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Abstract. The study stands on the standpoint that there exist close and essential relationships

between real-world structures and their information provided to human beings in reality. Because the

natural language plays a specifically vital role in daily human activities, e.g., in capturing, conveying,

and communicating information and accumulating knowledge containing useful high-level informa-

tion, consequently, it must contain certain semantics structures, including linguistic (L-) variables’

semantic structures, which are fundamental, similar to the math variables’ structures. In this con-

text, the fact that the (L-) variables’ word domains can be formalized as algebraic semantics-based

structures in an axiomatic manner, called hedge algebras (HAs,) is still a novel event and essential

for developing computational methods to simulate the human capabilities in problem-solving based

on the so-called natural language-based formalism. Hedge algebras were founded in 1990. Since then,

HA-formalism has been significantly developed and applied to solve several application problems in

many distinct fields, such as fuzzy control, data classification and regression, robotics, L-time series

forecasting, and L-data summarization. The study gives a survey to summarize specific distinguishing

fundamental features of HA-formalism, its applicability in problem-solving, and its performance and

advantages.

Keywords. Fuzzy sets; Hedge algebras; Linguistic rule bases; Linguistic variable semantics; Qual-

itative word semantics; Words’ fuzziness.

1. INTRODUCTION

The natural language plays an essential role in human beings’ daily activities in the
struggles for their existence and the development of their societies. Especially, their different
domain knowledge has been accumulative and grown along with such struggles and develop-
ments. These facts assert that the natural language can communicate necessary information
between people, represent and store specific human domain knowledge, essential components
for human reasoning and decision-making. Accepting the strictly close relationship between
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the structure and the information, which states that the higher structure of a real-world en-
tity, the more information it can provide us, one may conclude that the natural language itself
does involve different structural-semantic relationships (between L-variables/attributes,) or,
in other words, different L-semantic structures.

Moreover, as shown in this study, the L-variables’ word-domains contain inherent math
structures that can be established in an axiomatization manner and, then, one can discover
L-structures defined on the Cartesian product of L-variable word-domains. Notice that the
natural language accompanies human beings since the very moment humans appeared on
earth, but the math structures contained in the L-variables’ word domains had not been
discovered until 1990 and 1992 in the studies [1, 2]. These L-variables’ word-domains math-
structures are called hedge algebras (HAs), in which linguistic hedges, i.e., those adverbs,
like very, extremely, little, rather, . . . , that have a functionality to modify or intensify words
play their unary operators. Thus, it should still be emphasized more strongly the structure-
information relation. It can be said that the closed relationships between Structure, Infor-
mation, and Information processing play a fundamental role in motivating the authors of
that studies to discover the L-variables’ word domains math-structures, though necessary
fundamental knowledge of the universal algebras and math-logics is also very important.

Since then, many fundamental theoretical studies, such as the studies on the refined
HAs to make the word domains partially ordered semantic structures to become lattices [4],
complete and linear HAs [7], and their quantification [8]. Interestingly, the quantification of
an L-variable word domain could be established based on only the L-words fuzziness model
concept, their fuzziness intervals, and an isomorphic order mapping for every L-variable.
These achieved theoretical results sufficiently form a necessary formalized basis for solving
application problems in different fields. One can find its applications in cybernetics [15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30], in classification and regression [31, 32, 33],
decision making [38, 39], multi-channel image processing [37], robotics [45, 46, 47, 48, 49],
networking [43, 44], fuzzy linguistic time series [40, 41, 42], linguistic data summaries [35, 36],
databases and object-oriented databases based on hedge algebraic semantic [58, 59, 60], and
it is not the end.

It should also emphasize that the establishment and the development of the HAs the-
ory and its initial application results were inherited from the fuzzy sets theory’s ideas and
achievements. However, since both theories aim to simulate how human experts do rea-
soning and make decisions in their daily lives, in terms of their L-sentences, an essential
fact makes an HA-approach different from a fuzzy set-based approach as follows. The HA
approach can directly handle L-words and simulate how human experts utilize L-words and
their knowledge to solve the problems encountered in their daily lives. In this formalism, the
semantic order and generality-specificity relationships between every L-variable’s words play
a crucial role, noting that the individual L-variables’ words are nothing but their semantic
relationships, i.e., is their structures essential. Recall that, in mathematics, one focuses not
on individual universe elements but their relationships, i.e., their structure.

On the other hand, fuzzy sets are ideal numerically computational objects to represent
the L-variables’ words’ fuzziness. Thus, in an HA-approach, when necessary, it is neces-
sary to utilize fuzzy sets to represent the words’ semantics soundly, where ‘soundness’ here
means that one must have a reliable formalism to ensure that his designed fuzzy sets can
appropriately represent their associated words’ semantics. Therefore, because the designed
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words’ fuzzy sets structures are essential, the HA approach requires that the fuzzy sets struc-
tures designed to represent the L-variables’ word domains must be the isomorphic images of
the inherent semantic L-variables’ word domains structures, following Tarski et al.’s inter-
pretability concept in the math-logics field. It implies that to simulate how human experts
solve a problem in their natural language-based formalism, the declared L-variables’ seman-
tic word structures under consideration must be interpretable in their respective constructed
fuzzy sets’ structures. In other words, there exists an isomorphism translating the declared
L-variables’ semantic word structures into their respective constructed fuzzy sets’ structures.

The study’s primary purpose is to give a survey on the HA-approach to simulate the hu-
man experts’ capability to handle their natural language’s words to solve their daily problems
and emphasize specific features distinguished from the fuzzy set-based approaches. Espe-
cially, it emphasizes that the constructed individual fuzzy sets representing their L-labels
are nothing, but their defined structures are essential to solving a given application prob-
lem. With this outstanding specific feature, the terminology ‘structure’ is written in italic,
if necessary, to emphasize the essential role of the objects’ structure under consideration.

The study organization is as follows. Sect. 2 offers to present how one can formalize
the L-variables’ word domains to become HAs in an axiomatization manner, based on some
essential inherent semantic words’ properties, and axiomatize their quantification, or the
inherent relationships between the words’ qualitative semantics and their numeric semantics
in reality. It forms a formalized basis to construct fuzzy sets’ structures to represent their
L-variables’ word domain semantic structure, whose fuzzy sets’ cores are singleton.

In practice and application, the fuzzy set cores may not be a singleton, say intervals.
They numerically represent the so-called words semantics cores. Thus, Sect. 3 devotes to
axiomatize the word semantics cores’ structure in the context of the total word domains’ se-
mantic structures. It establishes a formalized math basis to construct the fuzzy set structures
representing the L-variable words’ semantics, whose fuzzy set cores are intervals.

Applications of the HA-methodology to justify the HAs theory’s applicability and its
performance can be found in Sect. 4. Restricted to the study presentation space, we present
only a few typical applications, comprising an HA’s application in the fuzzy control, the ones
in data classification, and the ones in the linguistic data summarization, which exposes a
specific feature that characterizes the HA-methodology advantages and benefits.

Conclusions and some research discussions will be discussed in Sect. 5.

2. HEDGE ALGEBRAS - THE DISCOVERED QUALITATIVE SEMANTIC
STRUCTURES OF THE L-VARIABLES’ WORD DOMAINS

2.1. Inherent abstract algebras hidden in every L-variable word-domain in the
natural language

The word-domain of an L-variable X in the natural language (NL), like the human AGE
or the cars’ SPEED, in reality, is the set of its words present in the NL, denoted by D(X).
For example, D(AGE) contains the words like ‘young ’, ‘old ’, ‘Very (V ) young ’, ‘V old ’,
‘Rather (R ) young ’, ‘R old ’, . . . As discussed in Sect. 1, the NL can describe and convey
extremely rich amounts of information about the real world (RW) and, therefore, from the
closed relationship between structure and information, one can infer that its word-domain
D(X) must contain a complex semantic structure.
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This section explains how this structure can be discovered mathematically.

2.1.1. The syntactical semantics of the given L-variable X and its abstract al-
gebra

Similar as shown just above, for every X, Dom(X) contains two atomic (or primary)
words, denoted by c− and c+, e.g., ‘young ’ and ‘old ’ (or ‘slow ’ and ‘fast,’) respectively, of
AGE (or, of SPEED.) Let us denote by H the set of all possible hedges, i.e., the adverbs
that have the functionality to modify or intensify an adverb or an adjective. For example,
we may list here the adverbs such as very, extremely, little, rather, more-or-less, and it is not
the last ones. However, the study is restricted to those hedges so that the X’s word domain
will become a lineally semantics-based ordered structure. Moreover, for a given application,
in practice, its human users require to use an X’s ‘words dictionary’ with a restricted number
of its words, and not all hedges at each moment of the application life-cycle. Thus, for an
application, the X’s syntactical semantics determination is essential, and its users require
a careful X’s syntactical semantics declaration. Consequently, which set H of hedges is
declared to determine the X’s syntactical semantics is crucial.

2.1.2. The X’s syntactical semantics or its word-domain viewed as an abstract
algebra

If we search on Google those words containing the string of five the adverbs ‘very’, we
may obtain many, many words, one of which is ‘very, very, very, very, very, very, very,
very long time. Thus, one can observe that for a given declared X’s syntactical semantics
or, equivalently, a given set H, every X’s word-domain word, x, is of the string form, say
x = hn . . .h1c, c ∈ G = {c−, c+}, and hj ∈ H, ∀j ∈ {1, . . . , n}. As a string, the length of x
is its string length, denoted by |x|, i.e., |x| = n + 1.

Hence, at this moment, such an X’s syntactical semantics can be represented by an
abstract algebra, AX = (XX, G, C, H), where C = {0 , W , 1} is the set of X’s L-constants,
e.g., for the L-variable TRUTH, whose constants, in turn, are ‘absolutely false,’ ‘neutral,’ and
‘absolutely true,’ for instance, and every hedge h, h ∈ H, is considered as a unary operation
of AX. Therefore, it is called hedge algebra (HA).

Fuzziness models of the X’s words: An essential feature characterizing the fuzzy infor-
mation, including the fuzzy sets, is their fuzziness. Thus, a question arising is how one can
describe or model the words’ fuzziness. In the HA-approach to the fuzzy linguistic informa-
tion, we can define this concept mathematically, i.e., the words’ fuzziness can be defined in
the algebraic structure of AX.

In fact, from the intensifying functionality of hedges, for every X’s word x, the set H(x)
consists of all X’s words intensified by the hedges in H, i.e., ∀y ∈ H(x), y is different, but
intensified/modified from x by hedges in H. In addition, for every linguistic constant c ∈ C,
we have hc = c, which implies that H(c) = {c}, which is singleton. Hence, the constants
are not uncertain, or they are exact information. Thus, H(x) can be considered a fuzziness
model of x. The larger the set H(x), the more fuzziness of x.

The X’s words fuzziness models have the following properties offering for establishing
HAs in an axiomatization manner: For ∀x, y ∈ XX,
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a) y ∈ H(x) implies that H(y) ⊆ H(x). That is, y (or, x) is less (or, more) fuzziness than
x (or, y).

b) For ∀x, y ∈ XX, x and y are said to be independent if we have x /∈ H(y) & y /∈ H(x).

Then, if x and y are independent, we have H(y) ∩ H(x) = ∅. Thus, c− and c+ are
independent.

For all different h, h′ ∈ H, and every x ∈ XX, different from the constants, H(hx )
∩H(h′x) = ∅.

c) For every x ∈ XX, H(x) =
⋃

h∈H
H(hx).

By the intensifying or modifying functionality of the given hedges, we semantically have
that the order of the set of H(hx ) follows the order of their words, hx ’s, h ∈ H, i.e., hx ≤
h′x ⇒ H(hx ) ≤ H(h′x). Moreover, we also haveH(G) = H(c−)∪H(c+), H(c−)∩H(c+) = ∅,
and XX = H(G) ∪C. Similar as above, the order of the sets, H(c−) and H(c+), follows the
semantic order of c− and c+.

2.1.3. The multi-aspect qualitative semantics of L-variables

To describe, convey, and represent the information, including structural information (hu-
man domain linguistic knowledge, for instance) sufficiently, how rich the qualitative semantics
of the L-variables in the natural language is essential. This point shows that the qualitative
semantics of every L-variable, say X, involves two relations, the semantic order-based rela-
tion and the generality vs. specificity relation, which play essential roles for human domain
experts accumulating their domain knowledge, doing reasoning, and making their decisions
to solve their application problems encountered in practice.

◦The semantic order-based relation on XX: Because, in order to make decisions, hu-
man beings need comparison criteria to evaluate their encountered alternatives, it is natural
that there exists an inherent semantics order-based relation on XX in the natural language.
Consequently, a semantic order-based relation on XX exists, denoted by ≤ and called the
semantic order relation. It was shown in the studies [1, 2, 4, 7, 8, 32] that this order relation
can be determined based on the following observations, referring to the syntactical semantics
discussed in Subsections 2.1.1 and 2.1.2:

The semantic order of the atomic words and hedges, and their ‘algebraic’ signs: Let
the syntactical semantics of X is declared by giving the names of the atomic words in G
and the set of hedges, H = {R (rather), L (Little), M (More), V (Very), E (Extremely)}.
First, it is observed that c− ≤ c+, e.g., young ≤ old, and they have the reverse semantic
tendency directions, called their (algebraic) sign, deduced from the fact that, considering the
hedge V and fix it, while Vc− ≤ c−, one sees that c+ ≤ Vc+. Conventionally, the semantic
tendency direction of c− (or, c+) is called negative (or, positive) and denoted as sign(c−)
= -1 (sign(c+) = +1.) One can check that the hedges M and E have the same direction
action effect as V . For example, for M , we also have Mc− ≤ c− and c+ ≤ Mc+. Since these
hedges’ direction effect, which intensifies the atomic word semantics, is compatible with their
respective atomic tendency direction, they are called positive hedges. Therefore, we define
sign(M) = sign(V ) = sign(E) = +1.
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It can be verified that such hedges’ direction effect of the remaining hedges, R and L, is
reverse to the one of the positive hedges and, hence, they are called negative, and we define
sign(R) = sign(L) = -1. Thus, we may set H− = {R, L} and H+ = {M , V , E}.

Accordingly, at this moment, we begin to see that the L-variable X inherently contains
many interesting qualitative semantic properties.

The relative signs between hedges and the sign of the words different from the constants:
As discussed previously, for every X’s word x different from the constants, it is syntactically
represented as a string, x = hn . . .h1c, c ∈ G, hj ’s ∈ H, e.g., x = VL young, y = RL young,
and y = VE young. From the inherent words’ semantics, we can verify that V young ≤
young ≤ RL young ≤ L young ≤ VL young.

Table 1. The relative sign of a hedge in a row w.r.t. a hedge in a column

sign(k, h) E V M R L
E + + + – +
V + + + – +
M + + + – +
R – – – + –
L – – – + –

From the inequalities, young ≤ RL young ≤ L young, it follows that, while L modifies
‘young ’ to becomes a greater word, ‘L young,’ R modifies the word L young to become a
smaller word, ‘RL young.’ That is, the two modification directions caused by the hedge L,
applying to ‘young,’ and R applying to ‘L young ’ are reverse. In this case, we say that the
relative sign of R applying to L is negative and write sign(R, L) = -1. By a similar argument,
from the inequalities, young ≤ L young ≤ VL young, we infer that the two modification
directions caused by L, applying to ‘young,’ and V applying to ‘L young ’ are the same, and
we say that the relative sign of V applying to L is positive and write sign(V , L) = +1.

Consequently, for every x given as above, i.e., x = hn . . .h1c, c ∈ G, x has also now a
sign defined as follows

sign (x) = sign (hn, hn−1) . . . sign (h2, h1) sign (c) ∈ { − 1,+1}.

The meaning of algebraic sign of a word x different from the constants is: sign(hx ) = +1
⇔ hx ≥ x. Since hx ̸= x and, we can semantically observe that x /∈ H(hx ), for all h ∈ H.

◦The generality-specificity relation on XX: An especially specific feature of the L-variables’
word-semantics is the so-called generality-specificity (GS-) relation. It is well-known that
the GS-relation is essential for human beings to formulate their knowledge pieces when they
accumulate their domain knowledge. It can be seen that this concept can be formally defined
in a very general way, as follows:

By the hedges’ functionality, every hedge h intensifies a word x to obtain a more specific
one, the hx. Then, if |y| = k > 0, y is said to be k−specific or of the k−specificity. The
larger the length of the words, the higher their specificity. Thus, in the HA-approach, a word
x is said to be more general than another word y if the inclusion, H(x) ⊇ H(y), is valid and
denoted by g(x, y), called the generality-specificity relation.

It can be formally verified that g(x, y) a binary partial relation g ⊆ XX × XX that
satisfies the following conditions (refer to [36]):

(i) For x ∈ X and h ∈ H, G(x, hx ) holds.
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(ii) Reflexiveness: For x ∈ X, G(x, x) is valid.

(iii) Antisymmetry : For x, y ∈ X, G(x, y) and G(y, x) ⇒ x = y.

(iv) Transitivity : For x, y, z ∈ X, G(x, y) and G(y, z) ⇒ G(x, z).

2.1.4. The L-variables’ Hedge algebras, developed in an axiomatic way, as al-
gebraic math-models of their word domains semantic structures

It should emphasize that all syntactical and qualitative semantic properties are objec-
tively discovered from the natural language, i.e., they inherently exist in the natural language,
and one can observe them. Some of these words’ semantic properties are utilized to establish
the axiom systems in studies [1, 2, 4, 7, 8, 32] to develop their specific hedge algebras (HAs).
Hence, mathematically, the HAs can model the L-variables’ word domains in the natural
language soundly.

Since, as discussed above, for every L-variable X, there exists an inherent partial generality-
specificity relation on XX, i.e., g(x, y) is valid, for certain x, y ∈ XX, if and only if
H(x) ⊇ H(y) Thus, be restricted to the underlying set XX of the HA AX and focus to
only the relations on XX, ≤ and g, we obtain the structure AX = (XX, ≤, g) called the
multi-aspect semantic structure of the L-variable X’s semantics to emphasize its semantic
structural complexity. The natural language capability in describing, conveying, and rep-
resenting real-world information results in a complex semantic structure that exists and is
contained in the L-variable word domains. It justifies again an essential close relationship
between the structure and the information for the natural language.

2.2. An axiomatic quantification of the L-variables multi-aspect semantic struc-
tures

The multi-aspect semantic structure examined in Subsection 2.1 will be utilized to con-
struct interpretable fuzzy set-based semantics of L-variables, whose cores are singleton, e.g.,
the triangular fuzzy sets. In the HA approach, one can also establish, in an axiomatic way,
a formalism to construct interpretable fuzzy set-based semantics, whose cores are intervals,
e.g., the trapezoid fuzzy sets, as will be discussed in the next section.

The readers, now, know that the L-variables in the natural language contain their rich
and complex math structures that can be defined in an axiomatic way. However, they still
have no numerically computational characteristics essential for developing software products
to simulate the expert capability, for example, in drawing L-information or human knowledge
from a given large numeric dataset. Thus, how can one quantify the L-variable word-domains
multi-aspect semantic structures in an axiomatic manner? Based on a long-term trial-error
learning process, human experts now can establish conventional uncertain relationships be-
tween the L-variables words semantics and their respective numerical semantics, acceptable
for the daily activities of a human community. For example, knowing the high of a person
is 174 cm, an adult can linguistically inform another person that that person is ‘high.’ That
is, inherent relationships exist between the word-semantics and their numeric one.

Another type of the words’ numerically computational semantics is the words’ interval
(i−) semantics. For example, one may accept that the Vietnamese persons’ middle age is
approximately from 43 to 49 years. Thus, the i−semantics of ‘middle age’ is the interval
[43, 49].
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In this point, we show that one can discover the inherent relationships between the
qualitative, the numerical, and the interval semantics of the L-variable words in an axiomatic
way. From the study standpoint, this task is theoretically essential, even though there were
no formal relationships between the designed fuzzy sets and their associated L-labels in
the fuzzy sets’ framework (hence, in which experimental study is essential to justify the
applicability of a proposed method.) However, recall Zadeh’s idea that a developer may
lose some information if he uses an exact computational object to model uncertain/fuzzy
information. Despite this, the study will justify that the hedge algebras theory, including
their quantification one, can establish a math-formalism to connect the qualitative words’
semantics with their desired exact numerically computational semantics, and it can bring
many advantages for practical problem-solving.

This formalism is still also flexible by tuning the L-variables’ fuzziness parameters only.

The axiomatic quantification of an HA, AX, can be shortly described as follows. It starts
with the determination of the words’ numerical semantics. Because the linearly semantic
order-based structure is now a math model of X’s word-domain, its words’ numerical se-
mantics must be the order-isomorphic images of the X’s word-domain order-based structure.
Thus, the desired quantification of AX should start with a given order isomorphism fX:
XX → [0, 1], where [0, 1] is the normalized universe of X.

fX is one-to-one mapping satisfying:

(i) It preserves the order of the words, i.e., x ≤ y ⇒ fX(x) ≤ fX(y);

(ii) fX(XX), which is countable, is dense in [0, 1].

This isomorphic mapping fX is called in [8] a semantically quantifying mapping (SQM).
It was proved that such a given SQM fX could determine, for every word x, an x’s fuzziness
interval, a subset of [0, 1], denoted by ℑX(x) which is the topological closure of the countable
set f(H(x)). One can interpret ℑX(x) as the set of all the X’s numerical universe values
semantically compatible with the x′s semantics. Hence, it is called the fuzziness interval of
x, and its length is called its fuzziness measure

It was shown in [36] that the fuzziness intervals’ structure of every L-variable is also rich
and complex, and it can be represented by a bush-graph similar as shown in Fig. 1 below,
when imagining that the oval figures, associated with the strings of the form h0x, is reduced
to single points, in this case. However, the limited study space does not allow to present
here, but the readers can refer to the axiomatic quantification of the enlarged hedge algebras
described in the next section.

2.3. The enlarged hedge algebra of a given ordinary hedge algebra – a formal
math basis for constructing the words fuzzy set-based semantics, whose
cores are intervals

The section aims to show that the HA-approach follows a principle that one should always
establish a math-formalism, established in an axiomatic way, to produce the L-variable words’
interpretable fuzzy set-based semantics whose cores are intervals, from just its right word
domain semantic structure. Here, ‘interpretable’ is in Tarski et al.’s sense mentioned in
the introduction section. Thus, instead of using the numeric SQM mapping fX examined
above, we must establish a math-formalism in an axiomatic way to define an interval-valued
isomorphic mapping to construct the interval-cores of the words’ fuzzy set-based semantics.
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This section describes how one can develop such a formalism.

2.3.1. Enlarged hedge algebra – An enlargement of a given ordinary HA

Since the L-variables words are fuzzy, uncertain, or soft data, similar to fruits, they
have their kernels inside, called the words’ semantics cores. Imaginarily, in relation with the
fuzziness interval of a words x, ℑX(x), one can accept that the numeric values of a proper
subinterval of ℑX(x), located at about the center of ℑX(x), are most compatible with the
semantics of x. A unique primary difference of the desired enlarged HA from its ordinary
HA, AX = (XX, G, C, H, ≤), is that every X’s word has a core, and the question arising is
that how one can model the words’ semantics cores based on the given HA AX.

In this section, we show that one can establish a math-formalism to enlarge the given AX

to the so-called enlarged hedge algebra (EnHA), denoted by AX
en = (XX

en, G, C, Hen, ≤),
where Hen = H∪ {h0} and h0 is an artificial hedge used to produce the word-cores. Thus,
XX

en = XX ∪
{
h0x : x ∈ XX

}
. In this way, the words’ semantics cores can be axiomatized

using the following additional axiom [32]:

(A5en) Axioms for the s-core of words: For ∀x, y ∈ Xen and x ̸= y,

(i) h′h0x = h0x, for ∀h′ ∈ Hen. That is, h0x is always a fixed point. In addition, for x ∈ X,
h0x = x ⇔ x ∈ C, otherwise, h0x and x are incomparable (recall that h0x /∈ XX).

(ii) ∀, y ∈ X,x < y ⇒ h0x < y & x < h0y.

We see again that when the semantics cores of their L-words can convey useful informa-
tion, which indicates the sets of the L-variable numerical universe values most compatible
with their respective L-words’ qualitative semantics, there is a math structure describing the
L-variable words and their semantics cores. It contributes to turns out the importance of
the structure and information relationship.

Similar to the case of the L-variables’ HAs, the rich and complex semantic structure of
every declared L-variable semantics, SX

en, can be described by an infinite semantic bush-graph
structure given in Fig. 1, denoted by BX, whose every node is associated with either a word
x or its fuzziness model Hen(x). One can read the semantic structure BX as follows:

By the hedges’ functionality, every hedge intensifies the word x to be more specific. If
|x| = k > 0, x is said to be k−specific or of the k−specificity. The larger the length of
the words, the higher their specificity. Moreover, to our knowledge, when a human expert
considering choosing a X’s word of the k−specificity, in the natural language, to describe an
RW-event, he needs to choose it in the context of the all X’s words of the same specificity
level, i.e., the words in XX

en,k carefully. For this reason, the words of the k-specificity are
arranged on the same level, called the k-level. If there is an arrow from a note associated
with a word x, called simply the node x, to another node y of the bush-graph, it represents
the validity of g(x, y), i.e., Hen(x) ⊇ Hen(y), where the fuzziness model Hen(·) of a word ‘·’
represented by an oval containing the word ‘·’. Thus, the vertical paths from top to bottom
represent the words’ generality-specificity relationships.

If one imagines that, for ∀x ∈ XX
en, node x could have its horizontal coordinate, the words

horizontal coordinate relationships represent their semantics order. For example, it can be
verified, in Fig. 2, that VVc− ≤ LVc− ≤ hc−. It results in the fact that, on each k-level,
the k-specificity words and their fuzziness models, Hen(·)s, are linearly arranged from left to
right. Moreover,
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(
⋃

x∈XX
en,k

Hen(x)) ∪ C = XX
en.

2.3.2. The quantification of EnHAs

1) A description of how to quantify XX
en from the semantic structure SX

en. Similar to Subsec-
tion 2.2, for a given L-variable X with its declared syntactical semantics, its quantification
of EnHA starts with the interval X-words’ semantics defined by giving an interval-valued
order-isomorphism, called interval-valued semantically quantifying mapping (I-SQM) fX

en:
XX

en → P([0, 1]), where P([0, 1]) denotes the set of all subintervals of the normalized X-
universe, [0, 1], i.e., for ∀x, y ∈ XX

en, x ≤ y ⇔ fX
en (x) ≤ fX

en (y), and the set fX
en

(
XX

en

)
is dense in [0, 1] The quantitative value fX

en (x) is called the interval-valued semantics, or
i−valued semantics, of the word x.

The study [32] shown that for ∀x ∈ XX
en, f

X
en (x) = ℑ(h0x) and the set, fX

en(Hen (x), is
dense in an interval, denoted by ℑ(x) ⊆ [0, 1], and called the fuzziness interval of the word
x Since h0x is a fixed point, we have fX

en(Hen (h0x) = fX
en (h0x) = fX

en (x). It implies that
ℑ (h0x) = fX

en (x).

It was shown in [36] that the discovered properties of the fuzziness intervals of the words
of XX

en can be arranged in a structure of the bush, also represented in Fig. 1. In this
figure, similar to the semantic bush structure, the k−specificity words’ fuzziness intervals
are linearly arranged on the k−level, and if g(x, y) is valid, or Hen(x) ⊇ Hen(y), then ℑ(x) ⊇
ℑ(y). They also form a bush structure of the words’ i−valued semantics and their fuzziness
intervals, and it is called the word domain’s quantitative semantics bush.

The length of ℑ(x) is the x’s fuzziness measure, denoted also by m(x), as previously.

Since fX
en is an isomorphism, it transforms the structure SX

en, represented by the word
domain’s semantics bush structure in Fig. 1 onto its quantitative semantics structure also
in the form of the quantitative semantics bush-structure that is also represented in the same
figure.

It was shown that the following properties, which can be described by the word domain’s
quantitative semantics bush graph exhibited in Fig. 1, can be proved in an axiomatic manner:

- On every k-level, we have

a1) The order of ℑ(x), x ∈ Xen,k, follows the order of their words;

a2)
⋃

x∈Xen,k

ℑ (x) = [0, 1] and, for k =1, ℑ(0 ) ∪ ℑ(c−) ∪ ℑ(W ) ∪ ℑ(c+) ∪ ℑ(1 ) = [0, 1];

a3) For ∀x ∈ Xen,k, H (x) =
⋃

h∈Hen

H (hx), which implies ℑ (x) =
⋃

h∈Hen

ℑ (hx).

- The fuzziness measure words and hedges: As a consequence, putting m(x) = |ℑ(x)|, we
have

b1)
∑

x∈Xen,1

m (x) = m (0)+m (c−)+m (W )+m (c+)+m (1) = 1, and
∑

h∈Hen

m (hx) = m (x) ,

which implies that m (hx) ≤ m (x);
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b2) Adopt the assumption that the quantity, m(hx)
m(x) does not depend on x. Then, it is called

the effect or the fuzziness measure of the hedge h, denoted by µ(h). Thus, m(hx ) =
µ(h)m(x).

As a consequence, we have m(x) = µ(hn) . . .µ(h1)m(x), for x = hn . . .h1c, c ∈ G;

b3) Moreover, from the second equality in b1), it follows that
∑

h∈Hen

µ (h) = 1.

It can be check that giving the values of m(0 ), m(c−), m(W ) and m(c+), and µ(h),
for h ∈ Hen\ {h}, the fuzziness measure m of the L-variable X, is completely determined.
Therefore, they are called the independent fuzziness parameters of X.

Now, we see that utilizing only an interval-valued order-isomorphism fX
en, one can de-

fine many quantitative words’ semantic concepts and their properties from the multi-aspect
semantic structure, SX

en.

2) The axiomatization of the above quantification of XX
en: Considering, now, properties b1)

– b3) axioms of the fuzziness measure of the given AX
en (a more economic quantification

axiomatization system can be found in [32],) it was proved in that paper that the I-SQM
fen above can be entirely determined and, for every X’s word x of k−specificity, the left
endpoint of the interval-value of fen (x) is computed as follows

Lft (fen,m (x)) =
∑

y∈Xen,(k+1)&y<x

m (y) . (∗)

Therefore, in turn, given the independent fuzziness parameters’ values of X, one can
compute all quantitative quantities presented in Point 1).

Figure 1. The semantic bush structures BA of the different semantic-aspects of an attribute A and
their relationships: a) The semantic bush of the words; b) The semantic bush of the word-fuzziness
models; c) The semantic bush of the word-fuzziness intervals.
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3. THE INTERPRETABLE AND SCALABLE CURRENTLY DECLARED
X’S WORDS’ FUZZY SET-BASED SEMANTICS

From Tarski et al.’s interpretability concept, it follows that to computationally simulate
how human experts make their decisions, based on their accumulative knowledge, in terms
of their words in the natural language, one must guarantee that the constructed words’
fuzzy set-based semantics must soundly represent their qualitative semantics. That is, the
L-variables’ word domain semantic structures must be interpretable in their respective con-
structed words’ fuzzy set-based semantics structures. On the other hand, the experts’ accu-
mulative knowledge implies that their knowledge can usually grow and, hence, so do their
currently used L-variables’ word domains. It results in the scalability of their knowledge
and its currently used L-variables’ word domains, i.e., their semantics are maintained when
they grow. Thus, in this section, the interpretability and scalability of the fuzzy set-based
semantics of the currently declared L-variables’ words are taken into consideration.

3.1. The currently declared L-variables’ word-set semantic structures and their
scalability

As mentioned above, one should establish a math-formalism to handle the conflict that
when dealing with L-words directly, a developed method handles, at the current moment,
the words of the currently declared L-variables’ word-sets while their semantics are defined
in the context of their total L-variables. Thus, in Section 2, the study assumes that the
underlying set of the multi-aspect semantic structure of an L-variable X, SX

en = (XX
en, ≤, g),

the word-domain of an L-variable X, XX
en is infinite. Meanwhile, at an application life-cycle

moment, one requires to use only its finite word-set, called the X’s currently declared word-
set, denoted by FX

en,k (F means a linguistic Framework of cognition,) where the integer k,

k > 0, indicates that the word-set FX
en,k consists of all X’s words whose specificity degrees

are not greater than k. That is, FX
en,k = XX

en,(k), and called the k−specificity word-set of X.

3.1.1. The scalability concept of the k-specificity word-set FX
en,kFX
en,kFX
en,k of X

The natural language and linguistic domains’ knowledge are essential tools for human
beings to interact with their RW counterparts to realize their daily activities. Along with
the existence and development of human society, the natural human language and their
accumulative domain knowledge grow in time. It implies that the L-variables’ word-domains
also grow and, then, they are potentially infinite in reality. It implies that human beings use
words with their inherent semantics in the context of their total L-variables. However, they
are assumed to be finite at each current application life-cycle moment for a given application,
called the currently declared L-variables word sets.

The capability of human beings to handle their currently used word sets and their existing
domain knowledge, when these word-sets and knowledge grow, is called its scalability, a
concept in the system area. In terms of word-set structure formalism, it means that the way
one handles the word-set structure’s words is unchanged when the word-set structure grows.
Thus, for convenience, in the HA-approach, this property of a current word-set structure is
called its scalability.
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Thus, aiming to develop a fuzzy set-based method to deal directly with L-words, one
should establish a formalism to guarantee that this developed method can handle the scala-
bility of the current L-variable word sets. Recall that in the fuzzy set framework, usually the
number of words and their associated fuzzy sets are hardly limited and fixed and, therefore,
the scalability concept of the L-labels’ sets and their fuzzy representations have been ignored.

3.1.2. The multi-aspect semantic structure of FX
en,kFX
en,kFX
en,k, as math-substructure of

SX
enSX
enSX
en = (XX

enXX
enXX
en, ≤≤≤, g), represented by its semantic k−k−k−bush-graph, and its

scalability

Let us consider the multi-aspect semantic structure of an L-variable X, SX
en = (XX

en,
≤, g). Restrict the X’s word-domain XX

en to a finite word-set FX
en,k, it can be seen that

the structure SX
en,k = (FX

en,k, ≤k, gk), in which gk(x, y) elegantly defined by gk(x, y) ⇔
Hen(x) ∩ FX

en,k ⊇ Hen(y) ∩ FX
en,k and ≤k is induced by the linear order-relation ≤ on XX

en, is

a semantic k-specificity ordered substructure of SX
en. Similarly, FX

en,k is closed to the relation

gk. Thus, SX
en,k is a k-specificity substructure of SX

en,l, for l > k.

The math substructure means that the handling objects of SX
en,k using its math-formalism

is the same as handling them in the math-structure SX
en,l, with l > k. Its shows the scalability

of SX
en,k. Moreover, referring to Fig. 1, we see that it is represented by the so-called k-

portion of BX, denoted by BX
κ Observing this k-portion BX

κ of BX, one can also verify
that the relationships between its words, using the semantic order relation or the generality-
specificity relation, restricted to BX

κ , are unchanged when FX
en,k grows. It contributes to

justify the scalability of FX
en,k more clearly

3.2. The interpretable and scalable trapezoid fuzzy set-based words’ semantics
of a declared L-variable LFoC

Though L-variables’ word domains are mathematically formalized, they have a very poor
numerically computational structure for representing the words’ fuzziness and uncertainty,
limiting the interaction between word data and the numeric data in larger datasets. Fuzzy
sets offer a tool to present L-words’ fuzzy set-based semantics; however, there is no formal
connection between the inherent qualitative words’ semantics and their fuzzy sets constructed
by an expert in the fuzzy set frameworks. It leads to a conflict that while the inherent
qualitative words’ semantics is objective (because it is commonly understood the same in a
domain experts’ community), their fuzzy sets constructed, based on the designer intuition,
to represent the qualitative semantics of the words, called their fuzzy set-based semantics
is entirely subjective. This drawback may result in the fact that if one develops a method
to extract a knowledge piece of a given dataset, using the designed fuzzy set-based words’
semantics, such an extracted knowledge piece may represent inappropriate content contained
in the dataset.

Thus, a problem arising is how one can construct the words’ fuzzy set-based semantics
soundly? Restricted to the L-variables’ word-domains semantic structure, Tarski et al.’s
interpretability concept in the math-logics [56] tells us that to solve this problem requires
that the word-domain semantic structure of a given L-variable should be interpretable in the
constructed math structure of the fuzzy set-based semantics of its words. Mathematically, it
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means that this word-domain semantic structure must be isomorphic onto the constructed
fuzzy sets math structure.

Restricted to the trapezoid fuzzy sets and following the above interpretability concept,
this section describes a method to construct a trapezoid fuzzy set-based words’ semantics
structure, which is an isomorphic image of the multi-aspect semantic word domain’s math
structure of a given L-variable semantics.

3.2.1. Constructing the interpretable trapezoid fuzzy set-based semantics of
L-variables’ words

1) A method to construct trapezoid fuzzy set-based words’ semantics

Figure 2. The infinite trapezoids’ bush-graph structure constructed to represent the multi-aspect
semantic word-domain structure SX

en = (XX
en,≤, g) of the attribute X.

Let us consider an L-variable X with its given declared syntactic, qualitative, and quanti-
tative semantics, and, hence, its interval-valued semantically quantifying mapping (I-SQM)
fX
en is known. Theoretically, as previously, we assume that the word-domain of an L-variable
X is infinite and SX

en = (XX
en,≤, g) is its multi-aspect semantic word-domain math structure

represented in the bush-graphic form, BX examined in Sect. 2.3.2. Therefore, for ensuring
the interpretability of the trapezoid fuzzy set-based X’s words semantics, their trapezoids
should be constructed and arranged in the form of bush-graph, similar to BX.

It can be constructed as follows:
- For k = 1, construct the small base of the trapezoid of every word x in XX

en,1 so that

its projection is just the interval-valued fX
en (x) Then, construct the trapezoids with

their constructed small bases so that they form a strong fuzzy partition.

- For k > 1, the construction manner is the same as for k = 1, except that fact that the
word-set of k−specificity, XX

en,k, is added three L-constants, 0 , W , and 1 to technically
make the constructed trapezoids on k-level to form a fuzzy partition.

Demote by T(XX
en) the set of the constructed trapezoid fuzzy set-based semantics of the all

X’s words.

2) An interpretable math structure of the constructed fuzzy set-based semantics of X’s words
On these constructed trapezoids, we define two relations, the order relation, ≤tr, and

the inclusion ⊆tr, corresponding to the semantic order-based relation, ≤, the generality-
specificity relation, g, on XX

en.
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- The order relation on trapezoids: Assume that every trapezoid can be represented by a
triple (a, b, c), where [a, b] is the trapezoid large base and b denoted its small base. Then,
for given any two triples, (a, b, c) and (a′, b ′, c′), we shall write (a, b, c) ≤tr (a′, b ′, c′) ⇔
b ≤ b ′ & (a ≤ a′ OR b ≤ b′).

- The inclusion relation on trapezoids: We shall write (a, b, c) ⊂tr (a′, b ′, c′) ⇔ [a,
c] ⊂ [a′, b′]. The inclusion means that the set of all numeric values compatible with the
L-word, represented by the trapezoid (a, b, c), to some degree different from zero, must also
be compatible with the L-word represented by (a′, b ′, c′).

- The math-structure of the constructed trapezoid fuzzy set-based semantics of the X’s
words is denoted by T(XX

en) = (T(XX
en),≤tr,⊂tr), called the fuzzy multigranularity structure

(the fuzzy MGrstructure). The order relation ≤tr is proved to be reflexive, antisymmetric,
and transitive. Meanwhile, ⊂tr is irreflexive, antisymmetric, and transitive.

Then, we have the following theorem states that T(XX
en) can interpretably represent SX

en.
Its proof can be easily generated from the one in [36] for the finite set XX

en,(k) to the infinite

XX
en.

Theorem 1. The fuzzy MGr-structure T(XX
en) = (T(XX

en),≤tr,⊂tr) is the isomorphic image
of the multi-semantic aspect word-domain structure SX

en = (XX
en,≤, g), i.e., the set T(XX

en)
representing the multi-semantic aspect word-domain structure of the word-domain XX

en is in-
terpretable.

Consequently, the fuzzy MGr-structure T(XX
en) is an isomorphic image of the bush-graph

BX and, hence, it represents SX
en soundly.

3.2.2. The interpretable and scalable trapezoid fuzzy set-based multi-granularity
representation of a declared L-variable LFoC

As previously discussed, in practice, at a present moment of a given application life-
cycle, it is necessary to declare only a finite word-set of a given L-attribute X, XX

en,(k), of
the k−specificity, called the currently declare X’s word-set. Its k−multi-semantic aspect
structure, SX

en,k = (XX
en,k,≤, g), is a substructure of SX

e = (XX
en, ≤, g), represented by the

k−portion BX
κ of the bush-graph BX of SX

en and, hence scalable, because its specificity degree
grows, the manipulation of its words is maintained. Let be given a fuzzy MGr-structure
T(XX

en) representing SX
en, whose trapezoids are just the trape-fuzzy set-based semantics of

the X’s words. The k−portion of T(XX
en) is, then, just the structure T(XX

en,(k)). Since

SX
en,k is a substructure of SX

en and (XX
en) is an isomorphic image of SX

en, it follows that

T(XX
en,(k)) is an isomorphic image of SX

en,k and it is a substructure of T(XX
en). Its shows that

T(XX
en,(k)) is interpretable for representing SX

en,k, the semantic structure of XX
en,k, called the

fuzzy k−MGrstructure.

Moreover, since SX
en,k is a substructure of SX

en, it follows that its isomorphic image,

T(XX
en,(k)), is also a substructure of T(XX

en) and, hence, it is also scalable. Recall that
since the natural language and human domain knowledge, accumulated by domain experts
from their daily activities, are scalable, the scalability of the constructed trape-fuzzy set
substructure is essential for simulating the human capability in accumulating the linguistic
knowledge of a given application dataset.
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4. HEDGE ALGEBRAS’ APPLICATIONS AND THEIR ADVANTAGES

This section justifies that when the inherent semantic L-variables’ word domain structures
of the natural language are mathematically discovered correctly, they offer a reliable formal
basis for developing methods to simulate human experts’ capabilities, based on their natural
language formalism, to solve their daily life problems. Therefore, hopefully, the HA approach
could achieve many specific application results in problem-solving.

4.1. Specific methodological features of HAs’ applications in problem solving

It is well-known that fuzzy sets are computational objects that can well appropriately
represent fuzzy data. Since L-words are fuzzy data, as discussed in Sect. 3, the ability to
computationally handle L-variables’ word semantics requires representing the L-variables’
word-domains semantic structures by their appropriately constructed fuzzy set-based word-
semantics structures. Thus, a natural question arises when L-variables’ word-domains are
axiomatically formalized, which and how are the different features between the fuzzy set-
based methodology and the HA-methodology in problem solving. Therefore, before present-
ing the HA-based methods to solve application problems in some fields, some primary such
specific features are summarized as follows.

1) Dealing with L-variables words in the natural language directly

◦ L-variables’ word-domains containing their semantic math-structures for manipulating
the L-variables’ words: In the HA-approach, to deal with human words of the natural lan-
guage directly means that we have a mathformalism, established in an axiomatic way, to
manipulate the L-variables words properly. The ‘properly’ here means that the axioms used
to establish the math-formalism are simple inherent semantic properties of the L-variables
words discovered from the natural language. Hence, similar to other math theories devel-
oped in an axiomatic manner, the L-variables’ HAs, developed in an axiomatic manner, can
properly model their word domain’s inherent qualitative semantic structures.

◦ Quantifying the L-variables’ word-domains – The numeric words’ semantics or the
interval-valued words’ semantics: Like the fuzzy set framework, fuzzy sets are essential for
dealing with the fuzziness of the L-data and for manipulating the interactions between the
L-data and their numerical semantics. To determine the fuzzy set-based semantic of the
words of a given L-variable, the quantification of its word domain is necessary. It is observed
that, in every human social community, there are genuine relationships between the word
semantics of an L-variable and the numeric values of its numeric universe, U : For every its
word, x, there are U ′s values that are more compatible with x′s semantics than other ones;
there are U ′s values are most compatible with x, and they represent the x′s core semantics
numerically, called the numeric x′s semantics in the case of the HA, and called the interval-
valued x′s semantics, in the case of the EnHA. When a word-domain is modelled by an
HA (or, respective EnHA), its words’ numeric semantics (or the interval-valued semantics)
is used to determine the (singleton) cores (or the interval-cores) of their fuzzy set-based
semantics.

As presented in Sect. 2.2 and 2.3, it is interesting that these fuzzy sets’ cores are de-
termined by the L-variable semantically quantifying mapping (SQM), in the case of the
HA, or by the L-variable interval-valued semantically quantifying mapping (I-SQM), in the
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case of the EnHA. In the HA-approach, note that both SQM and I-SQM are determined in
an axiomatic way and they are entirely determined by providing the L-variables’ fuzziness
parameters’ values. They form a formal basis to ensure the objectiveness of the (infinite)
L-variables’ word-domains quantification when only the L-variables’ fuzziness parameters’
values are carefully determined. It offers an opportunity to produce from the words, the
words’ fuzzy set-based semantics themselves and ensures the objectiveness of the constructed
fuzzy set-based semantics of the L-variables’ words in the above sense.

◦ Declaration of the L-variables’ semantics: Unlike the fuzzy set-based approaches to
problemsolving, the declaration of L-variables’ multi-aspect semantics is necessary and es-
sential for a given application.

The syntactical semantics: The word-domain of an L-variable consists of all its words,
represented in the string form, say x = hn . . .h1c, c ∈ G = {c−, c+}, where the hedges hjs
∈ H, present in the natural language.

◦ For its atomic or primary words: It is necessary to declare its atomic words’ name, say
young and old for the L-variable AGE.

◦ For its linguistic hedges: There are many hedges with different semantic shades; how-
ever, we are interested in those hedges that can generate a semantically, linearly ordered of
word domain structure. Therefore, for determining the syntactical semantics, one may select
some negative hedges in H−, which comprises little (L) and rather (R), and some positive
hedges in H+ which comprise very (V ) and extremely (E).

- The qualitative semantics: As examined in Sect. 2, it is necessary to declare the
semantic order of the atomic words, c− ≤ c+, the sign of the atomic words and the hedges,
and the order of the hedges of the same signs representing their modifying effects, e.g., R ≤ L
and V ≤ E, and the relative signs between all the hedges as given in Tab. 1.

Then, all the L-variable word-domains can be linearly arranged by a developed procedure.

- The quantitative semantics: As presented in Sect. 2 and 3, let be given only a semantic
order-isomorphic mapping, f from the L-variable word-domain into the normalized universe
[0, 1], whose image under f is dense in [0, 1], it does determine all quantitative semantic
aspects of the L-variable words, including their fuzzy set-based semantics. Moreover, it
was shown in that sections that, to define f of an L-variable, it is necessary to determine
its appropriate (|H| + |G|− 2) fuzziness parameter values if an HA is used to model the
word-domain, or (|Hen| + |G|− 2) fuzziness parameter values, if an EnHA is used instead.
Therefore, the parameter number of tuning the L-variables’ quantitative semantics is very
small compared to the total number of the L-variable words.

◦ Ability to develop a procedure to construct the fuzzy set-based words’ semantics from the
declared L-variable word-set : Sect. 3.2.1 proposed such procedure with |Hen| = 3, including
the artificial hedge to generate the words’ semantics cores. A generation to an arbitrary Hen

of larger cardinality is quite straightforward

2) The interpretable and scalable fuzzy set representation of L-variables word-sets and lin-
guistic rule bases of linguistic rule-based systems (LRBSs)

For the fuzzy rule based systems (FRBSs), a drawback is that the L-variables’ words
assigned to their constructed fuzzy sets are only considered as L-labels. Nevertheless, their
advantage is that these constructed fuzzy sets form a computational basis for the proposed
method to realize the interaction between the L-labels with the data in the given dataset
to design FRBSs Therefore, no formal basis was established in the fuzzy set framework to
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relate the L-labels’ semantics and their fuzzy sets constructed by the designer. Thus the
FRBs extracted from the given dataset strongly depend on how the designer constructs
fuzzy sets, while they, as human L-sentences, convey their inherent contents that may be
different from those computed from the dataset and assigned to these dataset L-sentences
by the proposed method.

Thus by Sect. 3, for ensuring the proposed method realizing this interaction with just
the inherent word-semantics soundly, the set of the constructed fuzzy sets associated with
the given words of an L-variable, X, is required to form a math-structure isomorphic onto
the multi-semantic aspect structure of the set of these given X’s words. In other words, the
fuzzy set representations of the given L-variables’ word-sets must be interpretable.

Then, the extracted FRBs, considered L-rule bases (LRBs,) can be considered human
expert knowledge about the given dataset, which usually is scalable. The scalability of the
designed FRBs has not been examined in the fuzzy set framework. The HA-approach offers
a formalized basis to develop a method to genetically design LRBSs, for a given dataset
so that their LRSs are scalable. That is, they can be allowed to grow by permitting their
declared L-variables’ word-sets to grow at the future moment of the dataset life-cycle to
increase their performance recalling that the larger the human-domain experts, the more
exactly the human experts make their decisions.

Therefore, the HA-approach does not restrict the L-variables’ word-sets cardinality to
about 7 ± 2.

3) The computational LRBs’ representations and reasoning methods in the HA-approach

Let be given an LRB, denoted by B in the form of the following form

(rj) X1 = x1j & . . .& Xn = xnj ⇒ X = yj , for j = 1, . . . ,m (1)

When the L-variables’ word-domains are mathematically formalized, two methods can
be applied to represent the given m L-rules computationally.

a) Representing a given LRB by a multi-dimensional numeric surface and approximately rea-
soning method in the fuzzy control : In this case, the words’ numeric semantics are essential.
Then, one can consider every L-rule rj as an L-point in an (n+ 1)-dimensional L-Cartesian
product space, Pn+1. Thus, the LRB given in (1) defines an L-hypersurface in Pn+1, de-
noted by SL

B. For the fuzzy control problems, the L-variables’ word-domains are modelled
by ordinary HAs and their numerical SQMs are applied to transform the L-hypersurface into
the respective numeric one defined in the ordinary (n +1)-dimensional L-Cartesian product,
denoted by SN

B .

One can now apply any method, say an extrapolation-interpolation method, considered
as a reasoning method, to approximately compute the SN

B -value (output) for a given n-
dimensional input vector.

b) Fuzzy representation of a given LRB : In the HA-approach, one must also develop a method
to construct the fuzzy set-based structures to represent the declared L-variables’ word-sets,
but there are two new features in the way to construct them compared to the one applied
in the fuzzy set framework:

- Once all semantic aspects of a given L-variable are declared, a developed procedure with
a few of its fuzziness parameters can automatically construct the fuzzy set-based semantics
of the currently declared k-specificity word set’s words, for any k > 0. It increases the
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ability to ensure the objectiveness of the constructed fuzzy sets in representing their words’
semantics.

- Instead of the words’ fuzzy sets constructed in the fuzzy set framework and arranged to
form a singularity structure, which cannot represent the words’ generality-specificity relation,
in the HA-approach, they are arranged to form a fuzzy multi-granularity structure. In Sect.
3, it is shown that this structure can properly model the multi-semantic aspect L-variable
word-domain structure. Under this condition, the LRBs extracted from the given dataset can
represent their dataset information contents properly in the fuzzy uncertainty environment,
and, hence, it may be useful for human dataset users who are familiar with their linguistic
sentences.

4.2. HA-methodology applied in fuzzy control and the performance of its ap-
plication

The HA-methodology was applied first in the study [15], which proposes an HA-based
method to design an optimized controller to solve an inverted pendulum control problem.
It motivated many studies to develop HA-based controllers for controlling active vibration
control of uncertain structures against earthquake [17, 18, 19, 20, 21, 22, 23], a self-excited
induction generator [24], a grid synchronization [25], and the speed in a Stand-Alone WECS
[26, 27], and in solving control problems in the industry [28, 29, 30]. In the framework of
this section, we summarize only some of these studies

4.2.1. The HA-methodology in fuzzy control and its specific features

This section presents the general control HA-methodology and exposes its primary spe-
cific features different from the general fuzzy control.

1) General fuzzy control methodology in the fuzzy set-framework

The primary methodology idea of fuzzy control is to simulate how human beings solve
their daily problems based on their experiential knowledge. Let us consider a simple fuzzy
control problem with two input variables x and ẋ, and a fuzzy rule base consisting of two
fuzzy rules

(r1) IF x = PSmall and ẋ = NSmall, THEN u = PMedium;

(r2) IF x = Z and ẋ = NBig, THEN u = PSmall.
(2)

◦ Representation of the fuzzy rule base (FRB): Assume that the fuzzy variables x and ẋ
have five L-labels, while the control variable has seven and their fuzzy sets are constructed
by the designer as represented in Fig. 3. The fuzzy rule (r1) given in (2), described by the
triple (PSmall, NSmall, PMedium), is represented by their respective triangular fuzzy sets,
figured by the bolded triangles, while three dashed lines triangles represent the triple (Z,
NBig, PSmall) of (r2) in (2).

◦A reasoning method in the fuzzy set-framework : Usually, in the fuzzy control, the fuzzy
reasoning on such an FRB representation can be roughly described as follows:

Assume that (a1, b1) is an input vector. For the rule (r1) in (2), the input value a1 fires
the triangle ‘PS ’ with a degree smaller than the degree that the input b1 fires the triangle
‘NS ’. Then, the smaller firing degree is used to define the lower part, a trapezoid T1U with
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Figure 3. Computational representation of the rules r1 and r15 of the LRB B given in Tab. 1

continuous blue lines, of the output L-label ‘PM ’ triangle. Similarly, for the rule (r2), the
input vector (a1, b1) determines a trapezoid T2U in this figure.

Thus, the output fuzzy set of the input vector (a1, b1), computed by this fuzzy reasoning
method, is defined by the fuzzy union of the two such obtained trapezoid fuzzy sets, and a
defuzzification method is used to calculate the numeric control action, say by the centroid
method.

We emphasize that, following our knowledge, most fuzzy control-based application studies
found in the literature were applied this fuzzy reasoning method. It justifies the effectiveness
and usefulness of the fuzzy reasoning method. However, in our opinion, it strongly depends
on the designers’ intuition. Moreover, the number of the variables’ L-labels strictly limited,
usually no larger than 7 ± 2.

2) HA-methodology-based reasoning methods

We will see that HA-methodology-based reasoning methods can be established based on
a strict math-formalism. Firstly, note that such methods developed can directly handle L-
words and, therefore, the L-rules in the following linguistic rule base (LRB) are viewed as
human experts’ knowledge pieces

(rj) X1 = x1j & . . . & Xn = xnj ⇒ X = yj , j = 1, . . . ,m. (3)

Since the words xij ∈ Dom(Xi) = XXi

(ki)
and yj ∈ Dom(Y) are elements of the HAs,

AXi ’s and AY , every L-rule defines a point in the n-dimensional L-Cartesian space, Sn =∏
1≤i≤n

XXi

(ki)
. Thus, m L-rules in (3) define m points in Sn, which, in turn, define an

n−dimensional L-surface SL
n in Sn.

As discussed in Sect. 2 and 3, when declaring all the multi-semantic aspects of XI ’s, the
quantifying semantic mappings (SQMs) fXi : XXi

(ki)
→ [0, 1], i = 1, . . . , n and fY : Y Y

(l) →
[0, 1] are defined. These SQMs transform SL

n into the Euclid surface SN
n defined based on

the m points (fXi (x1j), . . . , f
Xi (xnj), f

Y (yj)), j = 1, . . . , m, in [0, 1]n+1. As example,
Fig. 4 represents a surface SN

2 based on nine L-rules, in which s denotes ‘small ’, W denotes
‘medium’, and l denotes ‘large’.

Now, an approximate reasoning method in the HA-approach can be developed applying,
for instance, an interpolation-exploration reasoning method based on the m points obtained
above, for every given numeric input vector, A= (a1, . . . , an) ∈ [0, 1]n. In general, there is a
wide selection of such methods, including linear interpolation-exploration methods, e.g., bi-
linear interpolation-exploration-based methods [17, 18, 19, 20, 23, 24], explicit linear formulas
[21, 22], or non-linear ones whose ideas are described as follows, when A falls in an n-cube,
one can develop methods reasoning based on a weighted sum of the fY -values at the n-cube’s
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Figure 4. Numeric graphical representation of the given LRB based on nine L-points

vertices [25, 27]. Especially, these interpolation-exploration methods can preserve the mono-
tonicity of their LRB. I.e., if the L-surface SL

n is monotonic, then so is its respective numeric
surface SN

n , see [10]. It is an essential feature of the HA-based interpolation-exploration
reasoning method.

4.2.2. HA-methodology’s applicability in fuzzy control

The study [15] to solve an inverted pendulum problem is the first one to show the applica-
bility of HAs in fuzzy control. Then, there are many works applying the HA-methodology to
solve many different problems in this field, such as a swing-up control problem [16], vibration
control problems of high-rise buildings subjected to seismic loads [17, 18, 19, 20, 21, 22, 23],
and fuzzy control problems in the industry [28, 29, 30].

In the framework of this study, we introduce only an HA method to develop, for the first
time in electrical engineering, a HA controller (HAC) to control the self-excited induction
generator (SEIG) generated in the indirect rotor-flux oriented (IRFO) control system.

1) The problem determination

The HAC mentioned above aims to keep the DC voltage constant and equal to the
reference value in the self-excited induction generator system (SEIG). The basic configuration
of the proposed IRFO (indirect rotor-flux-oriented) control system is shown in Fig.5, in which
the components IG is the squirrel-cage induction generator, the IGBT power converter, the
proposed IRFO controller, and the DC link. The main objective of the control is to keep
the DC voltage constant and equal to the reference value regardless of changes in the rotor
speed and load. Such an approach allows a DC load to be connected directly at the excitation
capacitor terminals.

The HAC controller was developed to implement for “Voltage controller.” The steady,
controlled voltage is Udc across load Rdc (Fig 5). The LRB with three L-variables, Le, Lce,
and Lu (the output control signal u) was designed as given in Tab. D1. The Le’ s, Lce’ s,
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Figure 5. Basic configuration of the SEIG vector control system

Figure 6. IRFO controller schematic diagram

and Lu’s semantics were declared as follows:

- The syntactical semantics of all three Le, Lce, and Lu are declared the same as follows:
the atomic words are Small (S) and Big (B), and the set of hedges is H = {L, V };

- Then, the Le’s, Lce’s, and Lu’s qualitative semantics are determined the same: the
signs and the relative signs of the hedges are declared the same as previously (see Tab. 1).

- Their quantitative semantics are declared by specifying their fuzziness parameters’
values given in Tab. 3.

When all L-variables’ semantic aspects are declared as above, their semantically quanti-
fying mappings fLe, fLce, and fLu are defined, and, as presented in Sect. 4.1, they transform
the LRB given in Tab. 2 into 25 points in [0, 1]3, defining a surface in it.

That study applied a bi-linear extrapolation-interpolation method as the approximate
reasoning method, which preserves the monotonicity of the given LRB considered an L-
functions. The simulation model of the proposed control system was built in the MAT-
LAB/Simulink environment. The IRFO control algorithm was also programmed in the
MATLAB/Simulink environment and executed in real-time using the DS1104 R&D Con-
troller Board, manufactured by DSpace, which was integrated within a PC. The three-phase
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power converter was constructed of three dual IGBT modules – type SKM 100GB125DN,
manufactured by Semikron – each used in one of the phases and driven by the hybrid dual
IGBT driver SKHI 22B, also manufactured by Semikron.

2) Simulation and Experimental result analysis

The experimental setup of the considered SEIG control system was built for the experi-
mental validation of the simulation results.

2.a) First case: changes in load resistance

The load resistance was varied in a step manner, as shown in Tab. 4. The following two
cases were considered: fixed rotor speed and variable rotor speed at n = 1200 rpm and the
reference DC voltage u*dc = 300 V.

Table 2. Step changes in load resisitance

t [s] 0-2 2-5 5-8 8-10
Rdc [Ω] 1012 500 220 500

Observe on Fig. 7 (a), found that the response of DC voltage for FLC and HAC is quite
similar and much better than PI. The voltage dips noted for these two controllers are about
twice smaller than the PI, whereas the restoration times are about four times shorter. The
FLC response has an overshoot (green line), but the HAC response has no (red line).

Observe on Fig. 7 (b), at t = 2s, the following peak values of the reference q−axis stator
current were noted: 0.9 A for the PI controller, 0.93 for the HA controller, and 1.01 for the
FL controller. However, although higher than the PI controller, the HA controller’s peak
values are still lower than the FL controller. The response of HAC is much faster compared
to PI controller.

The experimental results, shown in Fig. 8, are equivalent to the simulation results shown
in Fig. 7. Comparing the results presented in these two figures points to a disagreement in
the experimental and simulation steady-state values of the reference q−axis stator current.
Other than that, the experimental results in Fig. 8 are in good agreement with the simulation
results in Fig. 7.

2.b) Second case: changes in DC voltage u*dc

In the second set of simulations, the reference DC voltage was varied in a step manner, as
shown in Tab. 5. Again, the cases with fixed and variable rotor speeds were considered. Fig.
9 shows the actual DC voltage simulation responses and the reference q−axis stator current
to step changes in reference DC voltage. The responses were obtained for fixed values of the
rotor speed and the load resistance.

Table 3. Step changes in reference DC voltage

t [s] 0-2 2-4 4-6

u*dc [V] 250 300 250

In Fig. 9a, the HA controller’s response to step changes about DC voltage can be declared
the most satisfactory in the speed of response and overshoot/undershoot. It is important to
note that the HA controller manages to reconcile two generally conflicting requirements: the
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Figure 7. Simulation responses of the actual DC voltage (a) and reference q-axis stator current (b)
to step changes in load resistance for fixed rotor speed and reference DC voltage: n = 1200 rpm and
u ∗ dc = 300 V.

Figure 8. Experimental responses of the actual DC voltage (a) and reference q-axis stator current
(b) to step changes in load resistance for fixed rotor speed and reference DC voltage: n = 1200 rpm,
u ∗ dc = 300 V.

requirement for fast response on the one hand (i.e., short settling time and rise time) and
the requirement for small overshoot/undershoot another hand. This conflict is more obvious
than in the case of the other two controllers.

Namely, although the FL controller’s response is notably faster than the PI controller
and, in this sense, similar to that of the HA controller, the price is paid in higher over-
shoots/undershoots in the DC voltage compared to both the PI controller and the HA



INFORMATION AND MATHEMATICAL STRUCTURES 263

controller. On the other hand, the PI controller exhibits smaller overshoots/undershoots in
the DC voltage than the FL controller, though still higher than the HA controller, but this
time, the price is paid in notably slower response compared to both the FL controller and
the HA controller. For example, the voltage overshoots obtained at t1/42 s are: 10.5% for
the FL controller, 5% for the PI controller, and 2% for the HA controller; the corresponding
settling times are: 0.10 s for the FL controller, 0.28 s for the PI controller, and 0.09 s for the
HA controller.

Figure 9. Simulation responses of the actual DC voltage (a) and reference q-axis stator current (b)
to step changes in reference DC voltage for fixed rotor speed and load resistance: n = 1200 rpm and
Rdc = 220Ω.

Figure 10. Experimental responses of the actual DC voltage (a) and reference q−axis stator current
(b) to step changes in reference DC voltage for fixed rotor speed and load resistance: n = 1200 rpm
and Rdc = 220Ω.
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In Fig. 9b, all three controllers exhibit similar steady-state performance, whereas the
differences become more obvious during transients. In this case, the peak values of the
reference q−axis stator current obtained for the HA controller and especially for the FL
controller are somewhat higher compared to the PI controller (HA:> +4.5%, FL:> +17.5%).
However, changes in the reference q−axis stator currently obtained for the PI controller at
step times are more abrupt and steep compared to the cases of the other two controllers.
It is a direct consequence of the PI controller’s operating principle – specifically, the P part
of it. Such abrupt changes in the reference q−axis stator current may lead to high stator
phase current derivation values and, consequently, to dangerously high voltages induced in
the stator phase windings.

Fig. 10 shows the results equivalent to those shown in Fig. 9. The highest over-
shoots/undershoots in the actual DC voltage were again obtained for the FL controller,
although the speed of response to some extent compensates them. For instance, the follow-
ing voltage overshoots were obtained at t ≈ 2 s: 24.5% for the FL controller, 10% for the PI
controller, and 7% for the HA controller; the corresponding settling times are: 0.14 s for the
FL controller, 0.35 s for the PI controller, and 0.18 s for the HA controller. Similar values
were obtained at t ≈ 4 s. As for the reference q−axis stator current, the highest peak values
were obtained for the FL controller, whereas those obtained for the HA controller are only
slightly higher than the PI controller.

The results and analysis obtained above, and the results achieved in [15, 16, 17, 18, 19,
20, 21, 22, 23, 25, 26, 27, 28, 29, 30], most published in international journals ISI indexed,
justify the meaning of discovering L-variables’ word domain semantic structures and their
quantification in problem-solving control.

4.3. HA-methodology in solving classification dataset problems

It is well-known that, in simulating the way human beings use their domain L-knowledge
to solve their daily problems, the application of fuzzy rule base systems (FRBSs) to solve
classification problems was intensively investigated, as it can be seen in an overview study,
say [56, 57].

A question emerging is that, with the specific new features of the L-variables word sets
and the fuzzy set-based structures of the HA-approach, as summarized in Sect. 4.1, based on
which the LRBs are extracted from a given dataset by a proposed method, which advantages
and benefits can the LRBSs designed by a method developed in the HA-approach offer?
We show that when the inherent multi-semantic word domain structures are formalized
and represented by their constructed interpretable and scalable fuzzy MGr-structures the
proposed methods developed based on the HA-methodology can genetically design LRBSs
more effective than their fuzzy counterparts, the FRBSs.

Let be given a classification problem P given by a set PCl = {pl = (dl, Cl) : dl ∈ D,
Cl ∈ C, l = 1, ...,NP }, where dl = (dl,1, dl,2, . . . , dl,n) ∈ D is of n dimensions, C = {Cl

: l= 1,. . . ,M } is the set of class names. Assume that, the syntactical semantics of every
L-variable Xj , j = 1, . . . , n, is declared by giving Gj = {c−j , c

+
j }, Cj = {0 j , Wj , 1 j} and

Hen,j = {Lj , hj,, Vj}, where Lj and Vj stand, respectively, for “Little” and “Very”. With
its qualitative semantics determined as presented in Sect. 3, it is associated with k−multi-
semantic aspect structure, SX

en,k = (XX
en,k, ≤, g). The problem is how one can develop a

genetic method, an Evolutionary Multi-objective Optimization (EMO-) method, to design
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an optimized LRBS to solve a classification problem, called a Class-LRBS.
1) Develop an EMO-PSO-HA-method to design optimized Class-LRBSs for a given P

Because, in the HA-approach, determining the L-variables’ multi-semantic aspect is es-
sential, the PSO-based genetic HA method proposed in [32] has two phases. The first one
is to design an optimized semantics of individual Xj ’s and the second one is to design opti-
mized Class-LRBSs, i.e., those whose LRBs are optimized in solving the given classification
problem, based on the already optimized L-variables’ semantics. They have the following
features:
a) Phase I: Designing optimized Xj ’s semantic parameters using a simple classification prob-
lem EMOPSO algorithm. In the HA approach, a distinguishing feature is that the fuzzy
set-based semantics of the Xj ’s words can be algorithmically constructed by a procedure while
preserving their words semantics, when all their semantic aspects, including their fuzziness
parameters’ values and their declared word-set specificity degrees are given. Thus, when the
syntactic semantics of every L-variable Xj is declared and fixed for an application dataset,
only its word set’s semantic parameters, consisting of the Xj ’s fuzziness parameters values
and its word-set k−specificity degree, are necessary to be optimally determined.

Thus, for genetically designing the optimized Xjs’ semantics, study [32] proposed an
EMO-PSO-HA-algorithm utilizing a simple Clas-LRBS denoted by Cl(S0(π, PCl)). It is
called here the Cl(S0(π, PCl))-HA-algorithm, where

- PCl is the given classification dataset, π is an individual consisting of the parameter kj ,
for determining the Xj ’s word-set, X(kj), and the Xj ’s fuzziness parameters, fm(c−j ), fm(c+j ),
µ(Lj), µ(Vj), µ(hj,0), for j = 1, . . . , n;

- S0(π, PCl) is its LRB, consisting of N0 L-rules (N0 is prespecified) selected from the
set of initial L-rules directly generated from the P ′

Cls data with highest values using the
prescreening criterion c.s. Where c is the confidence measure of every initial L-rule, measured
by the degree its P ′

Cls datum fires the initial L-rule, and s is its support measure.
- The algorithm’s optimal problem: Seek for optimized Xjs’ semantics πopt for P: For

a given π, let the Clas-LRBS, Cl(S0(π, PCl)), be determined. Then, πopt can be found by
solving the following optimization problem:

Maximize the performance Perf (Cl(S0(π, PCl)))
Subject to

� Constraints on the fuzziness parameters: 0 < {fm(c−j ), fm(c+j )} ≤ aj , 0 < {µ(Lj),

µ(hj,0), µ(Vj)} ≤ bj , fm(0 ) + fm(c−j ) + fm(W ) + fm(c+j ) + fm(1 ) = 1 and µ(Lj) +
µ(hj,0) + µ(Vj) = 1, j = 1, . . . , n.

� Constraints on the positive integer kj : 0 < kj ≤ κj , where the values of κj ’s are
pre-specified, for j = 1, . . . , n.

b) Phase II: Designing an optimized Class-LRBS with an optimal rule base. By Sect. 3,
from the optimized Xj ’s semantic parameters’ vector, πopt, which Phase I provides, one
can determine, for every Xj the word-set X(kj) and generate the fuzzy kj-MGrstructure

representing the multi-semantic aspect kj-structure, SXj

en,kj
. It provides a sufficient basis

for the desired EMO-PSO-HA-algorithm, denoted by LRB-A, which performs the following
tasks:

◦ Generating an initial L-rule-set S, using the πopt provided, as described above;
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◦ Determining an optimized LRB, KBopt(πopt) to design an optimized Class-LRBS,
Cl(KBopt(πopt)), whose reasoning method is the single-winner rule, with maximized accuracy
(or, performance) of Cl(KBopt(πopt)), denoted by Perf (Cl(KBopt(πopt))), and minimized the
complexity of KBopt(πopt) measured by the total numbers of the conditions appearing in
every its rule and denoted by Comp(KBopt(πopt)).

Thus, the LRB-EMO-algorithm aims to solve the following multi-objective optimization
problem:

Find an optimal solution, Sopt, such that

Maximize Perf (Cl(S)), Minimize Comp(S),

Subject to: S ⊆ S0(πopt, P )

Table 4. Simulation results of the proposed method and the counterpart ones.
#R and #C indicate the number of the rules and the number the conditions of the designed rule bases,
and #R#C represents the average of the FRBs or LRBs complexities. The Diff-columns represent
the difference between the test-phase (Ts) and the training-phase (Tr) accuracy or complexity of
their respective methods. The italic and bold values are aimed to emphasize that these values are
negative.

2. Computer simulation results [32]

For justifying the performance of the proposed LRB-A, it is compared with the per-
formance of three algorithms, denoted by All-Granularities and Product/1-ALL TUN, ex-
amined in [58], and Triangle GSA-based method, examined in [31]. The algorithm name,
‘All-Granularities’ means that all singularities of its 4-level multi-granularity, formed from
the fourteen constructed fuzzy sets, whose levels consists, in turn, of 2, 3, 4, and 5 fuzzy
sets, are used to represent the L-variables’ word-sets. Meanwhile, the name ‘Product/1-ALL
TUN’ means that only one of its singularities is used to represent the L-variables’ word-sets.
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Table 5. Comparison of FLRBCS’s ACCURACY using the Wilcoxon’s signed-ranks test at level α
= 0.05

Comparison (α = 0.05) R+ R− Exact P -
value

Asymp.
P -value

Confidence in-
terval

Exact confi-
dence

LRB-A vs Triangle GSA 128.0 25.0 0.012864 0.013278 [0.19 , 1.615] 0.95524

LRB-A vs All Granularities 148.0 5.0 1.5258E-4 0.000654 [1.495 , 5.135] 0.95524

LRB-A vs Product/1-ALL
TUN

143.0 10.0 6.562E-4 0.00142 [0.865 , 3.615] 0.95524

Table 6. Comparison of fuzzy rule base COMPLEXITY using the Wilcoxon’s signed-ranks test at
level α = 0.05

Comparison (α = 0.05) R+ R− Exact P -
value

Asymp.
P -value

Confid. interval Exact
confid.

LRB-A vs Triangle GSA 136.0 17.0 0.003158 0.004507 [-41.48905, -5.06995] 0.95524

LRB-A vs All Granularities 107.0 46.0 0.15938 0.142245 [-65.925, 8.29] 0.95524

LRB-A vs Product/1-ALL
TUN

145.0 8.0 3.814E-4 0.00109 [-56.0751, -10.83605] 0.95524

Seventeen classification datasets, examined in [31], taken from , are also considered in
this simulation study.

For running the proposed LRB-A the semantics constraints and the running EMO-PSO-
algorithm’s parameters are specified as follows:

◦ For running its Phase I:

- The semantics constraints: 0.00001 ≤ fm(0 ), fm(1 ) ≤ 0.01, 0.2 ≤ fm(c–) ≤ 0.6, 0.0001
≤ fm(W ) ≤ 0.2, 0.2 ≤ µ(L) ≤ 0.6, 0.0001 ≤ µ(h) ≤ 0.5 and 1 ≤ kj ≤ 3.

- The running PSO-parameters: inertia coefficient = 0.4, self-cognitive factor = 2.0,
social cognitive factor = 2.0, population size = 600, and generation number = 250.

◦ For running its Phase II:

The running RBO-parameters: inertia coefficient = 0.4, self-cognitive factor = 1.0, social
cognitive factor = 1.0, the population size = 600, and the generation number = 1000 (for
some simple datasets we use population size = 300, and generation number = 500).

The simulation results of all four genetic algorithms are represented in Tab. 6 with 17
datasets under consideration. It is sufficient to perform the statistical comparison study
using Wilcoxon’s test, whose results are represented in Tables 7 and 8.

As all p-values are smaller than α, Wilcoxon’s signed-ranks test at level α = 0.05 for com-
paring LRBs/FRBs performance given in Tab. 7 shows that the Clas-LBCSs, designed by the
LRB-A, statistically outperform the ones designed by the counterpart methods. Moreover,
by the Wilcoxon’s signed-ranks test at level α = 0.05 for comparing LRB/FRB complexity
given in Tab. 4,3, it follows, in general, that the complexities of the LRBs designed by the
LRB-A cannot be higher than those designed by the three counterpart algorithms. Since
the richer the LRBs/FRBs, the more exact the designed Clas-LRBSs/FRBSs make their
decisions, we can eliminate the complexity of the LRBs, designed by the LRB-A, to be the
factor to make the proposed LRB-A outperform its counterparts.

It shows the HA-methodology’s performance and advantages.

http://sci2s.ugr.es/keel/category.php?cat=clas
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4.4. HA-methodology in linguistic data summarization

The linguistic data summarization aims to extract, from a given dataset D the so-called
linguistic summaries (LSs) of the following form, called classic prototypes:

(i) “Q ys are/have As”; and (ii) “Q Bqys are/have As” (4)

In (4), Q is an L-quantifier like ‘most ’, ‘all most ’, ‘few ’, ‘little’; ‘y’ denotes a real-world
object represented by a record in a given dataset D ; Bq, called its qualifier, is a linguistic
logical conditional expression that y is required to satisfy. E.g., AGE of y is ‘rather young ’;
As, called a summarizer, is a linguistic logical condition that y must satisfy, e.g., y′s salary
is ‘high’.

For example, the simple LSs are as follows:

“Very little workers have a high salary”

or “Very, very, very little workers who are young, have high salary”

4.4.1. The linguistic summaries’ dataset content problem and Tarski et al.’s
interpretability concept

This section shows that the HA method has a major advantage over the other fuzzy
methods to solve the so-called LSs’ dataset content problem because the latter have no
formalized formalism to deal with L-words in the natural language directly.

1) The LS’ dataset content problem

For ensuring the X’s words interacting with the X’s numeric universe values, similar to
the L-labels in the fuzzy set framework, words must be represented by fuzzy sets defined
on the X’s numeric universe. Recall that every LS SL, extracted from D , as an ordinary
sentence in the natural language, conveys its inherent semantics describing an information
content about D , denoted by ContD(SL). Thus, it is objective because every dataset user
understands the same when he reads SL. Then, a problem emerges: whether the information
content conveyed by an LS, SL, extracted from the dataset D , based on its fuzzy set-based
representation, Rfuz(SL), and the information content of D , computed by a human-made
L-summarization method, M, and denoted by ContD,M(SL), are ‘identical ’ in the uncertain
environment? They are different because ContD,M(SL) depends on Rfuz(SL) constructed
by a human expert based on his intuition, i.e., subjective. Thus, under which condition we
have the following ‘uncertain’ equality (≈), called the LS-content problem:

ContD,M(RC(SL)) ≈ ContD(SL) (5)

Thus, (5) is called the LS-content uncertain equality in this study. It depends on several
factors such as how one can represent words by fuzzy sets, as discussed in Sect. 2 and 3,
which operations on the constructed fuzzy set-based words’ semantics can be used to model
the linguistic logical connectives in the natural language, AND, OR, NEGATION, and IF-
THEN. One can adopt to interpret AND and OR as the respective operations MIN and
MAX on the fuzzy sets, but it is not easy to define operations on the fuzzy sets to model
the NEGATION and IF-THEN behavior because they may relate to the close-/open-world
assumption. Therefore, it may also be a hard and complex problem.

Thus, the question is under which condition the ‘uncertain’ equality in (5) is valid?
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2) The condition to ensure the LS-content uncertain equality validity and Tarski et al.’s
interpretability concept

Restrict to the classic prototypes, in which occur only the connectives AND and OR,
the study [36] proposed, for the first time, a methodology for developing LS-algorithm to
extract LSs from a given dataset D satisfying LS-content problem, based on the formalized
formalism established in Sect. 2 and 3. Based on this formalism, the developed LS algo-
rithm can manipulate relationships between the words’ semantics of an L-variable and its
numeric universe values utilizing the interpretable fuzzy k−MGr-structures representing the
L-variables k−specificity word-domain multi-semantic aspect structures

One can imagine that the way a developed LS algorithm extracts its LSs fromD is similar
to how human dataset experts accumulate their knowledge pieces of the LS’s form from D
using their ‘natural language-based formalism’ when its cardinality is small. Thus, when D
is a very large dataset, one may consider the developed LS-algorithm as a tool to solve the
human experts’ D-L-data summarization problem, denoted by PLs based on the fuzzy set-
based formalism established in Sect.3. Instead of solving PLs in the human experts’ natural
language-based formalism, one has to solve the respective problem PLs,Fs, translated from
P , in the established fuzzy set-based formalism. Because these two formalisms are entirely
different, a question now emerging is under which condition the uncertain equality is valid?

Tarski et al.’s interpretability concept in the framework of math-logics [56] states roughly
that a theory S is said to be interpretable in another theory T if:

(i) S can be transformed into T ;

(ii) Every statement τS of S can be proved in S if and only if τT in T , translated from
τS , is proved in T . Mathematically, S should be isomorphically embedded in T .

Thus, instead of solving a problem P of S, one can solve it in T by translating P of S
into a problem P ′ in T , only when S is isomorphic into T .

Therefore, as mentioned above, instead of solving PLs in the human experts’ natural
language-based formalism, one can transform PLs into a problem PLs,Fs and solve it in a fuzzy
set-based formalism developed based on the constructed fuzzy k−MGr-structures, when and
only when they are isomorphic images of their respective L-variables’ word-sets k−multi-
semantic aspect structures, SX

en,k = (XX
en,k, ≤, g). I.e., when the L-variables’ structures,

SX
en,k’s are interpretable in their constructed fuzzy k−MGr-structures. In other words, these

constructed fuzzy k−MGr-structures are interpretable, see Sect. 3.2. Thus, Sect. 2 and 3
offer a fuzzy set-based formalism to solve the LS-content problem formulated above.

Since the LS algorithm proposed in [36] is developed based on the above formalism, its
LSs extracted from a given dataset satisfy the LS-content uncertain equality (5).

4.4.2. The proposed LS algorithm’s ability and its advantages and benefits

Since, restricted to the logical schema of the LS-algorithm, denoted by LS-A, proposed
for the first time in [36] is, in general, similar to those examined in the fuzzy sets’ framework,
to reduce the presentation space, it is not necessary to recall all here. Thus, only its primary
specific features are emphasized as follows:

a. The words appearing in prototypes (4) are not L-labels as in the fuzzy set framework,
but the L-variables’ words in the natural language, whose semantic structures are
modelled by their EnHAs, as discussed in Sect. 2. However, in application problem
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solving, the only restricted L-variables’ word-sets of finite cardinalities and their multi-
semantic aspects must be declared for human users’ use at the current application
life cycle moment. Thus, in the HA approach the application L-variables’ all aspect
semantics declaration is essential.

b. The constructed fuzzy set-based semantics of each L-variable words forms an in-
terpretable trapezoid fuzzy k−MGr-structure, which is generated from its current
k−multi-semantic aspect word set’s structures, SX

en,k. Moreover, it must be scalable
when k (or its k−word set’s size) grows.

c. By the interpretability of the currently declare L-variables word-sets the LSs mined by
the LS-A satisfy the LS-content uncertain equality, one can consider them as forming a
current dataset users’ knowledge about the given dataset D . Notice that the ordinary
experts’ domain knowledge in practice is scalable and, hence, it usually grows in time.
Study [36] justified that the proposed LS-A can also simulate how human experts
can accumulate their new domain knowledge pieces in their current life cycle while
maintaining their existing knowledge.

With these specific features, we show that it can extract many useful dataset contents
from a given dataset in terms of the LSs satisfying the LS-content uncertain equality.

1) Dataset and its L-variables syntax and semantics

To reach the section’s purpose, we apply the LS-A to the Bank Marketing dataset, de-
noted by DBM , taken from the UCI dataset repository at ; the data are direct marketing
campaign data based on phone calls of a Portuguese banking institution. The dataset con-
sists of 41,188 records and 21 attributes. Each record is a set of individual personal client
information, such as age, job, marital, education, housing, loan. For illustration, in this
study, it is restricted to consider only the attributes AGE, JOB, CCI (Consumer Confidence
Index – monthly indicator), and Y (indicating an answer to the following question: has the
client subscribed to a term deposit?) More details can be found in [36].

Let us consider only simple LSs’ prototypes dealing with the attributes AGE, JOB, CCI,
and Y.

a) The scalar domains of these attributes are as follows:

◦ Dom(AGE) = [17, 98] in years;

◦ Dom(JOB) = {admin., blue-collar, entrepreneur, housemaid, management, retired,
self-employed, services, student, technician, unemployed, unknown};

◦ Dom(CCI) = [-50.8, -26.9];

◦ Dom(Y) = {yes, no}.
b) Determining the L-variables’ syntactic, qualitative and quantitative semantics

In this experimental study, the fuzziness parameters’ values of each L-variables is specified
as follows:

◦ For the attribute AGE : Its the independent fuzziness parameters values consists of:

(i) The fuzziness measure of the atomic words and constants: fm(0 ) = 0.037; fm(y) =
0.259; fm(middle) = 0.062, fm(o) = 0.346, hence, fm(1 ) = 0.296.

(ii) The fuzziness measure of hedges: µ(L) = 0.4, µ(V ) = 0.35, and µ(h) = 0.25.

◦ For the attribute CCI : In a similarly way of the case of the attribute AGE, one can
also determine the values of the fuzziness measures of the words of its 1-specificity word-set,

https://archive.ics.uci.edu/ml/datasets/ bank+marketing
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FCCI,1 = {0 , l, middle, h, 1}, where l denotes “low,” and h denotes ‘high’ of CCI. And, its
fuzziness parameters values are given as follows:

fm(0 ) = 0.05; fm(l) = 0.4; fm(medium) = 0.1, fm(h) = 0.4; and, hence, fm(1 ) = 0.05;

The hedges’ fuzziness parameters’ values are the same as for AGE, µ(L) = 0.4, µ(V ) =
0.35, and µ(h0) = 0.25.

◦ For the quantifier variable Q: Similarly, we assume that

For F1 = {0 , f , haft, m, 1}, where f denotes “few,” and m denotes ‘many ’ of Q, fm(0 )
= 0.02; fm(l) = 0.43; fm(haft) = 0.1, fm(h) = 0.43; and, hence, fm(1 ) = 0.02;

The fuzziness parameters’ values of the hedge of Q are: µ(L) = 0.5, µ(V ) = 0.3, and
µ(h0) = 0.2.

2) Algorithmically generating the trapezoid-fuzzy k-MGr-structures representing their L-variables’
k-multi-semantic aspect structures

As presented in Sect. 3.2.1, when all L-variables semantic aspects are determined, by
the procedure proposed in [36], their trapezoid-fuzzy k−MGr-structures representing their L-
variables’ k−multi-semantic aspect structures, in the form given in Fig. 2, are algorithmically
generated. This feature is crucial for developing a scalable LS-A, i.e., it can extract the
new LSs from the given dataset, containing higher specificity words, when some of the
current L-variables’ word-sets are required to grow. Meanwhile, the already extracted LSs
are maintained (even though they may not appear in the output list by certain criteria under
consideration, sometimes).

Thus, the proposed scalable LS-A can handle the growth of some existing L-variables’
word-sets to extract additional LSs from the given dataset similar to human domain experts
accumulating additional consistent knowledge pieces in their daily activities.

4.4.3. Experimental study results

To justify the proposed scalable LS-algorithm, LS-A, we exhibit some of the simulation
study results in this point [36].

Let us consider LSs of the prototypes given in (4), whose qualifier is (o(JOB) = ‘j’) AND
(o(AGE) = x), and whose summarizer is ((o(CCI) = y) AND (o(Y) = {yes, no})), where j ∈
Dom(JOB) and the word y ∈ Dom(AGE). Its qualifier defined a fuzzy client-group, whose
job is ‘j’ and age is ‘x’; its summariser describes the client-group behavior by answering ‘yes’
or ‘no’ when CCI = y.

Considering the L-attributes AGE and CCI as usual variables, this experiment can show
that the proposed LS-A can discover L-distributions of a fuzzy client-group to another
DBM−attribute word, say CCI. They represent the dependents of the fuzzy client-groups,
defined by the AGE-words, on the CCI-words. For example, these L-distributions extracted
by LS-A from the Bank Marketing dataset are represented by Tab. 9 to 12, in which the
index numbers of the L-quantifier words indicate their position in the linear chain of the
Q-word-set of 4-specificity, i.e., its maximal words’ lengths are 4.

These tables provide much useful linguistic information for DBM−users. Indeed,

- Since DBM under consideration is a large dataset, it can be viewed as a data cloud, from
which it is not easy to draw useful L-information for dataset users. However, each table can
represent a 2-dimensional L-distribution, whose values are L-quantifiers. Its L-quantifiers
variation describes the clients’ behavior with different ages to the variation of the CCI’s
L-values. E.g., since the darker the color, the larger the L-quantifies of the clients whose
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Table 9. The distribution of the L-fuzzy client group defined by “(JOB IS ‘SERVICE’) AND (AGE IS
‘u’)” to CCI-L-VALUES with Y = ‘Y ES’ (FQ,3-words: 00 ≤ V V f2 ≤ V f4 ≤ LV f6 ≤ few8 ≤ LLf10 ≤
Lf12 ≤ V Lf14 ≤ half16 ≤ V Lm18 ≤ Lm20 ≤ LLm22 ≤ m24 ≤ LVm26 ≤ V m28 ≤ V V m30 ≤ 132)
(in the context of 33 L-quantifiers)

Table 10. The distribution of the L-fuzzy client group defined by “(JOB IS ‘SERVICE’) AND (AGE IS
‘u’)” to CCI-L-VALUES with Y = ‘NO’ (FQ,3-words: 00 ≤ V V f2 ≤ V f4 ≤ LV f6 ≤ few8 ≤ LLf10 ≤
Lf12 ≤ V Lf14 ≤ half16 ≤ V Lm18 ≤ Lm20 ≤ LLm22 ≤ m24 ≤ LVm26 ≤ V m28 ≤ V V m30 ≤ 132)
(in the context of 33 L-quantifiers)

Table 11. The distribution of the L-fuzzy client group defined by “(JOB IS ‘STUDENT’) AND (AGE IS
‘u’)” to CCI-L-VALUES with Y = ‘NO’ (FQ,3-words: 00 ≤ V V f2 ≤ V f4 ≤ LV f6 ≤ few8 ≤ LLf10 ≤
Lf12 ≤ V Lf14 ≤ half16 ≤ V Lm18 ≤ Lm20 ≤ LLm22 ≤ m24 ≤ LVm26 ≤ V m28 ≤ V V m30 ≤ 132)
(in the context of 33 L-quantifiers)

answer is ‘NO,’ the behavior of the clients’ group ‘STUDENT”, represented by Tab. 10, is
notably different from the one of the clients’ group ‘SERVICE”, represented by Tab. 11.

- The rows of every table represent the L-distributions of a fuzzy linguistic age clients’
group to CCI’s linguistic values. They can be considered non-linear L-regression functions,
drawn from the given data cloud DBM , which may provide DBM−users valuable information
in L-words. Each of them represents a fuzzy L-age client groups’ behavior when the linguistic
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Table 12. The distribution of the L-fuzzy client group defined by “(JOB IS ‘STUDENT’) AND (AGE
IS ‘u’)” to CCI-L-VALUES with Y = ‘NO’ (FQ,4-words: 00 ≤ V V V f1 ≤ V V f2 ≤ LV V f3 ≤ V f4 ≤
LLV f5 ≤ LV f6 ≤ V LV f7 ≤ few8 ≤ V LLf9 ≤ LLf10 ≤ LLLf11 ≤ Lf12 ≤ LV Lf13 ≤ V Lf14 ≤
V V Lf15 ≤ half16 ≤ V V Lm17 ≤ V Lm18 ≤ LV Lm19 ≤ Lm20 ≤ LLLm21 ≤ LLm22 ≤ V LLm23 ≤
m24 ≤ V LVm25 ≤ LVm26 ≤ LLVm27 ≤ V m28 ≤ LV Vm29 ≤ V V m30 ≤ V V V m31 ≤ 132)

CCI-values increase. Moreover, when transforming their word-values to numeric, quantita-
tive values, we obtain piecewise-linear regression functions also very useful for DBM−users’
decision-making activities.

- It can be observed that the 2-dimensional L-regression functions represented in Tab.’s 9 -
11 above vary roughly and, hence, not much information can be drawn from them. A specific,
very useful feature of the proposed LS-A is its scalability, i.e., it can handle the growth of
the currently declared L-variables’ word-sets to refine them. Therefore, the proposed LS-A
can improve, for example, the L-regression functions presented in Tab. 11 by allowing the
current L-variable Q’s 3-specificity word-set FQ,3 to grow to the 4-specificity word-set, FQ,4,
in Tab. 12. They provide useful information when paying attention to the Q-words with
red.

Note that the proposed LS-A maintains their respective words in Tab. 11. However,
they are replaced by their respective higher specific Q-words in Tab.’s 12, which provide
more information. Considering the LSs in each table extracted by the proposed LS-A from
the banking dataset, DBK , as DBKknowledge, we can conclude that the proposed LS-A can
simulate how human experts accumulate the domain knowledge pieces in their daily lives
activities.

5. CONCLUSIONS AND SOME DISCUSSIONS

The natural language has been formed and developed in parallel with the struggles for
human society’s existence and development. It plays an essential human beings’ tool for
communicating between communities’ people, interacting with reality, accumulating their
knowledge, and making decisions. As a result, the natural language has become the human
tool for representing and conveying necessary information in daily human activities. Thus,
based on the essential structure and information relation standpoint, there must be many
distinct structures in the natural language, the logical structure in the natural language, for
instance. However, until 1990 and 1992, the L-variables’ word-domain semantic structures
were discovered and mathematically modeled by the so-called hedge algebras. Recall that
there are still many people who doubt that there are mathematical structures in the natural
language. This fact emphasizes the essential role of the structure and information relation-
ships more strongly, which Prof Phan Dinh Dieu usually mentioned in his talks in the 70s
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and 80s - decades.

In order to justify this essential relationship again, the survey describes how one can
discover and mathematically formalize the potentially infinite L-variables’ word domains in
an axiomatic manner. Since the L-variables’ word semantics is a complex concept, it should
emphasize that the axiomatic manner is ideal for revealing the L-variables’ word domain
semantic structures soundly.

The survey presented necessary facts to establish an HA formalism with its essential
specific features that make the HA formalisms, established to develop HA methods for
problem-solving, entirely different from the respective formalisms established in the fuzzy set
framework. It shows that to handle L-words directly, following Tarski et al.”s interpretability
concept in the math-logic field, the L-variables’ word domains, with no numerically compu-
tational features, must be mathematically formalized and represented by their interpretable
and scalable fuzzy set structures.

With the above novel features, the survey introduced also selected research results apply-
ing HA-formalism to develop some methods to solve application problems in fuzzy control,
classification, and, in particular, in linguistic data summarization to show the performance
and advantages of the HA formalism. A distinguished application result is solving the prob-
lem of extracting linguistic knowledge from a given large dataset is an important and mean-
ingful problem. A question arising from this problem is that the dataset contents represented
by human L-sentences (LS) are objective because when they read them, the human experts
capture the same meaning. While the fuzzy sets used to represent the dataset’s L-variables’
words depend on how they are constructed, it usually depends on the designers’ intuition
and, hence, it is subjective. Thus, the content extracted from a given dataset D by a human-
made extracting method, M, and assigned to the LS Ls, denoted by ContM,D(Ls), and the
dataset content represented by Ls, denoted by Cont(Ls), when it is considered a linguistic
sentence, are different in general. The question is that when they are approximately equal,
in the uncertainty environment, called the LS-content problem in this survey.

Following our knowledge, it could not be solved in the fuzzy set framework by Tarski
et al.”s interpretability concept, which requires at least that the L-variables’ word domains
must be mathematically formalized. Study [36] proved that it could be solved in the HA
approach. Only this achieved result is sufficient to show the performance and the method-
ological advantage of the HA approach.
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