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Abstract. Changes in surface water might result in natural disasters such as floods, water shortages,

landslides, waterborne diseases, which lead to loss of lives. Timely extracting for surface water and

predicting its movement is essential for planning activities and decision-making processes. Most

existing works on extracting water surface using satellite images focus on static spectral images and

ignore the temporal evolution of data in streams, leading to less accuracy and lack of prediction

power. Although some works realize that modeling temporal information of satellite signals could

boost the forecasting capability on environmental changes, most of them only focus on prediction

tasks independently and separately from the extraction task. In this paper, we propose WECP—a

unified framework for Water Extraction and Change Prediction—which is built on top of a data

stream of satellite images. The framework locates the water surface and predicts its changes over

time simultaneously. We evaluate WECP using real datasets from different regions, and the results

show that our framework is robust in extracting and capturing spatio-temporal changes in the water

surface.

Keywords. Deep learning; Satellite imagery mining; Spatio-temporal change prediction; Water

surface extraction.

1. INTRODUCTION

Environmental changes and their impacts attract much research in multidisciplinary ar-
eas [25, 34]. Water is one of the essential natural resources for social evolution, agricultural
production, and human life. Water surface changes are the primary factor for environmental
changes, and they result in natural disasters such as floods, water shortages, landslides, wa-
terborne diseases, which lead to loss of human lives [2]. These disasters from the dynamic of
water are so severe that authorities had to release regulation for water monitoring frequency
as the European Union’s Water Framework Directive [19]. Besides the immediate damage,
water changes could also cause long-term consequences [30] such as local and global weather
impacts, land user/cover (LULC) changes, and coastline changes. Timeliness in monitoring
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and alerting on the dynamics of surface water is, therefore, an essential and sustainable
solution for policy makers [10] to mitigate the unexpected and unrecoverable damages.

Despite the significant task, monitoring surface water using traditional ground survey
techniques is notoriously hard, time-consuming, and even infeasible for large regions such
as countries or continents. This is due to the extremely large region of water bodies, the
complexity of the coastal line, and the fast-moving of water in floods and storms.

Modern remote sensing technologies enable water monitoring at a global scale using
satellite images. Common approaches are to use spectral indices from satellite images to
extract water body such as Normalized Difference Water Index (NDWI) [9,24,42]. However,
such methods require intensive expert knowledge and the optimal threshold needs to re-define
whenever we shift between different regions. Contemporary deep learning techniques allow
the perfect generalisation in extracting water surface crossing multiple regions [21,40], they
ignore the temporal evolution of data in streams. This leads to less accuracy and lack of the
ability of some predictive tasks for water change prediction. Some works realize that surface
water change data has seasonal characteristics [41]. Although leveraging such temporal
information of satellite signals into the works could boost the performance and even enable
the prediction power about the future environmental changes, most of them only focus on
prediction task independently and separately from the water extraction task [33].

This study aims to propose a framework to tackle the water extraction and change pre-
diction simultaneously. The system not only accurately locates the water surface using
satellite image (Figure 1a), but also can answer such a question: With the current situa-
tion, how long will the water surface reach the critical level? (Figure 1b). The answer to
such a question shall provide useful information for the decision-making process; however,

(a) Water extraction (b) Change prediction

Figure 1: Motivation example

unifying such two different tasks into a
framework poses some challenges. First,
deep learning building blocks are designed
for specific tasks [11]: Convolutional Neu-
ral Network (CNN) is designed to capture
spatial information in common images, Re-
current Neural Network (RNN) is designed
for extracting hidden temporal information.
Combining such different tasks into an end-
to-end trainable model that learns a univer-
sal representation for water extraction and change prediction is a non-trivial task. Second,
satellite image often features low spatial resolution, which suffers many adversarial situations
such as ice, cloud, solar distribution [13]. Finally, universal features for water extraction may
differ from various locations and regions around the world.

To overcome these challenges, we propose a unified framework for Water Extraction
and Change Prediction (WECP) in an end-to-end manner. These two tasks are coupled
together and mutually enhanced by the same learning process. The universal representation
is shared between the two tasks helps to save computational cost when training them sepa-
rately. Our method is orthogonal to domain-specific approaches employing spectral indices
as universal features are extracted directly from input data without any hand-engineering
or feature selection. We use Landsat 8 because it is the state-of-the-art satellite system in
image capturing [28] and could provide a high standard of resolution. We summarise the
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contributions of our work as follows.

� The unified problem: Section 3.1 formulates the unified problem for water surface
extraction and change prediction.

� Data streaming and processing pipeline: Section 3.2 presents a pipeline to incrementally
gather data from satellite image sources, clean adversarial conditions and normalize to
keep invariant features from different regions around the world.

� The WECP Framework: Section 4 establishes a multi-task learning algorithm to opti-
mize the water surface extraction and change prediction in the same process.

The remaining sections of the paper include: Section 2 discusses related work. Section 5
reports the empirical evaluations with real-world datasets, before Section 6 summarises the
paper.

2. RELATED WORK

This section briefly presents the related work to the topic of water monitoring using
satellite images.

Water indexing approaches. While the problem of water surface monitoring using satellite
images has received considerable attention in recent years, much interest is placed on spec-
tral thresholding methods [14, 15, 43]—or, in other words, on the so-called “water indices”,
as McFeeters [24] calls it. For example, McFeeters et al. first suggested the Normalized
Difference Water Index (NDWI) [24], which used band 2 and band 4 of Landsat image to
delineate the water surface. Nevertheless, Xu et al. figured out that NDWI did not efficiently
discriminate the built-up surfaces from water surfaces. The authors then devised another
index—Modified Normalized Difference Water Index (MNDWI) [42]—which replaced band 4
of NDWI with band 5 of Landsat images and yielded better performance. An ensemble of dif-
ferent methods was also proposed to improve water surface extraction performance [9,17,36];
however, the water distinguishing power of these methods varies with different regions and
locations.

Despite existing water extraction approaches in the literature, it is hard to choose one of
them for environmental change monitoring on a global scale as they are facing the accuracy
and generalisation problems. To be more specific, they heavily rely on domain experts for
hand-crafting features and defining the optimal threshold. Environmental monitoring such
as water change detection and prediction is less likely to be reliable when such insufficient
efficiency methods are employed as a pre-processing step [8, 16].

Machine learning approaches. In order to enhance the performance of water surface
extraction, many machine learning approaches have been proposed. A knowledge-based
approach [18] leverages both spatial and spectral information to classify the water surface.
A support vector machine (SVM) [48] is adopted to derive coastline from sensing images.
A clustering technique [44] is applied for extracting spatial information of water body from
complex environments. While maintaining satisfactorily high accuracy, these methods still
require analysing the spectral bands and selecting the suitable features, thus leading to a
low level of automation.

Deep learning, the latest generation of AI technologies, has demonstrated superior per-
formance on various image mining tasks ranging from object detection, image classification
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to segmentation [11]. With the advance of remote sensing technology, many studies have
been applied to satellite images to extract useful information (e.g., water surface, land use)
at a global scale. Lü et al. introduced a design based on the deep belief network (DBN)
model [32] to classify satellite images. Chen et al. proposed a model based on stacked au-
toencoder (SAE) to classify hyperspectral data [7]. A convolutional neural network model
(CNN) [45] was devised to extract useful spatial features from Landsat imagery hierarchically,
and logistic regression is used as a final layer to classify water and non-water surface.

Most deep learning solutions exploit spatial information, which neglects temporal in-
formation. Some works realize that surface water change data has seasonal characteris-
tics [26, 41] and utilising such temporal information of satellite signals into the model could
boost the performance and even enable the prediction power about the future environmental
changes. However, these studies focus on the prediction task independently and separately
from the water extraction task [33]. A recent work aggregates both temporal and spa-
tial information into a machine learning model [29]; however, they address the problem of
paddy mapping, and it is orthogonal with our work in this study. Advancing beyond the
state-of-the-art, we devise the unified framework to address the water extraction and change
prediction task at the same time in an end-to-end process. These two tasks are coupled
together and mutually enhanced by the same learning process. The characteristics of our
method in comparison with existing techniques are revealed in Table 1.

Table 1: Comparison between water monitoring methods

Method Automation Level Water Extraction Change Prediction

WECP automatic ✓ ✓

Spectral [35] automatic ✓ ✗

w-CNN [45] automatic ✓ ✗

w-SVM [1] hand-crafted ✓ ✗

Threshold [9] hand-crafted ✓ ✗

3. MODEL AND APPROACH

This section briefly reviews some backgrounds on water surface monitoring and then re-
veals our model together with the problem statement. Finally, we demonstrate our approach
for addressing the formulated problem.

3.1. Model

Given a streaming of satellite images I = {I(1), ..., I(t), ..., I(T )}, where T is the number
of timestamps. Each image has the size of S = S1 × S2. More precisely, each image is

represented as I(t) = {i(t)1 , ..., i
(t)
S1
, ..., i

(t)
S }, where i

(t)
i is a C-dimensional vector. In this

study, C is set to the number of spectral bands of Landsat images [22] (i.e. C = 11). Let

L = {L(1), ..., L(t), ..., L(T )} is the label set for I. Each L(t) = {l(t)1 , ..., l
(t)
S1
, ..., l

(t)
S } where

l
(t)
i = {1, 0} to indicate the water surface (1) or non-water surface (0), respectively.

Before revealing the problem addressed in this study, we define the two subroutine tasks
as follows.
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Task 1 (Water extraction). Given a stream of satellite images I, the task of water surface
extraction is to find a mapping function fe to map from I to its label set L. The task is
formulated as

L = fe(I), (1)

where fe : R
S×C×T → R

N×T×2.

In this task 1, we need to define a classification model for fe and learn an optimal model in
such a way that we maximise the performance of the model—the more accurately extracted
pixels, the more reliable.

Task 2 (Change prediction). Given a stream of satellite images I, its label L to the current
timestamp, and a number of timestamps in the future τ to predict, the task of water change
prediction is to find a mapping function fp to map from I to its predictive label set Lτ . The
task is defined as

Lτ = fp(I,L), (2)

where fp : R
S×C×T → R

N×τ×2.

Similar to Task 1, Task 2 requires to define a predictive model for fp and an aggregation
function, and thus we can maximise the predictive performance. We formalise the problem
tackled in this paper as follow.

Problem statement. Given a stream of satellite images I and a number of timestamps in
the future τ , the problem of unifying water surface monitoring is to find the optimal solution
for both water extraction and change prediction tasks, while requiring only one-pass through
the dataset.

3.2. Approach

We propose a framework for unifying water surface monitoring consisted of two stages
as in Figure 2.

Figure 2: Water surface monitoring approach

The first stage is Streaming and Processing Pipeline. This stage helps to load all satellite
images within a pre-defined region of interest. The loaded data are further cleaned and cor-
rected according to the requirements about geometric, topographic, radiometric consistency.
The second stage is the Water Extract and Change Prediction (WECP), where the processed
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data is fed into to produce the extraction and prediction output. Finally, whole data in-
cludes images from satellite and extracted and predicted result is combined and visualized
in a professional and user-friendly web application, thereby completion of an autonomous
and intelligent Water Surface Monitoring. To achieve these goals, the following components
require to be realised.

Streaming and Processing Pipeline. Unlike traditional satellite streaming and processing
approaches, where all images are acquired in advance before the processing occurs, we develop
a stream-based processing pipeline to facilitate real-time monitoring. The processing steps
are performed on segments that are assembled in the stream. The processing pipeline consists
of three-level. In level I of processing, we apply the Fmask algorithm [49] to increase the
quality of images by removing the effect of cloud shadows. Next, in level II of the processing
pipeline, the Top of Atmosphere (TOA) technique is adopted to remove solar zenith angle
effects and adjust the contrasts in solar irradiance. Finally, in level III, the spatial alignment
is conducted to reduce the geo-location inconsistency between satellite images caused by the
polar-orbiting.

Water Extract and Change Prediction (WECP). The WECP framework is composed
of two key components to perform robust water surface extraction and change prediction.
In the first component, the convolutional neural network (CNN) is employed to capture the
spatial-spectral information. In the second component, bi-directional long short term mem-
ory (BiLSTM) is used to apprehend the spatial-temporal changes. Together with another
supplement building block such as upsampling layers, these components are carefully inte-
grated into a unified framework in such a way that they are closely coupled and mutually
enhanced with each other during the optimisation process. We describe this component in
details in the next section (Section 4).

4. THE WECP MODEL

4.1. Model structure

Existing water monitoring systems often solve the water extraction (Task 1) and change
prediction

(Task 2) separately [15, 33, 43]. Going beyond the state-of-the-art in water monitoring,
we study the feasibility of solving the two tasks in an end-to-end model. To this end, we
develop a deep neural network model that integrates spatial, temporal, and spectral data
into a unified model. The model contains several subnetworks including: (i) the input mod-
ule: augments and feeds the data to subsequent layers; (ii) the BiLSTM module: processes
temporal dependencies; (iii) the convolutional module: captures the spatial and spectral de-
pendencies between pixels of the data; (iv) the output module: returns the extraction and
prediction results. The overview of our model is presented in Figure 3.

By integrating spatial-temporal information to learn multiple tasks simultaneously—
the water extraction and change prediction task—the model tried to optimise multiple loss
functions at the same time. By doing so, the two tasks are coupled together, and their
performance are mutually enhanced due to several reasons: i) overcoming the data sparsity.
Although most machine learning techniques exploit the data to solve a single task, these
approaches eventually hit a performance ceiling [47]. This is because of the sparsity of the
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Figure 3: The WECP Framework

dataset or the lack of generalisation of the model in learning meaning representations. In
multi-task learning, the model uses all available data and the ground truth across the tasks
to learn the generalised representations meaningful for multiple contexts. ii) performance
gain. A hidden feature computed by one task can be re-used by the other task without
redundant computations. This behaviour helps our model gain performance in both training
and testing time compared to the total time when the two tasks are undertaken separately.
The next section reveals the detailed design of each component of our framework.

4.2. Design of each component

4.2.1. Input module

A region of interest is fed as the input of the framework. The dimension of the studied
region is designed as a input block of m× n× 11 pixels, in which a m× n matrix represents
each spectral band, and we have 11 spectral bands of Landsat images in total. As the
number of regions is limited, using a whole region as a training sample makes the model
likely to overfit. To overcome this issue and to augment the training set, we employ a patch
normalisation layer to enhance the generalisation of the framework. This layer consists of
two steps: (i) patching: the region is divided into patches with a size of kp × kp pixels, and
every two patches have 50% overlap between them; (ii) normalisation: a normalisation [4]
step is then separately performed on each spectral band to ensure that the patches are in
the same domain before fetching into the next layer of the training pipeline.
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4.2.2. BiLSTM module

A common approach for visual imagery analysis starts by employing a Convolutional
Neural Network (CNN) to derive spatial features. But, the extracted feature by CNN is
shrunk to specific semantics such as edge detection, curve detection [23], which neglects the
temporal information. On the other hand, if using the sequential model alone, the out-
put might crack the 2D structure of imagery domains [6]. Moreover, a simple sequential
network such as Recurrent Neural Network (RNN) may suffer the vanishing gradients prob-
lem, which hampers its ability to learn temporal dependency in a long-term period. Long
short-term memory (LSTM) is introduced to overcome this problem to capture long-term
dependency [3]. However, one thing is still missing. That is the future context, essential for
water and environmental change data with seasonal characteristics such as floods, tides, and
storms.

We overcome these limitations by leveraging Bidirectional LSTM (BiLSTM) [12] to en-
code temporal dependency of satellite images. The basic idea of BiLSTM to present each
data input forwards and backwards to two hidden and separated layers of LSTM. The two
hidden layers are then connected to the output layer. After both the past and the future in-
formation are remembered, the output is then reconstructed to imaginary space (2D spatial
space) before feeding into the next layer of the framework (i.e., the convolutional layer). It
has been studied that such a bidirectional model could capture long-range dependencies [37]
of the training sequence of satellite images.

Similar to LSTM, the key idea of BiLSTM nets [3] is to continuously update the memory
mt in such a way that it partially forgets the memory(mt−1) and adds the new memory(m̃t)
between two consecutive time steps

mt = f(xt,ht−1)mt−1 + a(zt,ht−1)m̃t, (3)

where xt is the time step t-th of the input sequence, and ht−1 is the hidden output of the
earlier time step. The function f(.) is the forgetting function and the function a(.) is the
adding function. Both of these functions are a single layer of neural network that employs
a sigmoid function as an activation. As being the sigmoid regression, they always yield the
output between 0 and 1. This output controls how much information is allowed to pass each
component. The new memory is defined as

m̃t = tanh(bc +w1
cxt +w2

cht−1), (4)

where the tanh(.) is exploited to remember both “good” and “bad” memories by smoothing
the memorized value into {−1, 1}. In summary, the output of the current LSTM cell is the
combination of three factors, including the previous output, the current memory and the
current input

ht = o(xt,ht−1) tanh(ct), (5)

where o(.) is the sigmoid regression as well. Unlike the original LSTM building block, the
output zt of BiLSTM is a parameterized function of the bi-directional latent states—the
forward hft and the backward hidden state hbt

zt = σ(wfh
f
t + wbh

b
t + bh), (6)
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where wb and wf are the backward and forward parameters, respectively, and σ is a softmax.

Scalable training. Since the frequency of streaming Landsat 8 data is 16 days, we chunk
22 temporally consecutive images into a sequence. Such sequence represents an observation
of a region of interest throughout a year long. This chunking mechanism for the training
set of the BiLSTM module allows the model to scale to multiple regions crossing multiple
years. We flatten the input before fetching to the BiLSTM module to follow the mentioned
mathematical definition. The output is then re-constructed as the equal size to the size of
the input. This helps to reshape the output back to the 2D dimension to preserve the spatial
indices of the original image.This output is then fed into convolutional module, which is
described in the next section.

4.2.3. Convolutional module

To capture spatial dependency, the convolution module is designed to reduce the com-
plexity of fully connected networks [3]. It consists of two levels of spatial resolution: (i)
extraction convolution and (ii) prediction convolution.

Extraction convolution. The produced output of BiLSTM cell is fed to the convolution
block for water extraction. In this block, the neutrons of each layer are connected to a few
neurons—within a receptive field—of the next layer. [37]. The size of the receptive field is
defined by nc × nc, which are tunable hyperparameters. The receptive field size depends
on how concise or abstract features that layer desires to extract. The deeper the level
of convolution goes, the more abstract features are extracted. The receptive field is then
walked crossed the input to successfully captures both spectral and spatial dependency of
the preceding layer.

Unlike traditional fully-connected networks, a convolutional network is much more com-
putationally efficient due to its shared-weight mechanism during the learning process. More
precisely, although multiple convolutional operations happen within a convolutional layer,
such operations share the weights and biases. Formally, the output value of each layer is
defined as [3]

aij = σ

(
bi +

C∑
m=1

wimzj+m−1

)
= σ(bi +wizj), (7)

where aij is j-th neuron’s output of i-th filter, σ is the activation function, bi is the i-th
filter’s shared bias, C is the number of filters, wi = [wi1, . . . , wiC ] is the shared weight, and
zj = [zj , . . . , zj+nc−1] is the receptive field. By way of explanation, the next layer yields the
local spatial feature, the feature map [3], from the previous layer.

We develop the water extraction block with three consecutive convolutional layers. We
use many filters with different sizes in each layer. The reason behind being that we have
different spatial features’ types that need to be identified. More precisely, we use M1 = 128
filters in the first layer, M2 = 64 filters in the second layer and M3 = 32 in the third layer.
All the filters are the same size of nc = 3. We choose the same of all kernels because the
spatial resolution of Landsat 8 is the same for all pixels (i.e., 30m per pixel).

Differently from threshold-based water extraction methods, which leverage only a few
spectral bands, we consider the dependency of all spectral bands simultaneously. Practically,
these dependencies may vary significantly from different regions or locations throughout the
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globe. Thus after each convolutional layer, we use a pooling layer that helps to smooth the
output from the convolutional layer by sub-sampling. An average pooling is selected for this
pooling operator. As the water surface does not include sharp features, we choose average
pooling rather than the popular max pooling [39] to avoid loss of information.

Prediction convolution. The prediction block forecasts how the water changes in the next
step based on observations from the previous steps. To this end, the outputs of BiLSTM
blocks across multiple time points are stacked as filters in the first convolutional layer. Similar
to extraction network, we select the prediction block with three consecutive convolutional
layers. We use M1 = 128 filters in the first layer, M2 = 64 filters in the second layer and
M3 = 32 in the third layer. All the filters are the same size of nc = 3.

The difference between the extraction and prediction convolution modules is the domain
of their feature inputs. While the input feature of the extraction convolution is the hidden
feature of a time-step in the sequence, the input feature of the prediction convolution is
an aggregation of all time-steps within a year long. However, despite the difference in
the structure, two modules are tightly coupled and mutually enhanced as they shared the
intermediate features and the optimised metrics.

4.2.4. Output module

Bilinear upsampling. Because the convolutional building block transforms the original
input space, we need to restore the input state for pixel-wise water classification. To this
end, we leverage a bilinear upsampling layer which is state-of-the-art on 2D image data,
to reconstruct the final hidden features to imagery spaces. More precisely, from the final
convolutional output, upsampling layer generates C × S1 × S2 pixels where C = 11 is the
number of proposals [31]. More precisely, each pixel in the proposal is interpolated from its
neighbor pixels, and the aggregations are formulated as

pcix =
v(i−1,x) + vix + v(i+1,x)

3
for j − 1 ≤ x ≤ j + 1, (8)

pcxj =
v(x,j−1) + vxj + v(x,j+1)

3
for i− 1 ≤ x ≤ i+ 1. (9)

Eventually, the output of the bilinear upsampling layer is transfered into the final layer to
produce the classification score [31]

y = wp+ b, (10)

where w and b are the learnable parameters.

Activation function. The classification score is then presented to a soft-max layer. This
layer plays the role of an activation function to non-linearize and normalises the classification
scores for differentiating between classes

ycij =
ey

c
ij∑

c′∈L e(y
c′
ij )

, (11)

where ycij is the probability of the pixel (i, j) to be classified as class c. Throughout testing
phase, the final class of each pixel is estimated as y∗ij = argmaxc∈L ycij .
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Multi-tasking loss. To address the water surface extraction and change prediction tasks
simultaneously, the framework is optimized under two loss functions: The former one is Le

and the latter one is Lp. As definiction in Figure 3, each task of the model will be influenced
by each loss function independently. In practice, a ratio of the loss-share β between the
prediction and extraction loss necessitates to be employed to find the trade-off loss of two
tasks

L = βLp + (1− β)Le. (12)

Both functions Le and Lp exploy the cross-entropy loss function to maximize the estimation
of the true class at pixel-level.

5. EMPIRICAL EVALUATION

This section presents the comprehensive empirical evaluation of our proposed framework.
We first discuss the experiment setting (Section 5.1), and then assess multiple aspects of our
approach:

� The end-to-end performance of the framework (Section 5.2).

� The performance on water extraction task (Section 5.3).

� The performance on change prediction task (Section 5.4).

� The importance of each component of the framework (Section 5.5).

5.1. Experiment setting

Datasets. To assess the robustness of our framework, different regions in Vietnam are
collected and used as the real-world datasets for the evaluation as follows:

� Tri An Dam: This is a hydroelectric lake and dam on the Dong Nai River, which was
built and became operational in 1988.

� Dau Tieng Reservoir: This is the largest irrigation reservoir in Tay Ninh Province,
which has a capacity of 1.6 billion cubic meters.

� Thac Ba Lake: This is an artificial lake in Yen Bai Province, which was built and
became operational as a hydroelectric plant in the 1960s.

The datasets were acquired using the Landsat 8 satellite, which showed the changes in
water surface in these regions from 2018 to 2020. In more detail, the process of collecting
the data and setting up the ground truth follow the pipeline as follows:

1. Data collection: Satellite data in this study is collected from the data streams available
on the Earth Explore service [38]. Basically, this imagery data is a digital map of
radiance values at the top of Earth’s atmosphere under the form of wavelengths. Then,
these samples are packaged, compressed and transmitted to the ground station, from
which they are transformed into geospatial and calibrated pixels.

2. Data storage: The collected data is then stored in the format of Georeferenced Tagged
Image File (GeoTIFF), which is an international interchangeable format for raster
satellite data and widely adopted in NASA’s Earth Science systems [27]. Each channel
of an image sample is stored in a separate GeoTIFF file to facilitate the subsequent
steps of the framework.
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3. Ground truth setup: The stored data is then forwarded to several pre-processing rou-
tines, including spectral normalisation [46], geometric correction [20] solar correc-
tion [5]. Finally, we use high spatial resolution images from Google Earth�as the
reference data for on-screen digitising the true boundaries of all the test sites. Sim-
ilar approaches have been used in the literature on water mapping using Landsat
imagery [9, 42].

Cross-validation. To ensure a fair evaluation, we apply K-folk validation to split data into
a training set and testing set. Particularly, the dataset is shuffled and randomly partition
into k parts of the same size, in which (k − 1) parts are employed for training and the
remaining part is used for testing. We repeat such evaluation k times, and we compute the
average results. A common practice is to choose k = 10 to trade off the amount of data for
training and testing.

Table 2: The study areas

Study Area Period #Images #Pixels Class Distribution 1 Type of Water surface

Tri An 2018-2020 66 7711 × 7541 3,134,190,869: 728,881,597 Dam
Dau Tieng 2018-2020 66 7711 × 7541 3,326,534,624: 536,537,842 Reservoir
Thac Ba 2018-2020 66 7711 × 7541 3,425,370,542: 437,701,924 Lake

1 The proportion between # water and # non-water pixels

Baselines. We compare our method against several baselines as follows:

� Threshold: This is an ensemble of different threshold methods were also proposed to
improve water surface extraction performance [9].

� w-SVM: This is a machine learning approach [1], which is built on top of spetral-based
feature such as (NDWI) [24] and (MNDWI) [42]. This SVM-based is specialised for
water classification, which use the linear kernel and L2 regulariser to maintain the
regularisation parameter.

� w-CNN: This is the ubiquitous deep learning architecture to extract spatial features in
image processing, which is specially designed for the water body extraction task using
landsat images [45].

� Spectral : This is the state-of-the-art deep learning approach for spectral images pro-
cessing [35].

Metrics. Both water extraction and change prediction tasks are assessed at pixel level using
different metrics as follows:

� Precision: The amount of positive samples which is estimated accurately as ‘water‘
divided by the total amount of available samples that are estimated as a positive class.

� Recall: The amount of the positive samples, which is estimated correctly as ‘water‘
divided the number of actual water samples in the ground truth.

� Accuracy: The proportion of samples which are correctly estimated over the number
of samples.

� F1-score: The harmonic mean of Recall and Precision, which is computed for each
class.
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Reproducibility environment. The framework was implemented in Python v3.6 and
Keras API. All results were obtained on GeForce GTX 1080 Ti GPU and 32GB of main
memory. We ran every experiment 10 times and reported the average results. We include
the description of subnetwork architecture for our proposed framework in the table below
(Table 3).

Table 3: Description of subnetwork architecture

Subnetwork Layer Input Output

Water Extraction
Input 22× 64× 64× 11 4096× 22× 11
BiLSTM 4096× 22× 11 22× 64× 64× 128
CNN 22× 64× 64× 128 22× 64× 64× 2
Output 22× 64× 64× 2 22× 64× 64× 2

Change prediction
CNN 22× 64× 64× 128 1× 64× 64× 2
Output 1× 64× 64× 2 1× 64× 64× 2

5.2. End-to-end evaluation

In this section, we present the end-to-end comparison of our framework against the
competing baselines over the three real datasets. The comparison results are shown in
Table 4.

Table 4: End-to-end comparison

F1 extraction F1 prediction Training(s) Testing(s)

WECP 94.8% 92.9% 1239 9
Spectral 91.5% 89.7% 1325 15
w-CNN 89% 88.3% 970 9
w-SVM 87.5% 86.2% 330 5
Threshold 81.2% 79.6% 50 50

In general, our model achieves
much higher performance in terms
of both water extraction and
change prediction F1-score over
the competing baselines. This im-
provement arises from the mutual
enhancement when training the
two tasks in an end-to-end fashion,
i.e., the prediction task acts as val-
idated information for the result of the extraction task for each step.

Other baselines are trained separately for each task. Spectral is the best method among
the baselines. This is because spectral is a state-of-the-art that, similar to us, adopts an
exact order of BiLSTM layers, CNN layers, and upsampling layers in its architecture. Ma-
chine learning-based methods (i.e., w-SVM, w-CNN) give moderate performances as they are
designed for standard image processing rather than spectral images. The threshold method
yields a low performance in overall due to its simplicity in the model design and the lack of
generalisation through multiple study regions.

5.3. Evaluation on water extraction task

In this experiment, we further investigate the performance of the water extraction task
at a fine-grained level. More precisely, we compute the extraction rates per class (i.e., true
positive - TP, false-positive - FP, true negative - TN, false-negative - FN). Table 5 shows the
results for Dau Tieng Reservoir, and results for other datasets are omitted as they reveal the
same trends. We also visually demonstrate the correctness of the extraction task in Figure 4.
We see that our extracted results are almost matched with the ground truth data.
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Table 5: Normalized confusion matrices

Baselines Class Extracted as Water Extracted as Nonwater

WECP
Water 97.33% (TP) 2.67% (FN)

Nonwater 7.93% (FP) 92.07% (TN)

Spectral
Water 94.19% 5.81%

Nonwater 11.53% 88.47%

w-CNN
Water 90.19% 9.81%

Nonwater 12.48% 87.52%

w-SVM
Water 88.24% 11.76%

Nonwater 13.37% 86.63%

Threshold
Water 82.24% 17.76%

Nonwater 20.37% 79.63%

(a) Tri An (b) Dau Tieng (c) Thac Ba

Figure 4: Qualitative showcases on water extraction task

5.4. Evaluation on change prediction task

In this experiment, we evaluate the performance of our model on the water change predic-
tion task. The baselines are trained separately on each dataset, and the results are presented
in Figure 5.
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Figure 5: Change prediction performance Figure 6: Tri An Dam

In general, our framework performs better compared to the baselines—with over 0.92 F1-
score. We further qualitatively demonstrate the correctness of our framework in Figure 6.
Although only the showcase for Tri An Dam is presented due to space limitation, other
regions reveal the same trends of results.

5.5. Ablation testing

In this section, we assess the quality of each component in our framework, and we,
therefore, compare the performance of our framework with several variants. The details of
these variants are as follows.
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Table 6: Quality of each model component

F1 extraction F1 prediction Training(s) Testing(s)

WECP 94.8% 92.9% 1239 9
WECP-1 92.8% 85.4% 605 9
WECP-2 93.8% 88.5% 718 10
WECP-3 91.3% 87.1% 1319 17

Ratio β = 1.0 95.2% 51.8% 1173 9
Ratio β = 0.9 94.6% 91.1% 1239 9
Ratio β = 0.5 92.5% 91.3% 1078 9
Ratio β = 0.1 92.8% 92.1% 1123 9
Ratio β = 0.0 64.2% 93.7% 1218 9

� WECP-1: We replace the BiLSTM module by a LSTM building block to assess the
ability of capturing the past and future observations.

� WECP-2: We replace the CNN module by a multi-layer perception network to assess
the ability of capturing the spatial information and spectral information.

� WECP-3: We replace the upsamping module by a deconvolutional neural network
(DNN) to verify the upsampling effect for both extraction and prediction tasks.

Besides, we vary β, which is the trade-off loss shared between the extraction and pre-
diction task. Table 6 summarises the results in terms of F1 prediction score, F1 extraction
score, training time, and testing time. We can see that our proposed framework outperforms
other variants in both water extraction and change prediction tasks. Another interesting
finding is that there is a trade-off when we vary the ratio of the shared loss between the two
tasks. When the ratio β is high, meaning that we put more focus on the prediction task, the
prediction accuracy is high; and vise-versa. However, with a suitable trade-off (i.e., β = 0.1),
the tasks are coupled together and mutually enhanced, which yields the best performance
for both tasks.

6. CONCLUSION

In this work, we developed a specific framework (WECP), which can extract the water
surface and predict its change over time simultaneously. The framework runs on top of data
streams of satellite images to form an end-to-end application for water surface monitoring
and forecasting. Intensive evaluations have been conducted on Landsat 8 data, and the
results show the advantages of our framework in several different aspects.

The proposed framework has profound implications for authorities that seek sustainable
water and environmental monitoring. In the future, we intend to extend our framework in
several directions: First, the finding in this study could enhance the accuracy and gener-
alisation of water surface extraction and prediction using optical images. Second, we will
extend our works on extracting and predicting more subtle water surfaces, such as the dif-
ferent levels of turbidity and depths. Finally, we aim to build a comprehensive framework
for various water mapping applications that supports spatio-temporal analysis.
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