Tap chi Tin hoc va Piéu khién hoc, T. 18, S. 2 (2002), 187200

TCP ENHANCEMENTS AND PERFORMANCE OVER NETWORKS
WITH WIRELESS LINKS

NGUYEN DINH VIET

Abstract. Transmission Control Protocol (TCP) uses end-to-end flow, congestion, and error control mech-
anisms to provide reliable delivery over the Internet. During many years of extensive use in inter-networks,
all weak-points of TCP are discovered and tuned, so that it performs very well in traditional network (wired
network). However, inter-networks growth explosively and may consist of networks with wireless links charac-
terized by high and sporadic bit error rate and intermittent connectivity due to hand off. TCP performance
is degraded severely in such networks. Many studies have been carrying out to improve the performance of
TCP in networks with wireless links. Some solutions are proposed and implemented.

This paper presents four main issues: congestion avoidance and control mechanisms implemented in
traditional TCP protocol, step-by-step enhancements in traditional TCP, characteristics of wireless links
degrade TCP performance severely, mechanisms to enhance TCP performance over network with wireless

links.

Tém tit. Giao thitc TCP st dung co ché diéu khién théng luong, kiém sodt tic nghén va 18i tir hai diu
mut dé van chuyén théng tin trén Internet mét céch tin cdy. Trong sudt nhiéu nim duoc st dung réng rai,
céc nhuoc diém cla TCP thé hién ra da duoc phat hién va khic phue. Chinh vi thé TCP hoat déng rat
t8t trong cédc mang kiéu truyén théng (mang cé day). Tuy nhién céc lién mang da cé su phét trién bing né
va, chiing ¢6 thé bao gdm ci céc mang khéng diy. Puong truyén khéng day cé dic trung 1a t sudt 15i bit
cao, that thuomg déng thei thinh thodng bi ditt doan do sut chuyén cude goi. Trong cdc mang nhur vay, hiéu
suat cia TCP bi gidm tram trong. Ngudi ta d& tién hanh rdt nhiéu nghién citu nhim nang cao hiéu suit
cia TCP trong cic mang cé dudng truyen khong day, mét s6 gidi phap da duoc dua ra va dp dung.

Bai béo nay trinh bay ¢é dong bén vén dé chinh: cdc co ché trdnh tic nghén va diéu khién da duoc
ap dung trong giao thitc TCP truyén théng, cic budc cii tién trong giao thitc TCP truyen théng, cédc dac
trung cla duong truyén khéng day lam gidm tram trong hiéu suat cia giao thitc TCP, céc co ché dé nang
cao hiéu suit cla giao thirc TCP trong cdc mang cé dudmg truyén khong day.

1. INTRODUCTION

Reliable transport protocols as TCP have been tuned for traditional networks comprising wired
links and stationary hosts. TCP protocols assume congestion in the network to be the primary cause
for packet losses and unusual delays. TCP performs well over such networks by adapting to end-to-
end delays and congestion losses. The TCP sender uses the cumulative acknowledgments it receives
to determine which packets have reached the receiver, and provides reliability by retransmitting lost
packets. For this purpose, it maintains a running average of the estimated roundtrip delay and the
mean linear deviation from it. The sender identifies the loss of a packet either by the arrival of several
duplicate cumulative acknowledgments or the absence of an acknowledgment for the packet within a
timeout interval. TCP reacts to packet losses by dropping its transmission (congestion) window size
before retransmitting packets, initiating congestion control or avoidance mechanisms, and backing off
its retransmission timer. These measures result in a reduction in the load on the intermediate links,
thereby controlling the congestion in the network.

Current networks often include wireless links and mobile hosts, in particular, there will be LANs
composed of wireless cells of only a few meters in diameter. TCP protocol will thus encounter types
of delay and loss that are unrelated to congestion. Some performance degradation due to these
delays and losses is unavoidable. These events also trigger congestion control procedures that further
degrade performance.



188 NGUYEN DINH VIET

2. CONGESTION AVOIDANCE AND CONTROL IN TRADITIONAL NETWORKS

Computer networks have grown explosively for more than twenty five years and with that growth
have come severe congestion problems. In October of '86, the first time, the Internet had suffered
from a series of “congestion collapses”. During this period, the data throughput from Lawrence
Berkeley Laboratory to University of California at Berkeley (sites separated by 400 yards and two
IMP hops) dropped from 32Kbps to 40bps. Van Jacobson and his group of scientists started an
investigation of why things had gotten so bad [15]. Jacobson has shown that much of the cause
lies in transport protocol implementations (rot in the protocols themselves): The ‘obvious’ ways to
implement a window-based transport protocol can result in exactly the wrong behavior in response to
network congestion. He gives examples of ‘wrong’ behavior and describes some simple algorithms that
can be used to solve problems. The algorithms are rooted in the idea of achieving network stability
by forcing the transport connection to obey a ‘packet conservation’ principle; if this principle were
obeyed then, congestion collapse would become the exception rather than the rule. Thus congestion
control involves finding places that molate conservation and fixing them. The concept of ‘conservation
of packets’ means that for a connection running stably with a full window of data in transit, a new
packet is not put into the network until an old packet leaves the network. The physics of flow predicts
that systems with this property should be robust in the face of congestion.

Observation of the Internet suggests that it was not particularly robust. Why the discrepancy?
There are only three ways for packet conservation to fail [15]:

Failure 1: The connection does not get to equilibrium, or

Failure 2: A sender injects a new packet before an old packet has exited, or

Failure 3: The equilibrium can not be reached because of resource limits along the path.

Jacobson [15] also proposed algorithms to solve these failures; they are summarized in the
following.

2.1. Slow start

Reasons for failure (1): The network announces, via a dropped packets, when demand is excessive
but says nothing if a connection is using less than its fair share (since the network is stateless, it cannot
know this). Thus a connection has to increase its bandwidth utilization to find out the current limit,
and it can only find out the limit after an excessive use of bandwidth.

Algorithm: slow-start: to gradually increase the amount of data in-transit to get to
equilibrium

¢ Add a congestion window, cwnd, to the per-connection state.

¢ When starting or restarting after a loss, set cwnd to one packet.

¢ On each ack for new data, increase cwnd by one packet.

¢ When sending, send the minimum of the receiver’ s advertised window and cwnd.

In fact, the slow-start window increase exponentially, it takes time RlogoW to reach the size of
W, where R is the round-trip-time and W is the window size in packets. This means the window opens
quickly enough to have a negligible effect on performance, even on links with a large bandwidth-delay
product. With slow-start algorithm, a sender will transmat data at a rate at most twice the maximum
possible on the path. This means that packet loss is inevitable.

2.2, Intelligent round-trip timing

Reasons for failure (2): In the network, packet loss is inevitable, so the problem is how soon
a sender retransmits lost packets, and how are the spaces between retransmitted packets, while
remaining conservation of packets. This problem relates to sender’ s retransmit timer. A good round
trip time (RTT) estimator, the core of the retransmit timer, is the single most important feature of any
protocol implementation that expects to survive heavy load. Unfortunately, it is frequently botched,
because network topology and the number of competing connections are unknown, unknowable and
constantly changed [8,17]. The first mistake is that the sender cannot estimate correctly the variation,



TCP ENHANCEMENTS AND PERFORMANCE OVER NETWORKS WITH WIRELESS LINKS 189

o, of the round trip time, R. From queuing theory we know that R and the variation in R increase
quickly with load. The second mistake is the backoff after a retransmit: If a packet has to be
retransmitted more than once, how should the retransmits is spaced?

Solution for the first mistake

The TCP protocol specification [4] suggests estimating mean round trip time via the low pass

filter: R—aR+(1—-a)M.

Where R is the average RTT estimate, M is a round trip time measurement from the most recently
acked data packet, and « is a filter gain constant with a suggested value of 0.9. Once the R estimate
is updated, the retransmit timeout interval, rto, for the next packet sent is set to BR. The parameter
B accounts for RT'T variation, the suggested 8 = 2.

Solution for the second mistake

Only one scheme has any hope of working that is exponential backoff. TCP resets the transmis-
sion timer to a backoff interval that doubles with each consecutive timeout. This scheme is explained
in [15,12].

2.3. Congestion avoidance

Reasons for failure (3): If the timers are in good shape, it is possible to state with some confidence
that a timeout indicates packet loss. Packets get lost for two reasons: are damaged in transit, or
dropped at some node on the path in the network, because of the insufficient buffer capacity of that
node. On wired networks, where bit error rate (BER) is very low!, it is possible to say that packet loss
is for network congestion. The case of networks with wireless links is different and will be discussed
in Sec. 4.

Solutions: A ‘congestion avoidance’ strategy, such as the one proposed in [9], will have two com-
ponents: The network must be able to signal the transport endpoints that congestion is occurring or
about to occur, and the endpoints must have a policy that decreases utilization if this signal 1s recerved
and wncreases utilization iof the signal 1s not recerved.

Endnode action: Congestion avoidance: to adapt to the path

It is additive increase/multiplicative decrease policy, as was implemented in BSD [15]. Tt can be
expressed as follows:

¢ On any timeout, set cwnd to half the current window size (this is the multiplicative decrease).

e On each ack for new data, increase cwnd by 1/cwnd (this is the additive increase)?.

¢ When sending, send the minimum of the receiver’s advertised window and cwnd.

In practice, slow start and congestion avoidance algorithms are implemented together as ex-

plained in more detail in Section “3.2 Tahoe TCP”.

Network action (the gateway side) of congestion control

The goal of this algorithm is to send a signal to the endnodes as early as possible, but not so
early that the gateway becomes starved for traffic. Gateway simply drops packets sent by endnodes
to tell them of using more than its fair share. Thus, the gateway algorithm should reduce congestion
even if no endnode is modified to do congestion avoidance. And nodes that do implement congestion
avoidance will get their fair share of bandwidth and a minimum number of packet drops.

Since congestion grows exponentially, detecting it early is important. If detected early, small
adjustments to the senders’ windows will fix it. Otherwise massive adjustments are necessary to

1BER = 1079...10~ 12 given packet size 1000 bits, then packet loss probability is 10=6...10~°,
2 In TCP, windows and packet sizes are in bytes so the increment translates to mazseg*manseg/cund where marseg is
the maximum segment size and cwnd is expressed in bytes, not packets.



190 NGUYEN DINH VIET

give the net enough spare capacity to pump out the backlog. But the bursty nature of traffic makes
reliable detection a difficult problem.

3. ENHANCEMENT TO TCP PROTOCOLS (FOR WIRED NETWORKS)

Early TCP implementations followed a go-back-n model using cumulative positive acknowledg-
ment and requiring a retransmit timer expiration to re-send data lost during transport. These TCPs
did little to minimize network congestion. Modern TCP implementations contain a number of algo-
rithms aimed at controlling network congestion while maintaining good user throughput [15,12].

3.1. Initial TCP
TCP based on concepts first described by Cerf and Kahn [5]. higher—level

It is a connection-oriented, end-to-end reliable protocol designed TCP
to fit into a layered hierarchy of protocols just above a basic Inter-
net Protocol, which support multi-network applications. TCP is
able to send and receive variable-length successive units of data, communication network
called segments, enclosed in internet datagram “envelopes”. The
TCP provides for reliable inter-process communication between

internet protocol

Fruure 1. Protocol Layering

pairs of processes in host computers attached to distinct but interconnected computer communication
networks. Very few assumptions are made as to the reliability of the communication protocols below
the TCP layer. TCP assumes it can obtain a simple, potentially unreliable datagram service from
the lower level protocols. In principle, the TCP should be able to operate above a wide spectrum of
communication systems ranging from hard-wired connections to packet-switched or circuit-switched
networks.

Multiplexing: To allow for many processes within a single Host to use TCP communication facilities
simultaneously, the TCP provides a set of addresses or ports within each host. Concatenated with
the network and host addresses from the internet communication layer, this forms a socket. A socket
may be simultaneously used in multiple connections.

Connections: The reliability and flow control mechanisms of TCP require that TCPs initialize
and maintain certain status information for each data stream. The combination of this information,
including sockets, sequence numbers, and window sizes, is called a connection. Each connection is
uniquely specified by a pair of sockets identifying its two sides.

Reliability: The TCP must recover from data that is damaged, lost, duplicated, or delivered out
of order by the internet communication system. This is achieved by assigning a sequence number to
each byte transmitted, and requiring a positive acknowledgment (ACK) from the receiving TCP. If
the ACK is not received within a timeout interval, the data is retransmitted. At the receiver, the
sequence numbers are used to correctly order segments that may be received out of order and to
eliminate duplicates.

Window Flow Control: TCP provides a means for the receiver to govern the amount of data
sent by the sender. This is achieved by returning a “window” with every ACK indicating a range of
acceptable sequence numbers beyond the last segment successfully received. The window indicates
an allowed number of bytes that the sender may transmit before receiving further permission. There
is an assumption that this is related to the receiver’ s data buffer space, which currently available for
this connection. Indicating a large window encourages transmissions, but if more data arrives than
can be accepted, it will be discarded, and results in excessive retransmissions. Indicating a small
window may restrict the transmission of data to the point of introducing a round trip delay between
each new segment transmitted.

The sending TCP must be prepared to accept from the user and send at least one byte of new
data even if the send window is zero. The sending TCP must regularly retransmit to the receiving
TCP even when the window is zero. Two minutes is recommended for the retransmission interval



TCP ENHANCEMENTS AND PERFORMANCE OVER NETWORKS WITH WIRELESS LINKS 191

when the window is zero [4]. This retransmission is essential to guarantee that when either TCP has a
zero window the re-opening of the window will be reliably reported to the other. When the receiving
TCP has a zero window and a segment arrives it must still send an acknowledgment showing its next
expected sequence number and current window (zero).

3.2. Tahoe TCP

The Tahoe TCP implementation added a number of new algorithms and refinements to earlier im-
plementations. The new algorithms include Slow-Start, Congestion Avordance, and Fast Retransmat.
The refinements include a modification to the round-trip time estimator used to set retransmission
timeout values [10, 16]. Some modifications have been summarized in Section 2.1, 2.2, and 2.3 above.
Figure 2 illustrate the operations of Tahoe TCP, in the case of one dropped packet. Some explanations
related to the figure are presented in Sec. 3.6.

Figure 2. Tahoe TCP with one dropped packet

Slow—Start phase: Starting from one packet, the window is increased exponentially by one packet
for every nonduplicate ACK until the source estimate of network capacity (“pipe size” ) is reached.
That is the maximum number of packets that can be fit on the path. This is Slow—Start (SS) phase,
and the capacity estimate is called the SS threshold (ssthresh). SS aims to alleviate the burstiness of
TCP while quickly filling the pipe.

Congestion Avoidance phase: Once the ssthreshis reached, the source switches to a slower increase
in the window by one packet for every window’ s worth of ACKs. This phase, called Congestion
Avoidance (CA), aims to slowly probe the network for any extra bandwidth. The window increase
is interrupted when a loss is detected. Two mechanisms are available for the detection of losses: the
expiration of a retransmission timer (timeout) or the receipt of three duplicate ACKs.

Fast Retransmit (FRXT): This algorithm is of special interest because it is modified in subsequent
versions of TCP. With FRXT, after receiving a small number of duplicate acknowledgments for the
same TCP segment (dup ACKs), the data sender infers that a packet has been lost and retransmits
the packet without waiting for a retransmission timer to expire (timeout), then returns to slow start
(window =1). This leads to higher channel utilization and connection throughput.

3.3. Reno TCP

The Reno TCP implementation retained the enhancements incorporated into Tahoe, but modified
the Fast Retransmit operation to include Fast Recovery (FRCV) [10,16]. The new algorithm prevents
the communication path (“pipe”) from going empty after FRXT, thereby avoiding the need to SS to
re-fill it after a single packet loss. FRCV operates by assuming each dup ACK received represents a



