ+ αµω + βµω + µ2ω,

f2(x) = (βλ+ ανs + βνs + λνs + ν2s )x− βλ− λνs − ανsω − βνsω − ν2sω,

f3(x) = (βλ+ ανw + βνw + λνw + ν2w)x− βλ− λνw − ανwω − βνwω − ν2wω.

As a consequence, det[Q(x)] has 8 roots. The roots inside the unit circle are

x1 = x2 = x3 = 0,

x4 =
βλ+ λνs + ανsω + βνsω + ν2sω

βλ+ ανs + βνs + λνs + ν2s
,

x5 =
βλ+ λνw + ανwω + βνwω + ν2wω

βλ+ ανw + βνw + λνw + ν2w
,

x6 =
αµ+ βµ+ λµ+ µ2 + µ2ω

2µ2

−
√

(αµ+ βµ+ λµ+ µ2 + µ2ω)2 − 4µ2(βλ+ λµ+ αµω + βµω + µ2ω)

2µ2
.
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2.2. The left-eigenvalues for an EEE 100BASE-TX or 1000BASE-T link model

In this case, det[Q(x)] can be expressed as follows

det[Q(x)] = ανs(x− 1)x3(x− ω)f4(x)f5(x),

where

f4(x) = x(βλ+ ανw + βνw + λνw + ν2w)− βλ− λνw − ανwω − βνwω − ν2wω,

f5(x) = βλ+ λµ+ αµω + βµω + µ2ω − x(αµ+ βµ+ λµ+ µ2 + µ2ω) + µ2x2.

Thus, the roots inside the unit circle are

x1 = x2 = x3 = 0,

x4 = ω,

x5 =
βλ+ λνw + ανwω + βνwω + ν2wω

βλ+ ανw + βνw + λνw + ν2w
,

x6 =
αµ+ βµ+ λµ+ µ2 + µ2ω

2µ2

−
√

(αµ+ βµ+ λµ+ µ2 + µ2ω)2 − 4µ2(βλ+ λµ+ αµω + βµω + µ2ω)

2µ2
.

The corresponding eigenvectors of zero-eigenvalues are [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1]. Using ψkQ(xk) = 0, we can easily determine the exact formula of ψk for
non zero eigenvalues. Then, the expressions for v0 and bk, k = 1, . . . , 6, can be derived as
well (we do not write here because the long formulae).

2.3. Performance measures

The probability of state A, S, L and W can be determined as

PA = π1,0 + π4,0 +

6∑
k=4

bk(ψk,1 + ψk,4)

1− xk
+

3∑
k=1

bk(ψk,1 + ψk,4),

PS = π2,0 + π5,0 +
6∑

k=4

bk(ψk,2 + ψk,5)

1− xk
+

3∑
k=1

bk(ψk,2 + ψk,5),

PL = π3,0 + π6,0,

PW = 1− PA − PS − PL.

3. NUMERICAL RESULTS

To show that the queueing model can evaluate the performance of Energy Efficient Eth-
ernet links, we compare results obtained by a simulation where transition times Tw and Ts
between states are fixed. Note that in the proposed queueing model, the transition times
follow the exponential distribution. Simulations are performed with a confidence level of
99%. For Ts = 2.88, Tw = 4.16 µs (see [6]), α = 0.0001695 (the average ON period is 5.899
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ms), β = 0.000110 (the average OFF period is 9.09 ms), the average packet size is of 1500
bytes (hence µ = 0.833 1/µs in 10Gbits links), ρ = rONλ

(1−ω)µ , we plot the probabilities obtained
with our model and the simulation model in Figures 2, 3 and 4. We can conclude that the
agreement between the simulation and analytical results is excellent.
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Figure 4: Probability vs ω for ρ = 0.5

From Figure 5, when the load is small, the higher is ω is, the better energy saving can be
achieved. At the same load (the same amount of packets), the burstiness (packets in batches
of more packets) would have a better impact on energy saving.

For an EEE 1000BASE-T link model, we plot the probability in state L versus Tw and
Ts in Figure 6. From the curve, it seems that Tw has a minimal impact on PL.

4. CONCLUSIONS

We have proposed a queueing model for Energy Efficient Ethernet links. In the model
packets arrive according to the Markov Modulated Compound Poisson Process and the
transition times between the states of Ethernet links are exponentially distributed. We have
derived the exact solution for the steady-state probabilities of the analytical model. The
comparison between our model and the simulation of energy-efficient Ethernet links shows
that the proposed model can capture the behaviour of Energy Efficient Ethernet links.



A CLOSED-FORM SOLUTION FOR A QUEUEING MODEL 463

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Pr
ob

ab
ili

ty
 o

f 
st

at
e 

L

ω

ρ=0.1
ρ=0.2
ρ=0.3
ρ=0.4
ρ=0.5
ρ=0.6
ρ=0.7
ρ=0.8
ρ=0.9

Figure 5: Probability in state L
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