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Abstract. Instead of handling fuzzy sets associated with linguistic (L-) labels based on the devel-

opers’ intuition immediately, the study follows the hedge algebras (HA-) approach to the time series

forecasting problems, in which the linguistic time series forecasting model was, for the first time,

proposed and examined in 2020. It can handle the declared forecasting L-variable word-set directly

and, hence, the terminology linguistic time-series (LTS) is used instead of the fuzzy time-series (FTS).

Instead of utilizing a limited number of fuzzy sets, this study views the L-variable under considera-

tion as to the numeric forecasting variable’s human linguistic counterpart. Hence, its word-domain

becomes potentially infinite to positively utilize the HA-approach formalism for increasing the LTS

forecasting result exactness. Because the forecasting model proposed in this study can directly handle

L-words, the LTS, constructed from the numeric time series and its L-relationship groups, considered

human knowledges of the given time-series variation helpful for the human-machine interface. The

study shows that the proposed formalism can more easily handle the LTS forecasting models and

increase their performance compared to the FTS forecasting models when the words’ number grows.

Keywords. Linguistic time series; Linguistic logical relationship; Hedge algebras; Quantitative

words semantics.

1. INTRODUCTION

Human activity achievements are characterized by their effective decision-making pro-
cesses, in which forecasting problems play an essential role. However, in their daily lives,
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they usually observe, analyze their real-world counterparts, and make their own natural L-
words decisions. In this context, the statistical approaches that deal with only the numerical
time series (NTS) cannot efficiently solve such decision-making problems. The fuzzy time
series (FTS) was first introduced by Song and Chissom [1–3], based on the fuzzy set theory
introduced by Zadeh [4], in which the fuzzy sets are considered the meaning of their L-words.
Their study originated from the observations that the weather of a particular place in North
America can be described by L-words like good, very good, quite good, very very good, cool,
very cool, quite cool, hot, very hot, cold, very cold, very very cold. Further, a person’s mood
during periods can be described as good, very good, very very good, really good, bad, very bad,
not too bad, and so forth.

Their studies opened a new intensive research field, attracting a significant number of
methodological and application-oriented studies. Ones can find in the literature the method-
ological studies including, e.g., model improvement by simplifying computational method
[2,3], applying Fibonacci sequence [5]; high-order FTS [6–9]; multi-factor [10–12]; type-2
fuzzy set [13–15]; intuitionistic fuzzy set [16–21]; picture fuzzy set [22]; suitably determining
’fuzzy’ intervals of the universe of discourse assigned to the pre-specified L-words and their
numeric or defuzzification values [8, 23,24]; optimizing these ’fuzzy’ length [8,25,26]. In the
first enrollment forecasting models of Song [2, 3] and Chen [5, 7], the number of ’fuzzy’ in-
tervals of the universe of discourse is 7, and their length is equal. In Huarng’s study [45], he
has stated that the length of intervals affects forecasting results in fuzzy time series. Hence,
to improve the forecasting results for the enrollment and other forecasting problems, some
optimization methods such as genetic algorithm [36–39], particle swarm optimization [11,37]
or clustering techniques [25, 26, 33] are used to adjust the interval length. The other com-
putational techniques are also applied to the different steps of the forecasting model such
as artificial neural network [27–32], machine learning [33, 34]. That study of Huarng has
also indirectly stated that reducing the length of the intervals will increase the number of
intervals. Because of that in recent studies of the enrollment forecasting, the greater number
of intervals of the universe of discourse is used such as 14, 16 instead of 7 to improve the
forecasting results.

The application-oriented studies are, for instance, those in temperature forecasting [26,
35–37]; tourism demand [38–40]; stock price forecasting [36, 41, 42] dry bulk shipping index
forecasting [43], and so on.

In 2005, Yu proposed a weighted FTS forecasting model to resolve recurrence issues and
weighting in the FTS forecasting procedure [41]. Interestingly, the repeat of the historical
observations can be considered as a local regression model. Therefore, some studies improved
the weighted fuzzy time series forecasting models by considering recurrent fuzzy logical
relationships [19,44–48].

Though there are significant achievements, the FTS involves two main noticeable method-
ological drawbacks. The first and essential one is the so-called word-semantics problem:
though the L-data present in the FTS’s examples above-mentioned are human natural lan-
guage’s words with their inherent semantics well-familiar with the human users, they are
considered only as labels of the fuzzy sets appearing in the FTS. There is no formal con-
nection of the L-labels with their inherent semantics with their FTS developer’s associated
fuzzy sets based on his intuition. The second is The determination of the designed fuzzy
sets. While the inherent L-labels’ semantics is objective, these constructed fuzzy sets are
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entirely subjective.

Thus, a natural novel question emerging is: Is there a formalism to develop LTS forecast-
ing models (LTS-FM), whose L-words can be considered human words with their inherent
semantics, that can immediately handle L-words to solve a given NTS forecasting problem,
though the models calculate their quantitative semantics?

The hedge algebras (HA) were introduced in an axiomatic way to model L-variables?
inherent semantics structures [49, 50]. It establishes another formalism to handle uncertain
data in terms of L-words. HAs have been effectively applied in many fields, e.g., fuzzy con-
trol [51–54], data classification and regression using fuzzy rule-based systems [55,56], multi-
channel image contrast enhancement [57]. In particular, they were, for the first time, applied
in the linguistic time series (LTS) forecasting problems [58, 59]. Methodologically, though
the LTS-FM proposed in these two studies deal immediately with L-variable words and their
inherent qualitative semantics, it was restricted more or less in the FTS-FM methodological
frame. Therefore, the number of word-data is limited by 7, very small compared to the
L-variable word-domain cardinality, which is potentially infinite.

This study will stand on a novel viewpoint: the real-world variable, XRW , described by
the NTS’s variable, XN , can also be described by an L-variable denoted XL, from the human
users’ standpoint. One can observe the XRW ’s states on the XN ’s or XL’s standpoints,
which are correlated with each other. In reality, it implies that the XL’s word-domain
may be infinite, though, in applications, ones usually use only finite declared XL’s word-
set. Therefore, in this study, the LTS’ L-variable word-domain, consisting of all words
in the natural language, which human domain experts use to describe the XRW ’s states
in practice, is potentially infinite in principle. The study shows that the HA-approach
mentioned above offers sufficient and reliable formalism to ensure the compatible semantic
relationships between the L-words’ semantics and their numeric ones.

Another new feature, compared to the two studies, also in the HA-approach, above-
mentioned is that the study follows the so-called repeated LTS forecasting model, in which
words can repeatedly occur in the right side of a linguistic, logical relationship group.

To show the approach’s performance, we apply the LTS-FM to forecast the NTS data of
the well-known Alabama enrollments and the daily average temperature from June 1996 to
September 1996 in Taipei. We perform two experiments over the first dataset with the aims:
The first one is to show the performance of the LTS forecasting model in comparison with the
FTS forecasting model proposed by Song , and Chissom [2] and Chen [60], so the number of
used words is limited to seven which is the same as seven fuzzy sets in the counterparts. The
second one is to show the increase of LTS forecasting model performance when the currently
used words grow. More generally, this study would like to establish a more comprehensive
formalized methodology for handling words directly, to simulate how human exerts make a
forecasting process in terms of their words in the natural language. Therefore, this study
ignores external factors that influence the forecasting process, such as applying optimization
techniques, high-order or multi-factor time series, etc. Those matters would be considered
in future studies.

The rest of this paper is organized as follows. In Section 2, we recall some background
knowledge, including fuzzy time series and hedge algebras. Section 3 will introduce the
linguistic time series forecasting method and its performance, using linguistic words’ inherent
semantics. The experimental simulation and discussions will be in Section 4. Finally, the
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conclusion and future work are covered in Section 5.

2. BACKGROUND

2.1. Fuzzy time series

Because of the high uncertainty of NTSs, in 1993, Song and Chissom proposed the
FTS model to forecast such uncertain NTS data. Thus, we first recall the following basic
definitions. Let U = {u1, u2, . . . , un} be a discourse universe of a FTS variable. Every fuzzy
set A defined on U is considered an A = {(µA (u1)) /u1, (µA (u2)) /u2, . . . , (µA (un)) /un},
where µA is called the membership function of A, µA : U → [0, 1]. The notation µA (ui)
indicates the degree of membership of ui belonging to the fuzzy set A, fA (ui) ∈ [0, 1], where
1 ≤ i ≤ n.

Definition 1.(Fuzzy time series) [2] Let Y (t) , (t = 0, 1, 2, . . .), a subset of R, be the universe
of discourse on which fuzzy sets fi (t) , i = 1, 2, . . . are defined, and if F (t) is a collection of
f1 (t) , f2 (t) , . . ., then F (t) is called an FTS defined on Y (t) (t = 0, 1, 2, . . .).

Definition 2. (Fuzzy logical relationship) [60] The relationship between F (t) and F (t− 1)
is expressed as F (t− 1) → F (t). Let Aj = F (t) and Ai = F (t− 1), then the relationship
between F (t) and F (t− 1) can be expressed by fuzzy logical relationship (FLR) Ai → Aj ,
where Ai and Aj refer to the left-hand side and the right-hand side of FLR, respectively.

Definition 3. (Fuzzy logical relationship group) [60] The FLRs having the same left-hand
side can be further grouped into a fuzzy logical relationship group (FLRG). Assume that
there are FLRs Ai → Aj1, Ai → Aj2, . . . , Ai → Ajk, Chen suggested that these FLRs with
the same left-hand side can be grouped into FLRG as Ai → Aj1, Aj2, . . . , Ajk.

Studies on FTS achieve many significant results with high accuracy, but it is also crucial
that FTS forecasting models handle very well historical data with high variation, short or
uncertain data. However, as discussed at the beginning of this study, though the LTS inspired
by the FTS forecasting model, there is no formalized formalism to link its fuzzy sets with
L-words. It suggests that if we could formalize L-variable’s word-domains and develop their
quantification theory to handle the L-data of the LTS, it would be beneficial for human
experts to solve NTSs’ forecasting problems. Thus, in the next section, we present the
necessary concepts and properties of the HA as mathematical models of the word-domains
and their quantification to form a formal basis to study the LTS forecasting model (LTS-FM).

2.2. Some hedge algebras knowledge

2.2.1. The L-variable word-domain as an algebraic order-based structure and
its properties

1) Description of the algebraic order-based structure – hedge algebras
For every L-variable, say the temperature, Xtmp, its word-domain, denoted by Xtmp, is

the set of all the words in the natural language, which indicate the daily temperature. It can
be observed that the words in Xtmp can be generated from two atomic (or primary) words,
‘low ’ and ‘high’, by applying L-hedges, such as ‘very ’, ‘little’, and linearly ordered based on
their inherent qualitative semantics. It is also interesting that for every hedge h and every
word x of Xtmp, x and hx are comparable. These suggest Nguyen and Wechler introduced
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the concept of hedge algebras (HA) [49,50] for every L-variable X , the hedge algebras of X
is an algebraic order-based structure AX = (X,G,C,H,≤), where X is an L-word set of X
and X = Dom(X );

G is a set of two generator words c− and c+, where c− ≤ c+; they are called the negative
and positive atomic words, respectively;

≤ is the order relation induced by the inherent word semantics of X ;
H = H− ∪H+ is a set of L-hedges of X , considered as unary operations, where H− and

H+ are two sets of, respectively, negative and positive hedges;
C = {0,W, 1} is a set of word constants being fixed points, which are called, in turn, the

least, the medium, and the greatest words and satisfy the conditions, 0 ≤ c− ≤ W ≤ c+ ≤ 1.
The terminology ‘hedge algebras’ comes from the hedges’ specific syntactic and semantic

functionalities: they syntactically generate the words and modify or intensify their inherent
semantics of a given L-variable X . By their inherent semantic functionalities, for every
hedge h, and every word x of X , x and hx are always comparable. Further, by modifying
functionality, the set H (x) is called the fuzziness model of the word x [61].

By HA’s definition, every word x in X can be represented as the string representation,
x = σc = hm . . . h1c, hj ∈ H, j = 1, . . . ,m, c ∈ {c−, c+}. I.e., σ ∈ H, the set of all strings
of hedges, including the empty string ε, ε = ∅. Then, the x’s length, denoted by |x|, is just
the string’s length σx. Note that εx = x and σα = α for all the constants α ∈ C. For every
x ∈ X, put H (x) = {σx : σ ∈ H}. It can be easily verified that X = H(c−) ∪H(c+) ∪ C.

2) Primary properties of the hedge algebras

Consider an HA of X , AX = (X,G,C,H,≤), where H = {L (Little) , V (V ery)} being
of only two hedges for simplicity. Then, one can discover the ‘algebraic’ sign of its words
and its hedges as follows:

� First, c− and c+ have contrary semantic trends observed by V c− ≤ c−, and c+ ≤ V c+.
From these, we define sign (c−) = −1 and sign (c+) = +1.

From Lc+ ≤ c+ ≤ V c+ (or V c− ≤ c− ≤ Lc−), set sign (L) = 1 and sign (V ) = +1.

� Furthermore, the inequalities V Lc+ ≤ Lc+ ≤ c+ imply that when V acts on Lc+,
it modifies the word Lc+ in the same direction as L modifies c+. Then, we write,
sign (V,L) = +1, and call it the relative sign of V to L. Similarly, we observe that
c+ ≤ LV c+ ≤ V c+, i.e., L modifies V c+ in the direction contrary to the one V modifies
c+. Hence, we write sign (L, V ) = −1. Generally, one can always define the relative
sign of any two L-hedges.

Now, for every x = hm . . . h1c, c ∈ {c−, c+}, we can write

sign (x) = sign (hm, hm−1)× . . .× sign (h2, h1)× sign (h1)× sign (c) .

Thus, every word x its algebraic sign, sign (x), and its meaning can be formulated as
follows.

Proposition 1. sign (hx) = +1 implies x ≤ hx, and sign (hx) = −1 implies hx ≤ x.
Also, assuming H− = {L,R (Rather)} and H+ = {M (More) , V }, i.e., H has four

hedges, to capture a more generality, we have the following properties of the words and their
fuzziness models:
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{0} ≤ H
(
c−

)
≤ {W} ≤ H

(
c+

)
≤ {1} , and H

(
c−

)
∪H

(
c+

)
= X\C, (1)

H (x) = H (Lx) ∪H (Rx) ∪ {x} ∪H (Mx) ∪H (V x) , (2)

sign (V x) = +1 ⇒ H (Lx) ≤ H (Rx) ≤ {x} ≤ H (Mx) ≤ H (V x) , (3)

sign (V x) = −1 ⇒ H (V x) ≤ H (Mx) ≤ {x} ≤ H (Rx) ≤ H (Lx) . (4)

Thus, it is essential that every L-variable now involves a (semantic) algebraic structure
compatible with its numeric counterpart variable having a math-structure.

2.2.2. The quantification of hedge algebras

For a given real-world variable, considering its L-variable, denoted by XL, as the coun-
terpart of its respective numeric variable, denoted by XN , naturally, genuine semantic rela-
tionships exist between the words of XL and their XN ’values.

1) The numeric semantics of XL

We begin with the numeric semantics of the XL’s words, XL, defined by an assignment
mapping fX from XL to [0, 1], the normalized numeric universe of XN , whose constraint
conditions are as minimal as possible [61].

Definition 4. A one-to-one mapping, f : XL → [0, 1], of an L-attribute XL is said to be a
semantically quantifying mapping (SQM) of XL, provided that

(SQM1) fX preserves the structure (XL,≤), i.e. (∀x, y ∈ XX ) (x ≤ y ⇒ fX (x) ≤ fX (y)).

(SQM2) The image of the word set XL, fX (XL) is dense in [0, 1]; i.e. C (fX (XL)) = [0, 1],
where C is the ordinary topological closure operator on [0, 1].

2) An axiomatization method of the HA’ quantification

The HA’ quantification axiomatization method is also essential for establishing a formal
basis to guarantee that the proposed LTS-FM deals directly with L-words, though it handles
their numeric semantics instead of themselves. The words’ fuzziness, characterized by their
fuzziness interval examined above, is an essential characteristic of fuzzy data. Point 1) has
shown that once the SQM fX of X is given, the fuzziness intervals of the words are entirely
determined. Thus, as our expectation, a strictly closed relationship exists between the
variable’s semantic structure and its numeric structure universe: the variable word-domain
semantic structure and a given semantic mapping fX mentioned above determine its words’
fuzziness intervals on its universe.

We will now show that for a given specific words’ fuzziness intervals’ information, say
their fuzziness intervals’ lengths, called the words’ fuzziness measure, denoted by m, inversely,
one can determine the semantic mapping fX . In the HA-approach, the fuzziness measure m
of an L-variable X can be defined by the following axioms [61].

Definition 5. Let AX = (X,G,C,H,≤) be an HA. A function m : X → [0, 1] is said to be
a fuzziness measure of words in X provided that the following conditions are satisfied:

F1) m (c−) + m (c+) = 1 and
∑
h∈H

m(hu) = m (u), for ∀u ∈ X;
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F2) For the constants 0, W, and 1: m (0) = m (W ) = m (1) = 0;

F3) For ∀x, y ∈ X and x, y /∈ C, ∀h ∈ H, we have
m (hx)

m (x)
=

m (hy)

m (y)
and it does not depend

on particular words in X. Hence, it is called the hedge h’s fuzziness measure, denoted
by µ (h).

From conditions F3) and F1) it follows that

m1) m (hx) = µ (h)m (x), for ∀x ∈ X;

m2) m (c−) + m (c+) = 1;

m3)
∑
h∈H

µ (h) = 1.

From m1) – m3), it can be verified that, when the values of m (c−), and µ (h) , h ∈
H\ {h′}, for some h′ ∈ H, are known, the fuzziness measure m is wholly defined. Therefore,
they are called the independent fuzziness parameters of the L-variable X .

It is essential that conversely to Point 1), for every L-variable, the fuzziness parameters
of X do define all quantitative semantics of X : the numeric semantics and the fuzziness
intervals of its words. From the discussion in Point 1), it is required to show that the numeric,
semantic mapping (SQM) fX of X is completely defined for the given independent fuzziness
parameters’ values. The study by Nguyen and Nguyen [61], proved that the following defined
numeric mapping v is just a numeric, semantic mapping (SQM) fX defined in Definition 4,
Point 1):

Definition 6. For the given fuzziness parameters’ values of an L-variable, the SQM of X ,
ν : X → [0, 1] is recursively calculated as follows:

1) ν (W ) = θ = m(c−), (5)

2) ν (c−) = θ − αm(c−) and ν (c+) = θ + αm(c+), (6)

3) ν (hjx) = ν (x) + sign (hjx)

{
j∑

i=sign(j)

m(hix)− ω (hjx)m (hjx)

}
, (7)

where ω (hjx) =
1

2
[1 + sign (hjx) sign (hphjx) (β − α)] ∈ {α, β} and α+ β = 1.

Thus, one can see that Section 3 provides a formalized formalism to ensure that when the
proposed LTS forecasting method (LTS-FMd) handling the L-words’ quantitative semantics
based on this formalism, it does, indeed, deal with the L-words themselves.

3. THE LTS-FMD USING L-WORDS’ INHERENT SEMANTICS AND ITS
PERFORMANCE AND ADVANTAGES

The LTS-FMd can be understood as follows. Because human dataset users are well-
familiar with their natural language, they observe a given NTS variation diagram using their
NTS’s L-variable words. Thus, a problem arising is that how one can develop a forecasting
method to transform a given NTS forecasting problem into its respective LTS forecasting
problem with, of course, a formal human L-words’ semantics authenticity guarantee. It
is guaranteed that there is a reliable formalized formalism to ensure that the interaction
between the L-words and their respective numeric values in the desired LTS forecasting
model is the same as such a similar interaction in human dataset user’s activity.
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3.1. The LTS and their forecasting models

The concept of FTS and their forecasting model are indeed fascinating because it is
the first time L-words, represented by fuzzy sets, have been used to solve NTS forecasting
problems, which, in nature, must be solved in an environment of very high uncertainty.
However, though the FTS forecasting models are originated from the time series with L-
data, no studies in this field can deal immediately with L-data with their inherent semantics
in the natural language. It motivated Nguyen et al. to introduce the LTS-forecasting model
(LTS-FM) [58], which can be shortly described as follows:

1) The linguistic time series concept

Because human beings are incredibly well-familiar with their natural language and do
their reasoning using their language, LTS exist naturally and seem very useful. Thus, it can
naturally be formalized as follows.

Definition 7. Let X be a set of L-words in the natural language of a variable X defined on
the universe of discourse UX to describe its numeric quantities. Then, any series L (t) , t =
0, 1, 2, . . ., where L (t) is a collection of words of X, is called an LTS.

The LTS are very natural, as mentioned by Chen [60] but they were still not considered
his study subject and in the framework of the fuzzy sets.

2) Linguistic, logical relationships of a given LTS

In general, L (t) is a finite subset, e.g., a few given L-words may describe the weather of
a day. In this study, we deal only with the LTS, whose L (t)’s are singleton. Like the (fuzzy)
logical relationship concept introduced by that paper, one can also define linguistic, logical
relationships (LLRs) from a given X ’s LTS TL. For example, if the L-value at every time
t = k of the LTS is xi, and at its time t = k + 1 is xj , then it defines an LLR of the form
xi → xj . Then, from the established LLRs of the given LTS TL with the same left-hand side,
say xi and xi → xjl , l = 1, . . . , n, one can group into an LLRs’ group (LLRG) written in the
form, xi → xj1 , xj2 , . . . , xjn .

Thus, in this way, every given LTS defines a unique collection of LLRG.

However, to handle LTS computationally, one must establish a formalism to deal with
the LTS’ words’ inherent qualitative and quantitative semantics. We will show that the
formalism presented in Section 2 is sufficient to develop an LTS-FMd, formally ensuring an
LTS’s words’ semantics authenticity, to solve NTS forecasting problems.

3.2. Linguistic time series forecasting method

Let us consider an NTS T of a numeric variable X and its forecasting problem. For
convenience, its respective forecasting L-variables is denoted by XL. Then, the LTS-FMd to
develop LTS-FMs for solving the NTS’s forecasting problem of T comprises two phases:

1) Constructing an LTS from T , denoted by TL, and establish its LLRGs;

2) Developing a reasoning method working on the constructed LTS TL to solve the given
T ’s forecasting problem.

The efficiency of the developed LTS-FM depends on both phases.

1) Constructing an LTS from a given NTS T and a reasoning method on its
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Let be given a NTS T of a variable X , T = {di : i = 0 . . . , n} . From the human users’
standpoint, can also be considered a forecasting L-variable, denoted by XL, whose different
aspect semantics, in an application, should be defined. Assume, for instance, that they are
defined as follows:

Declaring its syntactical semantics, including two atomic words, c− and c+, a set of
hedges, H, simply say H= {L (little)} and H+ = {V (very)}, and the highest words’ speci-
ficity, say κ; Then, one can determine the currently declared word-set of κ-specificity, denoted
by X(κ). With this declared syntactical semantics, X(1) have five words, X(2)− nine words,
and X(3)− seventeen words;

Its qualitative semantics specifies the atomic words’ names, the hedges (algebraic) signs,
and their relative signs.

Its quantitative semantics is specified by providing the forecasting variable fuzziness
parameters’ values.

◦ A method M to construct the LTS TL from T . This construction comprises the
following tasks:

Task 1. Compute the numeric semantics of the declared X ′s words. For a given the
currently declared XL’s word-set of κ-specificity, X(κ), arrange its words in an increasing
chain following their order, denoted by C

(
X(κ)

)
, where C

(
X(κ)

)
= {xj : 0 ≤ j ≤ p = |X (κ)|,

and v (xi) < v (xj)xi < xj}.
Applying the SQM v, defined in Definition 6, assigning to every word x its numeric seman-

tics, v (x) ∈ [0, 1], the normalized XL’s universe, we obtain the numeric chain v
(
C
(
X(κ)

))
=

{v (xj) : 0 ≤ j ≤ p, and v (xi) < v (xj) ⇔ xi < xj}. Clearly, we have v (x0) = v (0) =
0; v (xp) = v (1) = 1.

Task 2. Denote by Cent (v (xl) , v (xl+1)) the center of the interval [v (xl) , v (xl+1)]. Con-
sider the following intervals:

For l = 0, put I (x0) = I (0) = [v (0) ,Cent (v (x0) , v (x1))];

For l = 1 to p− 1, put I (xl) = [Cent (v (xl−−1) , v (xl)) ,Cent (v (xl) , v (xl+1))];

And for l = p, put I (xp) = I (1) = [Cent (v (xp−1) , v (xp)) , v (1)].

It can be verified that I (xk) contains the numeric semantics of xk, v (xk), and the set I,
I = {I (xk) : 0 ≤ k ≤ p} forms a partition of the normalized L-variable universe, [0, 1].

Then, the LTS constructed from the given NTS T is generated as follows:

Denote by N (dj) where its value computed by N(dj) = (dj–min(T ))/(max(T )–min(T )),
the normalized value of dj . Then, we determine the desired LTS’s words in the following
manner:

For i = 0, if d0 falls in the interval I(xk0), put u0 = xk0 .

For i = 1, . . . , n, if di falls in I(xki), and xki ̸= ui −−1, then di is replaced by the word
xki , otherwise consider i = i+ 1.

In this way, we obtain an LTS generated from T , denoted by TL.
◦Forecasting using the obtained LTS : There several fuzzy forecasting methods examined

in the literature, including the high-order FTS forecasting method. However, since the LTS
forecasting model, whose forecasting L-variable domain is potentially infinite, is examined
for the first time in this study, we restrict ourselves to examine the first order LTS forecasting
method.

Let be given an LTS, TL, formed from the declared word-set X(κ) of an L-variable XL

of the forecasting variable X , whose declared multi-aspect semantics determines its numeric
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semantics mapping vX . As discussed previously, TL defines a set of LLRGs of the forms

xi → xij1 , xij2 , . . . , xijl , i = 1, . . . , q, (8)

where q is the number of words in the right-hand side.

Then, the LTS forecasting method computes the forecasting value simply as follows. For
a given numeric X ’s value, d considered as its numeric input at the time t = ts, it must
determine a word xd in TL so that I (xd) contains d or its numeric semantics v (xd) is nearest
d. The word xd must appear on the left-hand side of an expression in the form (8), say,
xd → xd1, xd2, . . . , xdl. Then, it computes the forecasting value F (d), at the time t = ts + 1,
by the following formula

F (d) = (v (xd1) + v (xd2) + . . .+ v (xdl)) /l. (9)

2) An LTS forecasting procedure

From the above discussion, the procedure to solve a given NTS forecasting problem of a
forecasting variable X , using LTS, comprises four steps, shortly described as follows:

Step 1. Determine the multi-semantic aspects of X . Because the multi-aspect words’ seman-
tics is essential for the proposed approach, this step is crucial for guaranteeing the method
performance. It includes declaring the X ’s syntactical and qualitative semantics and selecting
X ’s fuzziness parameters’ values by trial and error.

Step 2. Compute the numerical semantic of the declared X ’s word-set. Quantify the seman-
tics of the declared words by applying the quantitative semantics assignment v, defined by
the selected X ’s fuzziness parameters’ values (Definition 6, Section 2).

Step 3. Generate the LTS for the given NTS. Transform the given NTS T into the LTS TL,
and generate LLRs and LLRGs from TL;
Step 4. Compute the forecasting value. For a given input datum at the time t, compute
the forecasting value at time t + 1, utilizing the generated LLRGs. Specifically, in case the
right-hand side of LLRGs is not empty, the forecasting value is computed by formula (9),
otherwise the forecasting value is v(xd).

3) Outstanding features of the proposed HA-approach

Usually, in the fuzzy time series forecasting, human words of a forecasting L-variable,
as a linguistic counterpart of the given numeric forecasting one, describing a given numeric
time-series play a motivation factor for developing FTS forecasting models because ones
consider them as only L-labels of the designed fuzzy sets. Though they represent the L-
labels’ semantics, they are constructed only based on the developers’ intuition but not on
a mathematical formalization of the L-variables’ word domains. It implies that one cannot
consider L-labels associated with the constructed fuzzy sets as application users’ words.

The proposed HA-approach has the following specific features to overcome these draw-
backs:

Utilizing the hedge algebras’ formalism, similar to the case of the fuzzy set-based words’
semantics interpretability and scalability examined in [62], it ensures that the numeric words’
semantics (the SQM v’s values) is interpretable and scalable by Definition 4 and 6. Its
scalability is ensured because v depends on only the whole forecasting variable’s fuzziness
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parameters’ values despite how many words are currently used. Thus, the study has a sound
formalism to guarantee that, instead of handling words directly, one can handle their numeric
semantics.

It implies that the words appearing in the LTS constructed from the given NTS T pre-
sented above are human words, i.e., it is indeed a human linguistic time series. This feature
is essential and useful for establishing interactions with the application users. Consequently,
the constructed LTS can simulate how human users describe T in terms of their words.

Since the larger number of the words used to describe the given NTS T , the precise the
constructed LTS can describe the given NTS T when the forecasting word-set grows. Then,
the proposed LTS-FM can increase prediction results’ precision, as shown next.

4. THE EXPERIMENTAL SIMULATION AND DISCUSSIONS

There are two standard literature methods to group the fuzzy logical relationships (FLRs)
into the fuzzy logical relationship groups (FLRGs). In Chen’s method [60], a fuzzy set
cannot be repeated in the right-hand side of the FLRGs, whereas it can be repeated in Yu’s
method [41]. Inspired by these two kinds of FLRGs, this experiment study applies both these
FLRGs’ kinds. Thus, we denote the respective two LTS-FMs in our approach, for short, by
Unrepeated LTS (ULTS) and Repeated LTS (RLTS).

In order to justify the proposed approach performance, the study designs a comparative
study to compare the proposed LTS forecasting model performance with those examined
by Song , and Chissom [2] and Chen [60], using the University of Alabama historical data
observed from 1971 to 1992, and Chen and Hwang [35], using the daily average temperature
data from June 1996 to September 1996 in Taipei.

The experiment simulation performs two experiments aiming to show the following state-
ments:

Statement 1 : The developed LTS-FMs outperform the fuzzy counterpart models, restricted
its L-words’ number to the same counterpart models’ fuzzy sets’ number;

Statement 2 : Since a specific new feature of the proposed LTS-FMs is considering the fore-
casting L-variable XL as the L-counterpart of the numerical forecasting one, we assume no
restriction on its declared word set’s cardinality. Then, the simulation study will show that
when the declared XL’s word-set grows, the proposed LTS-FM can considerably increase the
forecasting precision.

4.1. The proposed LTS-FM performance

A) Comparison with the two counterparts examined in Song and Chissom 1993a and Chen
1996

To show the efficiency and robustness of the proposed approach, we apply the ULTS, the
RLTS, and the two counterpart methods examined by Song and Chissom [2] and Chen [60],
using the University of Alabama historical data, as mentioned above, shown in Table 2. To
expose the approach features more obviously, the experiment follows the proposed procedure,
step by step, as follows:

Step 1. Determine the multi-semantic aspects of the forecasting L-variable X .
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One determines its syntactical semantics by declaring c− = small (s), c+ = large (l) and
two hedges sets, H− = {Little (L)}, H+ = {V ery (V )}. For the comparative study, the
declared word set is the 2-specificity word-set X(2), (the number of declared words is equal
to the number of intervals in [45]):

UX ,L = {0, V small, small, L small, medium, L large, large, V large, 1}, 0 and 1 stand
for Absolutely small (A small) and Absolutely large (A large).

Its X ’s qualitative semantics is determined by specifying the hedges’ signs and the relative
signs between the hedges

sign (V ) = sign (V, V ) = sign (V,L) = +1.

Its quantitative semantics (or the numerical semantics defined by v (Definition 6)) is defined
by specifying the X ’s fuzziness parameters’ values m (c−) = 0.48 and µ (L) = 0.29.

Step 2. Compute the numerical semantic of the declared E .’s word-set. Using the mapping v
defined by Definition 6 and transforming their normalized values into the E ’s universe values
(or unnormalized values) in [13000, 2000], we obtain the numerical semantics of the declared
words:

Table 1: The actual semantics of seven words in HA

The declared X ’s words A small V small small L small medium L large large V large A large

Their quantitative se-
mantics

13000 14693.8 15385.6 15668.2 16360 17109.5 17415.6 18165.1 20000

Step 3. Generate the LTS for the given NTS. When the numerical semantics are computed,
the proposed method, M, generates an LTS TL, represented in the 3rd-column of Table
2, from the NTS T given by the University of Alabama historical data. From T , one can
quickly determine the LLRs and, then, the LLRGs exposed in the fourth and fifth columns
in Table 2, respectively.

Step 4. Compute the forecasting value. For t = 1971 to 1991, from the given input enrolment
datum at year t, compute the forecasting value at time t+1, using the normalized input data,
the generated LLRGs (Repeated/Unrepeated) and formula (10); denormalize the computed
forecasting value to generate its respective output data. The obtained forecasting results
and those made by Song and Chissom’s model, Chen’s model, and Cheng’s model are shown
in Table 3 and visualized in Figure 1.

The evaluation of forecasting models bases on mean square error (MSE), MSE =
(1/N)

∑
i
(Fi − Ai)

2, where Fi and Ai, respectively, are the forecasting and actual values,

and N is the number of historical data taken for forecasting.

The University of Alabama enrollments’ forecasting results from 1971 to 1992 in terms of
7 words are shown in Table 3. We apply the same fuzziness parameter values, m (c−) = 0.48
and µ (V ) = 0.29, for both ULTS and RLTS models. It shows that the MSE values 162, 754.0
and 161, 331.0 made, respectively, by the ULTS and RLTS models are much smaller than the
ones 423, 027, 407, 507, and 191, 844.0 caused, respectively, by the three counterpart models.

It allows us to conclude that both proposed forecasting models can significantly outper-
form their counterparts, and the RLTS model’s performance is better than that of the ULTS
(about 0.88%.) By statistical analysis, we observe that the forecasting errors of the RLTS
model range from 0.11% to 5.17%, and the average error is 1.93%, while the forecasting
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Table 2: The enrollments of the University of Alabama from 1971 to 1992 and LLRs in the case of 9

declared words

Year
NTS

(Enrol.
values)

The con-
structed
LTS

Linguistic, Logical
Relationships

Repeated Linguistic, Logical Rela-
tionship Groups

1971 13055 A small

◦A small → A small, V small
◦V small → small

◦small → small, L small, small,
small, small, L small,

◦L small → L small, L large, L large
◦L large → L large, medium, V large

◦medium → small,
◦V large → V large, large
◦A large → A large, large

1972 13563 A small A small → A small
1973 13867 V small A small → V small
1974 14696 V small V small → V small
1975 15460 small V small → small
1976 15311 small small → small
1977 15603 L small small → L small
1978 15861 L small L small → L small
1979 16807 L large L small → L large
1980 16919 L large L large → L large
1981 16388 medium L large → medium
1982 15433 small medium → small
1983 15497 small small → small
1984 15145 small small → small
1985 15163 small small → small
1986 15984 L small small → L small
1987 16859 L large L small → L large
1988 18150 V large L large → V large
1989 18970 V large V large → V large
1990 19328 A large V large → A large
1991 19337 A large A large → A large
1992 18876 V large A large → V large

errors of the ULTS model range from 0.15% to 5.17%, but the average error is 2.01%. So,
the forecasted values of the ULTS model are closer to the actual values than the ones of the
RLTS model.

B) Comparison with Chen and Hwang’s method using the daily average temperature data

In order to enhance our Statement 1 more reliably, the study compares the proposed
model, ULTS, with the model examined by Chen and Hwang [35], using a more sophisticated
time series, the daily average temperature from June 1996 to September 1996 in Taipei,
shown in the column AV (Actual Values) of Table 5. The highest and the lowest values of
the observed temperatures from June to September are 31.6 and 23.3, respectively. However,
the lowest and the highest temperatures of each months are different. Hence, assume that UE
of the months from June to September are [25.5, 31.5], [27.0, 32.0], [25.5, 31.0] and [23.0, 31.0],
respectively.

We can perform this experiment step by step, similar to above, except the multi-aspect
semantics is defined as follows.

We assume that c− = cool, c+ = hot and, as above, also two hedges H− = {Little (L)},
H+ = {V ery (V )}. Hence, as previously, after eliminating the constants 0 and 1, we have

UE,L = {V erycool, cool, Littlecool, normal (W ) , Littlehot, hot, V eryhot} .

For determining the quantitative word semantics, we adopt m (c−) = 0.52, µ (L) = 0.528.
Then, the numerical semantics of the UE,R’s words of June, for example, can be calculated
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Table 3: A comparison of the forecasting models of Enrollments of Alabama from 1971 to 1992 in

case of 9 declared words

Year
NTS

(Enrollment
values)

Song and
Chissom [2]

1993a

Chen 1996
[60]

Cheng
2008 [45]

ULTS
model

RLTS
model

1971 13055

1972 13563 14000 14000 13680.5 13847 13847

1973 13867 14000 14000 13731.3 13847 13847

1974 14696 14000 14000 13761.7 15040 15040

1975 15460 15500 15500 15194.6 15040 15040

1976 15311 16000 16000 15374.8 15527 15480

1977 15603 16000 16000 15359.9 15527 15480

1978 15861 16000 16000 16410.3 16389 16629

1979 16807 16000 16000 16436.1 16389 16629

1980 16919 16813 16833 17130.7 17212 17212

1981 16388 16813 16833 17141.9 17212 17212

1982 15433 16789 16833 15363.8 15386 15386

1983 15497 16000 16000 15372.1 15527 15480

1984 15145 16000 16000 15378.5 15527 15480

1985 15163 16000 16000 15343.3 15527 15480

1986 15984 16000 16000 15345.1 15527 15480

1987 16859 16000 16000 16448.4 16389 16629

1988 18150 16813 16833 17135.9 17212 17212

1989 18970 19000 19000 18915 19083 19083

1990 19328 19000 19000 18997 19083 19083

1991 19337 19000 19000 19032.8 19083 19083

1992 18876 - 19000 19033.7 19083 19083

MSE 423,027.0 407,507.0 191,844.0 162,754.0 161,331.0

RMSE 650.4 638.36 438.0 403.43 401.66

as exposed as follows

UE,R = {26.195, 26.973, 27.842, 28.62, 29.338, 30.14, 30.858} .

The same as previously, once the numerical words’ semantics are defined, one can easily
construct the temperature LTS and produce the LLRs, and their unrepeated or repeated
LLRGs for the ULTS or RLTS models, respectively. Because the RLTS’s LLRGs are too long,
only the ULTS’s LLRGs for June are exhibited in Table 4 for simplifying the presentation.

Table 4: Linguistic, logical relationship groups of the historical temperature of June

Group LLRGs of ULTS model

Group 1 V cool → L cool

Group 2 L cool → L hot, , cool

Group 3 L hot → V hot, L hot, normal, hot

Group 4 V hot → hot, V hot, normal

Group 5 hot → L hot, hot, V hot

Group 6 normal → L hot, normal, L cool

Group 7 cool → L cool, normal

Following Chen and Hwang (2000), both proposed LTS-FMs, ULTS (UFM) and RLTS
(RFM) are also applied to predict the daily forecasted temperature simulation results of
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Figure 1: The comparison of enrollment forecasted results in case of 9 words

each month exhibited in Table 5 for the compatible comparison. Similar to that study, the
mean absolute percentage error (MAPE) is applied and defined by the following formula
to make the time series forecasting models’ performance comparison, where Fi denotes the
forecasting value and Ai is its actual value at the time i

MAPE =
100%

N

∑
i

∣∣∣∣Fi −Ai

Ai

∣∣∣∣ . (10)

The month simulation MAPE values of the proposed models, RFM and UFM, and the
best Chen and Hwang’s study are exposed in Figure 4.1. justify that the RFM outperforms
the UFM in all four months, and the UFM outperforms the best results of Chen and Hwang’s
methods in all four months, June (Algorithm-B* and window size is 2), July (Algorithm-
B and window size is 2), August (Algorithm-B* and window size is 2), and September
(Algorithm-B* and window size is 3), in turn of 20.13%, 9.38%, 15.3% and 18.7%.
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Table 5: The temperature forecasted results of ULTS and RLTS models

Day
June July August September
AV UFM RFM AV UFM RFM AV UFM RFM AV UFM RFM

1 26.1 - - 29.9 - - 27.1 - - 27.5 - -

2 27.6 27.84 27.84 28.4 29.56 29.57 28.9 28.34 28.34 26.8 26.64 26.38

3 29.0 28.16 28.39 29.2 29.28 29.17 28.9 28.69 28.74 26.4 26.64 26.38

4 30.5 29.74 29.45 29.4 28.90 28.68 29.3 28.69 28.74 27.5 26.06 26.08

5 30.0 29.87 29.87 29.9 28.67 28.76 28.8 28.69 28.74 26.6 26.64 26.38

6 29.5 30.11 30.11 29.6 29.56 29.57 28.7 28.69 28.74 28.2 26.06 26.08

7 29.7 29.74 29.45 30.1 28.67 28.76 29.0 28.69 28.74 29.2 27.81 27.96

8 29.4 29.74 29.45 29.3 29.56 29.57 28.2 28.69 28.74 29.0 29.15 29.15

9 28.8 29.74 29.45 28.1 28.67 28.76 27.0 28.50 28.6 30.3 29.15 29.15

10 29.4 28.60 28.47 28.9 29.28 29.17 28.3 28.34 28.34 29.9 29.67 29.99

11 29.3 29.74 29.45 28.4 28.90 28.68 28.9 28.50 28.6 29.9 29.67 29.99

12 28.5 29.74 29.45 29.6 29.28 29.17 28.1 28.69 28.74 30.5 29.67 29.99

13 28.7 28.60 28.47 27.8 28.67 28.76 29.9 28.50 28.6 30.2 29.67 29.99

14 27.5 28.60 28.47 29.1 28.25 28.25 27.6 28.81 28.81 30.3 29.67 29.99

15 29.5 28.16 28.39 27.7 28.90 28.68 26.8 27.60 27.60 29.5 29.67 29.99

16 28.8 29.74 29.45 28.1 28.25 28.25 27.6 28.34 28.34 28.3 29.15 29.15

17 29.0 28.60 28.47 28.7 29.28 29.17 27.9 27.60 27.60 28.6 27.81 27.96

18 30.3 29.74 29.45 29.9 28.90 28.68 29.0 27.60 27.60 28.1 27.81 27.96

19 30.2 30.11 30.11 30.8 29.56 29.57 29.2 28.69 28.74 28.4 27.81 27.96

20 30.9 30.11 30.11 31.6 31.47 31.47 29.8 28.69 28.74 28.3 27.81 27.96

21 30.8 29.87 29.87 31.4 30.21 30.96 29.6 28.81 28.81 26.4 27.81 27.96

22 28.7 29.87 29.87 31.3 30.21 30.96 29.3 28.81 28.81 25.7 26.06 26.08

23 27.8 28.60 28.47 31.3 30.21 30.96 28.0 28.69 28.74 25.0 26.06 26.08

24 27.4 28.16 28.39 31.3 30.21 30.96 28.3 27.60 27.60 27.0 27.16 27.16

25 27.7 28.23 28.23 28.9 30.21 30.96 28.6 28.50 28.6 25.8 26.64 26.38

26 27.1 28.16 28.39 28.0 28.9 28.68 28.7 28.50 28.6 26.4 26.06 26.08

27 28.4 28.23 28.23 28.6 29.28 29.17 29.0 28.69 28.74 25.6 26.06 26.08

28 27.8 28.60 28.47 28.0 28.90 28.68 27.7 28.69 28.74 24.2 26.06 26.08

29 29.0 28.16 28.39 29.3 29.28 29.17 26.2 27.60 27.60 23.3 23.93 23.93

30 30.2 29.74 29.45 27.9 28.67 28.76 26.0 26.89 26.89 23.5 23.93 23.93

31 26.9 28.25 28.25 27.7 26.89 26.89

4.2. The proposed LTS-FM performance in increasing the forecasting precision
by allowing the existing used forecasting L-variable word-set to grow

In this section, the study experiments to justify a specific feature mentioned at the end of
Section 3, the proposed LTS-FM can increase the forecasting results by allowing the existing
used forecasting L-variable word-set to grow. Recall that, as the linguistic counterpart of
the numeric forecasting variable, its word-domain is potentially infinite.

The experimental scenario is described as follows:

- The selected fuzziness parameters’ values for illustration: m (c−) = 0.46 and µ (L) =
0.52.

- Let us assume that the time series application admin applied the proposed LTS-FM,
using a forecasting L-variable 2-specificity word-set, X(2), of nine words to solve the fore-
casting time series problem. Now, the application users and admin require to increase the
forecasting precision by permitting the word-set X(2) to grow to the 3-specificity one X(3) of
17 words.

- At the two latter application’s life-cycle moments, assume that the application users
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Figure 2: The MAPE values of temperature forecasted results by month (the lower, the better)

and admin require again two times increases the forecasting precision by permitting the
word-set to grow, in turn, to the 4-specificity word-set, X(4), consisting of 33 words, and the
5-specificity one, X(5), consisting of 65 words. Where,

X(2) = {0, V small, small, L small, medium, L large, large, V large, 1},
X(3) ={0, VV small, V small, LV small, small, LL small, L small, VL small, medium,

VL large, L large, LL large, large, LV large, V large, VV large, 1},
X(4) ={0, VVV small, VV small, LVV small, V small, LLV small, LV small, VLV small,

small, VLL small, LL small, LLL small, L small, LVL small, VL small, VVL small, medium,
VVL large, VL large, LVL large, L large, LLL large, LL large, VLL large, large, VLV large,
LV large, LLV large, V large, LVV large, VV large, VVV large, 1}.

Similarly, X(5) consists of 65 ordered words, which cannot be exposed here because of
the limited space.

The experiments will justify that the proposed LTS-FM can considerably increase the
forecasting results’ precision when the word-set grows. Indeed, the study first constructs four
LTS using in turn 9, 17, 33, 65 words, exposed in Figure 3, including the enrolment chart
represented by the red line. One can observe that the richer in the words of the currently used
word-sets, the more approximately approach the constructed LTS, recalling that, though the
word-sets under consideration grow, their qualitative and quantitative words semantics are
defined in the total forecasting L-variable context and, hence, they are consistent.

The experimental results in each case are represented as follows for economizing the
space:

1) The LTS constructed from the numeric time series when the forecasting L-variable
word-set growing.

The LTS constructed from the numeric time series using the 9-elements word-set when
the forecasting L-variable word-set grows to, in turn, 17, 33, and 65 words, are represented
in Table 6. Using their words’ numeric values (or numeric semantics), i.e., their SQM v’s
values, one can represent these four constructed LTS in Figure 3. The red line represents
the enrolment time series. For comparative analyzing the experimental results’ examples, we
assign words of only two constructed LTS, using the minimal number of words (9 words) and
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the maximal one (65 words), to the graph points determined by their numeric semantics.
For example, the 65-words-graph point, at the year-value 1977, is represented by a boded
marina color point associated with the word “LVL small,” while a rhombus point represents
the 9-word-graph point associated with “L small”.

Table 6: The linguistic time series of enrollment data in case of 9, 17, 33 and 65 words

Year Enroll. LTS
with 9
words

Their
nu-
meric
values

LTS
with 17
words

Their
nu-
meric
values

LTS with
33 words

Their
nu-
meric
values

LTS with
65 words

Their
nu-
meric
values

1971 13055 A small 13000 A small 13000 A small 13000 VVVV small 13082

1972 13563 V small 13742 V small 13742 LVV small 13557 LVV small 13557

1973 13867 V small 13742 V small 13742 LLV small 13943 VLLV small 13838

1974 14696 small 14546 small 14546 VLL small 14746 VLL small 14746

1975 15460 L small 15416 L small 15416 L small 15416 L small 15416

1976 15311 L small 15416 L small 15416 L small 15416 VLLL small 15312

1977 15603 L small 15416 L small 15416 LVL small 15616 LVL small 15616

1978 15861 medium 16220 VL small 15834 VL small 15834 VL small 15834

1979 16807 L large 17163 VL large 16672 LVL large 16927 LLVL large 16795

1980 16919 L large 17163 L large 17163 LVL large 16927 LVL large 16927

1981 16388 medium 16220 medium 16220 VVL large 16437 VVL large 16437

1982 15433 L small 15416 L small 15416 L small 15416 L small 15416

1983 15497 L small 15416 L small 15416 L small 15416 VLVL small 15513

1984 15145 L small 15416 LL small 14964 LLL small 15199 LLL small 15199

1985 15163 L-small 15416 LL small 14964 L LL small 15199 LLL small 15199

1986 15984 medium 16220 VL small 15834 VVL small 16035 VVL small 16035

1987 16859 L large 17163 VL large 16673 LVL large 16928 LLVL large 16795

1988 18150 large 18186 large 18186 large 18186 large 18186

1989 18970 V large 19129 V large 19129 LLV large 18893 VLLV large 19016

1990 19328 V large 19129 V large 19129 LVV large 19346 LVV large 19346

1991 19337 V large 19129 V large 19129 L VV large 19346 LVV large 19346

1992 18876 V large 19129 LV large 18638 LLV large 18893 LLV large 18893

2) The linguistic, logical groups (LLGs) of the constructed LTS and the forecasting
simulation.

From the LTS constructed above, one can quickly determine their LLRs, from which
LLGs can quickly be established and represented in Table 7 and Table 8, noting that for
the constructed LTS utilizing 65 words, the LLRs of both LTS-FMs ULTS and RLTS are
identical. Similar to above, utilizing the established individual constructed LTS’ LLGs and
applying the proposed LTS-FM to each of these LTS, one can obtain the forecasting simu-
lation results of the LTS-FMs under examination represented in Table 9.

3) The advantages and performance of the proposed LTS-FMd and its developed LTS-
FMs

This point aims to analyze the above simulation results to explain some proposed LTS-
FMd’s superiorities and advantages and justify the proposed LTS-FMs in increasing the
forecasting results.

◦Methodological advantages: When a time series forecasting application is provided with
the developed LTS-FM, which can deal with natural human words directly, it brings many
outstanding advantages:

Usually, human users observe numeric time series (NTS) charts in terms of their words
present in their natural language. Thus, natural and genuine relationships exist between the
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Figure 3: Four constructed LTS’ graphs using the numeric semantics of, in turn, 9, 17, 33, and 65

words, and one graph (the red line) of the enrolment time series

inherent words’ semantics and their numeric semantics that human users have established
based on a long-term historical learning process. In this context, the proposed LTS-FMd
dealing immediately with words is very natural to simulate how human users forecast based
on a given NTS. Therefore, its LTS, constructed from the given NTS gave in Table 7, and
their established LLGs are very useful for human-machine interaction.

In the established methodology’s formalism, similar to the numeric domain, the semantics
of every word of its L-counterpart variable, XL, should be defined in the context of the total
XL. Consequently, the currently used word set words’ semantics are scalable, i.e., their
qualitative and quantitative semantics are maintained when the currently used word set
grows. It is an outstanding feature because the constructed fuzzy sets and their associated
L-labels of the existing fuzzy time series forecasting models do not have this feature.

This feature is necessary to simulate how human users use their words to make forecasting
and essential in applications when human users desire to increase the forecasting results



122 NGUYEN DUY HIEU et al.

Table 7: Linguistic, logical relationship groups of the enrollments in case of 9 and 17 words

Group ULTS with 9
words

RLTS with 9
words

ULTS with 17
words

RLTS with 17
words

Group 1 A small → V small A small → V small A small → V small A small → V small

Group 2 V small → V small,
Small

V small → V small,
small

V small → V small,
small

V small → V small,
small

Group 3 small → L small small → L small small → L small Small → L small

Group 4 L small → L small,
medium

L small → L small,
L small, medium,
L small, L small,
L small, medium

L small → L small,
VL small,
LL small

L small → L small,
L small,
VL small,
L small,
LL small

Group 5 medium → L large,
L small

medium → L large,
L small,
L large

VL small → VL large VL small →
VL large, VL large

Group 6 L large → L large,
medium,
large

L large → L large,
medium,
large

VL large → L large,
large

VL large → L large,
large

Group 7 large → V large large → V large L large → medium L large → medium

Group 8 V large → V large V large → V large,
V large,
V large

medium → L small medium → L small

Group 9 LL small → LL small,
VL small

LL small →
LL small, VL small

Group
10

large → V large large → V large

Group
11

V large → V large,
LV large

V large → V large,
V large,
LV large

precision. For instance, Figure 3 exposes four LTS’ charts using four word-sets of, in turn,
9, 17, 33, and 65 words. The proposed LTS-FMd guarantees that the qualitative and the
quantitative semantics of four currently used word-sets, in different application life-cycle
moments, are unique and do not vary when the currently used word-sets grew. It is compatible
with how human experts use their words in reality.

For example, in Figure 3, at point (year) 1982, two words, “L small” with marina color
and “L small” with black color, are identical though their semantics are defined in two
different contexts of, respectively, nine and sixty-five words. The fuzzy time series formalism
cannot ensure this property because the fuzzy sets, constructed in a singularity structure,
are context-dependent.

◦Forecasting performances: The experiments were designed to justify that two proposed
LTS-FMs performance can increase the forecasting precision significantly when the forecast-
ing L-variable word-set size grows from 9 to, in turn, 17, 33, and 65 words. Based on the
criteria MSE’s and RMSE’s values given in Table 9, it follows that.

When word-set size grows as above, the MSE’s value of the proposed ULTS (RLTS)
decreased, in turn, 49.85% (47.84%), 54.02% (49.55%), and 74.49% (72.11%), compared to
the case of 9 words.

Similarly, the RMSE ’s value of the proposed ULTS (RLTS) decreased, in turn, 29.05%
(27.78%), 32.08% (28.98%), and 49.49% (47.19%).

The reason may be that the more affluent the forecasting L-variable word-set, the more
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Table 8: Linguistic, logical relationship groups of the enrollments in case of 33 and 65 words

Group ULTS with 33 words RLTS with 33 words ULTS with 65 words &
RLTS with 65 words

Group 1 A small → LVV small A small → LVV small VVVV small →
LLVV small

Group 2 LVV small → LLV small LVV small → LLV small LLVV small → V small

Group 3 LLV small → VLL small LLV small → VLL small V small → small

Group 4 VLL small → L small VLL small → L small small → LLL small

Group 5 L small → L small,
LVL small,
LLL small

L small → L small,
LVL small,
L small,
LLL small

LLL small → LLLL small,
VLLL small

Group 6 LVL small → VL small LVL small → VL small LLLL small → L small

Group 7 VL small → LVL large VL small → LVL large L small → LVL small

Group 8 LVL large → LVL large,
VVL large,
large

LVL large → LVL large,
VVL large,
large

LVL small → LVVL large

Group 9 VVL large → L small VVL large → L small LVVL large → VL large,
VVLL large

Group 10 L small → L small,
LVL small,
LLL small

L small → L small,
LVL small,
LLL small

VL large → VVVL small

Group 11 LLL small → LLL small,
VVL small

LLL small → LLL small,
VVL small

VVVL small → LLL small

Group 12 VVL small → LVL large VVL small → LVL large VLLL small → LL small

Group 13 large → LLV large large → LLV large LL small → LL small,
LLVL small

Group 14 LLV large → LVV large LLV large → LVV large LLVL small → LVVL large

Group 15 LVV large → LVV large,
LLV large

LVV large → LVV large,
LLV large

VVLL large → VLLV large

Group 16 VLLV large → LVV large

Group 17 LVV large → LVV large,
LLV large

highly approximates the given NTS the constructed LTS. Further, considering the set of the
LLRGs generated from such a constructed LTS as human knowledge, it is evident that the
richer such a human knowledge, the higher precision the forecasting results the proposed
LTS-FM can offer. For the word-sets of 33 and 65 words, one can see that the constructed
LTS’ charts in Figure 3 well approximate the given enrollments time series and, hence, their
LLRGs are much richer and of higher quality than the LLRGs generated in the case of
9 words. It is a methodological basis to ensure that the proposed LTS-FMd can develop
linguistic time series forecasting models with expected high performance.

5. CONCLUSION AND FUTURE WORKS

The study aims to establish a more comprehensive formalized methodology, dealing with
words directly, to simulate how human exerts make a forecasting process in terms of their
words in the natural language when observing a given numeric time series (NTS). Then, the
study ignores external political and economic factors that influence the forecasting process,
focuses on the variations of the given NTS themselves, and tries to simulate the human
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Table 9: Simulation results of the forecasting models under examination of Alabama Enrollments
from 1971 to 1992 with different used words.

Year
Real
val-
ues

ULTS.9 RLTS.9 ULTS.17 RLTS.17 ULTS.33 RLTS.33 ULTS.65 &
RLTS.65

1971 13055

1972 13563 13742 13742 13742 13742 13557 13557 13557

1973 13867 14144 14144 14144 14144 13943 13943 13838

1974 14696 14144 14144 14144 14144 14746 14746 14746

1975 15460 15416 15416 15416 15416 15416 15416 15416

1976 15311 15818 15646 15405 15409 15411 15412 15412

1977 15603 15818 15646 15405 15409 15411 15412 15617

1978 15861 15818 15646 15405 15409 15834 15834 15834

1979 16807 1690 16581 16673 16673 16928 16928 16795

1980 16919 17190 17190 17675 17675 17184 17184 17557

1981 16388 17190 17190 16220 16220 17184 17184 16437

1982 15433 16290 16581 15416 15416 15416 15416 15416

1983 15497 15818 15646 15405 15409 15411 15412 15412

1984 15145 15818 15646 15405 15409 15411 15412 15199

1985 15163 15818 15646 15399 15399 15617 15617 15617

1986 15984 15818 15646 15399 15399 15617 15617 15617

1987 16859 16290 16581 16673 16673 16928 16928 16795

1988 18150 17190 17190 17675 17675 17184 17184 17557

1989 18970 19129 19129 19129 19129 18894 18894 19016

1990 19328 19129 19129 18884 18966 19346 19346 19346

1991 19337 19129 19129 18884 18966 19120 19120 19120

1992 18876 19129 19129 18884 18966 19120 19120 19120

MSE 231,856 212,053
116,278
(49.85%)

110,600
(47.84)

106,962
(54.02%)

106,971
(49.55%)

59,146
(74.49%)

59,146
(72.11%)

RMSE 481.51 460,49
341.65
(29.05%)

332.57
(27.78%)

327.04
(32.08%)

327.06
(28.98%)

243.2
(49.49%)

243.2
(47.19%)

experts’ capability in forecasting, based on the given NTS, through their natural language.
One can imagine that by observing the given NTS’s variations, human experts can quickly
transform its variation into words’ variations, though not exact, called a linguistic time series
(LTS). Then, based on the words’ relationships of the LTS, they do reasoning in some way,
in their mind, to estimate the forecast value. For achieving this aim, this study establishes a
more comprehensive and complete methodological viewpoint than the one given in Nguyen
et al. (2019, 2020), justify its outstanding performance advantages, and resolve the follow-
ing main questions. Human beings uses their natural language to interact with the reality
around them and do reasoning for effectively making decisions to struggle for their existence
and development successfully. The ways human experts resolve their decision-making prob-
lems, including NTS forecasting ones, must realize, of course, based on specific particular
inherently existing nature of the natural language, including its structure and formalism,
that one should reveal or simulate in some formalized ways. Restricted to the NTSs’ fore-
casting problems, this study tried to establish a formalized methodology to simulate the way
just mentioned that human experts apply “their language-based formalism” to solve NTSs’
forecasting problems in daily lives.

1) Establishing a formal basis to directly handle the forecasting L-variable words’ se-
mantics in relations to its numeric universe. In order to computationally simulate how to
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forecast the human experts based on a given numeric time series (NTS) in terms of their
own forecasting L-variable’s words present in the natural language, one should formalize the
following problems underlined the human linguistic forecasting process:

(i) The forecasting L-variable word-domain, which consist of all possible L-variable words
existing in the natural language and, hence, potentially infinite, must first be soundly for-
malized, called a hedge algebra, to model the inherent semantic structure of any L-variables;

(ii) A method for simulating the human expert capability in transforming the given NTS
into an LTS based on a “similarity” of its numeric values to the numeric semantics of the
currently used forecasting L-variable words. However, in this context, it can make sense
only when the developed method is equipped with a formalism to handle L-words together
with their numeric semantics consistently. This study’s formalism was ensured by Tarski
et al. interpretability concept, which requires that the forecasting L-variable’s inherent
semantic word-domain structure must be interpretable in its numeric semantic structure.
Alternatively, it means that the word-domain numeric semantics must be an isomorphic
image of its inherent semantic word-domain structure.

Moreover, this formalism ensures that the inherent words’ semantics, both qualitative and
quantitative, are defined in the full L-variable context. Therefore, the declared currently used
forecasting L-variable word-set is scalable, i.e., when human experts permit it to grow, all
distinct semantic types of the currently used words cannot be changed. It is an essential,
natural, and practical feature to guarantee the consistency of the NTS’s variation knowledge
growing in time. As examples, one can easily find out many LLRGs present in Table ’s 7
and 8, e.g., Groups 1 and 2 in Table 7, that were already established in the former phases,
whose semantics were still thoroughly maintained in the next phases;

(iii) The proposed methodology permits developing a reasoning method based on the
LLRGs’ human experts’ knowledge generated from the constructed LTS. Similar to those
utilized by the counterpart methods, in this study, we used the simple reasoning method
developed in the paper by Nguyen et al. (2019, 2020) mentioned above, i.e., reasoning by
taking the average of the numeric semantics of the words appearing on the right side of the
LLRG under consideration.

2) Developing an LTS-FM that can soundly and directly handle the potentially infinite
forecasting L-variable words and their numeric semantics for increasing the forecasting results
precision. This formalism developed motivated by the following practical scenario: Assume
that human experts already applied the developed LTS-FM to an NTS forecasting application
at its life-cycle moment in the past. At the present moment, the application experts may,
naturally, desire to obtain more forecasting precision. Since the richer the experts’ knowledge
describing the NTS variation, the higher exact forecasting decisions the developed LTS-FM
can achieve, this study offers a formalism for permitting the proposed LTS-FM to enlarge
the knowledge LLRGs generated from the constructed LTS, by allowing the currently used
word-set to grow, to rich a more plentiful knowledge about the given NTS variation. As
discussed next, one can see that the proposed LTS-FM can increase the forecasting results
significantly.

3) Considering the LLRGs as human users’ linguistic knowledge about the NTS variation,
an outstanding feature of the proposed LTS-FM is its ability to simulate the scalable users’
knowledge growth to increase their prediction. One can observe that human domain (e.g.,
the medical) knowledge always grow in practice to increase the prediction precision, based
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on the scalability feature of this domain knowledge, i.e., the existing knowledge meaning
is, in general, still maintained when it is required to grow. It is an essential property for
increasing the forecasting precision by allowing the existing NTS’s variation knowledge to
grow. For the first time, the study simulated this situation by permitting the existing used
word-set under consideration to grow from 9 words to, in turn, 17, 33, and 65 words, which
implies the growth of their respective LLRGs’ sets, considering the given NTS’s variation
knowledge. The obtained experimental results justified that the forecasting results’ precision
was also, in turn, increased significantly for both criteria MSE and RMSE, see Table 10, and,
therefore, show the effectiveness of the proposed approach.
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