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QUEUING NETWORK THEORY AND ITS APPLICATION
TO COMMUNICATION SYSTEMS

LUONG HONG KHANH, VU NGOC PHAN

Abstract. The average arrival rates and the average delay at the queues in a queuing network are two
significant quantities evaluating the network performance. The present paper will show how these two quan-
tities can be calculated for the open queuing network and the closed queuing network used in communication
systems.

Tém tit. S8 luong trung binh cédc nhu ciu phuc vu xuit hién va thoi gian trung binh mét nhu cau phuc
vu nam tai céc nit cla mang hang doi 1 cde dai luong tiéu bidu dé dédnh gid chit luong ciia mét mang dich
vu. Bai bdo nay dé cap dén cdch xdc dinh hai dai liwong néu trén déi véi mang hang doi déng va mang hang
doi m& mo ta hé thdng truyen tin.

1. INTRODUCTION

The queuing theory initiated by Erlang has gained a wide applicability to communication system
design and analysis [4]. The major performance measures in a communication network are blocking
probability and delay of calls, packets, or cells. Almost investigation approaches of the network per-
formance are usually based on the queuing theory. A communication network can be mathematically
considered as a lattice of N nodes and L links. Customers arrive from outside the network at a queue.
Each customer stays in the network to be served and the service needs normally a duration of time.
A customer will leave the network after being served. The numbers of calls (generally said arrivals)
at a queue at a fixed point and the service time have stochastic properties. Hence, a communication
network is represented as a stochastic system.

The queuing theory has been used for designing ATM switching networks [2,7], for designing
and analysing broadband networks [5,6], for designing and analysing the performance of computer
communication network [3], for dynamical and optimal routing in telecommunication networks [1], etc.
In Section 2 the fundamental of the open queuing network and closed queuing network is repeated.
In Section 3 the modified mean value method is described as a tool for the network analysis. A simple
example will make the issue easier to understand.

2. OPEN QUEUING AND CLOSED QUEUING NETWORKS

2.1. Open queuing network

As well known, a queue can be generally described by quintuple {A/B/m/N/p}. Here A is the
name of the arrival distribution, B is the name of the service time distribution, m is the number of
servers, N is the queue length and p is the maximum number of customers being permitted in the
service system. A queuing network is a collection of queues which are connected in parallel or/ and
in tandem. Let N = {1,2,3,...,N}and £ = {1,2,3,..., M} denote the set of nodes and the set of
links of a queuing network, respectively. Without loss of generality it is supposed here that the queue
length is of infinity and the service is arranged by the first-come first-serve discipline. Furthermore,
it is assumed that there is only one queue at each node and the arrival of customer at a queue is an
independent random process. Let w;; denote the probability that after a customer is served at queue
1 it continuously joins the queue j. Thus, in an open queuing network the following condition has to
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be satisfied
N+1
Z w;; =1 for i € V. (2.1)
=1, 5#i
Let )\; denote the arrival rate from outside and A; denote the total arrival rate at queue ¢,
respectively. Then, it is easy to know that:

N
Ai=Xi+ Y Ajwy for i€ N. (2.2)
J=1,i#]

Let A = [A1, Ay, ..., Ax]T denote the vector of arrivals in an open queuing network, called the
total node flow vector. Let A = [\1, Ao, ..., An]” denote the vector of arrivals from outside, called the
external node flow vector. Then the equation (2.2) can be commonly written as follows:

A=)+ WTA. ((2.3))
Here W is a square matrix:
w1 Wiz - WIN
[ B (2.4)
WN1 WN2 - WNN

It is to remember that w;; =0 for i =1,..., N. From Eq. (2.3) A can be obtained by the matrix
inversion as following:

A=[T-WT 1\ (2.5)

In Eq. (2.5), I represents an identity matrix.

Let x; denote the number of customers at queue 7. The vector x = [x1, %2, ..., xx]T describes
the total number of customers in the queuing network and it is called the state vector of the service
system. The following conditions are supposed to be hold.

e The arrival at queue ¢ has the Poisson distribution with rate A;.

1
e The service time of customers at queue ¢ has the exponential distribution with mean —.

i
¢ Arrival and departure process among every queues of the system are mutually independent.
e The transition time from a state to the next one is so short that it can be neglected.

Let P.(x1,xa,...,xy) denote the probabitity that there are x; customers at queue 7, etc. Ac-
cording to these assumptions the balance principle can be expressed as follows

N N N N
P(@1,22,... ,aN) { SN wwig + Zuiwi(z\fﬂ)}
i—1 i=1

i=1 j=1

N N N
== Z)\ipr(xl, e 3 L — 17 N 73?]\/‘) + ZZuiwijPT(xh 73?14* 17 ...7:ch+ 17 733]\/‘)
i=1

i=1 j=1
+Zﬂiwi(N+1)Pr(xl7m7xi+ L..,xN), (2.6)
The solution of (2.6) leads to:

N N
Pz, 0, ...,xN) = HPT(:JQ) = H(l —qi)q;", (2.7)

i=1 i=1
Poxy,..,x;+ 1, ;= 1, ,xn) = kil (X1, oy T, TN (2.8)

25

In Egs. (2.7) and (2.8) q; = — 1is called the relative untilization of queue i.
223
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2.2, Closed queuing network

The closed queuing network is a network of queues where the total number of customers inside
the network is fixed. That means, there is no customer departing from the network and no customer
is allowed to enter into the network. Let K denotes the fixed number of customers in the network, x;
be the number of customers at queue ¢ and N be the total number of queues. It is easily to recognise
that.

N
Y =K (2.9)
i=1
Let S(K, N) denote the state of the system, where:
N
S(K,N) = (w1, 29, ... ,on ‘ 3w = K). (2.10)
i=1

It can be imagined that the number of the network states is very large. For simplicity, the following
assumptions are made.

¢ In the closed queuing network the first-come first-serve discipline is used.

¢ The service time at queue ¢ follows the exponential distribution with rate A;.

¢ Service rate of each queue is independent of its queue length.

Let w;; denote the probability that after a customer is served at queue ¢ it continuously joins
the queue j like in the open queuing network. Here the condition

N
Y Wy=1forichN (2.11)

J=1,j#i

is hold. An essential difference between the open queuing network and the closed queuing network is
that the total arrival rate at queue 7 can not be determined by Fq. (2.2). Consider the state of the
network when there is no customer departing the network and because of that there is no customer
can enter into the network. For this situation the total arrival at queue 7 is determined by

N
A; = Z Ajwji for s c N (212)
J=1,i#]
or in the matrix from:
A=WTA. (2.13)
Equation (2.13) is singular and can not be solved. The transition from state x = (z1, 2, ... ,xy) to
state x = (x1,...,2; + 1,...,2; — 1, ..., xn) corresponds to the situation in which a customer finishes

his service at queue 7 and joins queue ¢. The following relation is hold.

uiwijpr(xh cee 3 Xg + 17 sy Lj 17 733]\/') == /ijjipr(a?h cee 3 Ly ene s Ly enn 733]\[) (214)

or qi
P, i+ 1, @y — 1,0, aN) = = Pr(@1, ooy @iy ey Ty oo, TN). (2.15)

45

Here it is supposed that w;; = w;;. The solution of Eq. (2.15) gets the from:

N
1
Po(wy, i n) = ———— T T4, 2.16
(1) = gy L2 210
where G(K, N) is a normalization constant to guarantee that P,(x1,...,x;, ..., xy) is a proper prob-

abitity distribution, that means:
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N
1 N
2€S(K,N) 2€S(K,N) i=1
From (2.17) it is easily to identify that
N
GE,N) = > T (2.18)

2€S(K,N) i=1
By substituting g, (k) = G(k, n) the following recursive equation can be derived from Eq. (2.18)
(k) = gn1(k) + qngn(k—1), k=0,..,K, n=1,..,N. (2.19)
G(K, N) is equal to g, (k) when n = N and k= K.

3. APPLICATION TO COMMUNICATION NETWORK

Given a closed queuing network with K packets and N nodes each of which represents a queue.
The typical interesting values are the expected number of packets in the network and the expected
delay time. It can be show that these expected values can be determined without knowing the
normalization constant G(K, N). The expected number of packets in a queue can be expressed by
the utilization of queue as follows

E{x;(K)} = Zq;,G(éi ~ v, N)

TGEN) .

v=1

From Eq. (3.1) it is easily to get the recursive equation
F{z,(K)} =U;(K)1 + F{x;(K — 1)}], ¢=1,2,..., N, (3.2)

where U;(K) is determined by

G(K-1,N)
G(K,N)

The first and second terms in Eq. (3.2) represent the average service time and waiting time of packets,

respectively. Substitute:

Us(K) = ¢; (3.3)

G -1,N)
Let
_ B{wi(K)}
E{di(K)} = TSR (3.5)
be the expected delay time at queue i. After substituting Egs. (3.2) and (3.4) in Eq. (3.5) it leads to
1 1 1
E{di(K)} = —(1 + E{xy(K - 1)}) = o + ;E{:}ci(K -} (3.6)

Eq. (3.6) indicates that the expected delay time at a queue equals the sum of average service time
and average waiting time.

Example. Consider a closed queuing network of K = 4 and N = 6. The probalitity matrix W is
given by
0 01 03 0 03 03
02 0 01 06 01 0
0.2 05 0 01 01 0.1
W= 03 01 01 0 04 01]° (3.6)
0.2 02 02 02 0 0.2

04 01 01 02 02 0

The service rate of the queues are p; = o = s = 4, pus = g = 5.5, ug = 3. Queue 6 is the source
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queue mit arrival rate Ag = 1. The total packet arrival rate (TPAR) and the relative utilization
(RUTT) of the queues are given in Table 3.1.

Table 3.1

Queue 1 2 3 4 5 6
TPAR A; | 1.2000 | 0.3000 | 0.3000 | 0.6000 | 0.6000 1
RUTT ¢; | 0.3000 | 0.0750 | 0.0545 | 0.1091 | 0.1500 | 0.3333

S;(K) 2.6859 | 0.6715 | 0.6715 | 1.3430 | 1.3430 | 2.2333

U;(K) 0.6715 | 0.1679 | 0.1221 | 0.2442 | 0.3357 | 0.7461

FE{z;(K)} | 1.3152 | 0.1960 | 0.1365 | 0.3070 | 0.4625 | 1.5829

E{d;(K)} | 0.4897 | 0.2918 | 0.2032 | 0.2286 | 0.3444 | 0.7072

To calculate S;(K) and U;(K) it follows from Table 3.2 that G'(4,6) = 2.2385.

Table 3.2
1 2 3 4 5 6
1 1 1 1 1 1

0.3000 | 0.3750 | 0.4295 | 0.5386 | 0.6886 | 1.0220
0.0900 | 0.1181 | 0.1416 | 0.2003 | 0.3036 | 0.6443
0.0270 | 0.0359 | 0.0436 | 0.0654 | 0.1110 | 0.3257
0.0081 | 0.0108 | 0.0132 | 0.0203 | 0.0370 | 0.1455

=W N |~ |O

4. CONCLUSION

The queuing network theory plays an important role on many fields of technology and science.
In this paper the fundamental of the queuing network theory and its application to communication
systems have been shown. It is to note that the calculation of the expected arrival and the expected
delay at the queue, which is indicated in the expressed example, is very difficult for a large network.
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