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Abstract. A method for constructing a blind signature scheme based on a hidden discrete logarithm

problem defined in finite non-commutative associative algebras is proposed. Blind signature protocols

are constructed using four-dimensional and six-dimensional algebras defined over a ground finite field

GF (p) and containing a global two-sided unit as an algebraic support. The basic properties of the

used algebra, which determine the choice of protocol parameters, are described.
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1. INTRODUCTION

Modern standards of electronic digital signature with a public key, adopted in the lead-
ing countries of the world, are based on the computational problem of discrete logarithm
(DL) [10], however, significant progress in the development of quantum computing and the
creation of experimental computers for which polynomial algorithms for solving the DL prob-
lem and the factorization problem (FP) have been developed [21, 22]. That result caused
the urgent problem of the development of post-quantum two-key cryptoschemes, including
electronic digital signature (EDS) schemes and blind EDS protocols. Post-quantum cryp-
toschemes, algorithms and protocols are those that are resistant to attacks using hypothetical
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(at the moment) quantum computers capable of solving FP and DL problem in polynomial
time.

The response to the said problem was the announcement by the US National Institute
of Standards and Technology (NIST) in December 2016 of a worldwide competition for the
development of post-quantum public-key agreement and digital signature schemes with the
aim of adopting post-quantum cryptographic standards by 2024 [7], as well as 2010 to 2020
annual international thematic conference “Post-Quantum Cryptography” [9].

One of the promising approaches to the development of post-quantum public-key cryp-
toschemes is the use of the computational difficulty of the hidden discrete logarithm problem
(HDLP) specified in finite non-commutative associative algebras (FNAA) [14]. Resistance
to quantum attacks of the HDLP is justified in [13, 16]. On the basis of HDLP, public-key
agreement schemes [12], commutative ciphers [4] and EDS schemes [11, 17] have been devel-
oped, which are of interest as practical post-quantum cryptoschemes, free from a number of
shortcomings of their counterparts participating in the NIST competition. It is of interest
to develop cryptoschemes of other types based on HDLP.

This article proposes a method for constructing blind EDS schemes using the compu-
tational complexity of the HDLP and describes a post-quantum blind signature protocol
implemented on its basis. As an algebraic carrier of the developed protocol, we used four-
dimensional and six-dimensional FNAA, containing a global two-sided unit.

2. THE CONCEPT AND APPLICATION OF A BLIND DIGITAL
SIGNATURE

The concept of a blind digital signature was first proposed in [2] to solve problems of
ensuring the non-traceability (anonymity) of users that arise in some special information
technologies, for example, electronic money systems and secret electronic voting. Blind EDS
is calculated by the signer in the process of interacting with some user (client). The signer
uses his personal private key to calculate the blind signature and transfers the latter to
the client. The latter computes, based on the blind signature, the authentic signature of
the signer to some document to which the signer does not have access during the protocol
execution. The signature received by the client is standard and its authenticity is verified
according to the same algorithm as the verification of a regular signature.

For the first time, the blind signature protocol was implemented on the basis of the RSA
signature scheme [2] based on the FP. Subsequently, blind signature protocols based on the
DL problem have been proposed [1]. In both cases, the anonymity of the client is ensured
by the fact that during the protocol he introduces one or two random blinding factors into
the blind signature. After receiving a blind signature from the signer, the client removes the
blinding factors, thereby calculating the true signature.

3. THE USED ALGEBRAIC SUPPORTS

3.1. Definition of finite non-commutative associative algebras

An arbitrary vector A of some finite m-dimensional vector space defined over a finite field
GF (p), can be written as an ordered set of elements of the fieldGF (p): A = (a0, a1, . . . , am−1)
or as a sum of its component: A =

∑m−1
i=0 aiei, where ei are basis vectors; ai ∈ GF (p) are
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coordinated of the vector. A vector space in which, in addition to the operations of addition
of vectors and multiplication of a vector by a scalar, an operation of multiplication of two
vectors is defined, which has the property of distributivity with respect to the operation of
addition, is called algebra.

The vector multiplication operation A =
∑m−1

i=0 aiei and B =
∑m−1

j=0 biej is usually
determined by the rule of multiplying each component of the first vector with each component
of the second vector, namely, by the following formula

A ◦B =

m−1∑
i=0

m−1∑
j=0

aibj (ei ◦ ej) ,

in which each product of the form ei ◦ ej must be replaced by a one-component vector λek,
selected from the so-called multiplication table of basis vectors (MTBV), where λ ∈ GF (p) is
called structural constant. In the case λ = 1 only basis vector ek is indicated in the MTBV.
Left multiplier in the product ei ◦ej specifies the row and the right one specifies the column,
the intersection of which indicates the cell containing the value λek.

If the operation of multiplication has the properties of non-commutativity and associa-
tivity, then the case of specifying the FNAAs is realized [15, 17]. For the dimensions m = 4
and m = 6 the MTBV shown as tables 1 and 2 set the FNAAs used as algebraic carriers
of blind signature protocols. These algebras contain a global two-sided unit and local units
of various types related to subsets of non-invertible vectors. Global two-sided units are ele-
ments of algebra that act as two-sided units on all elements of the FNAA. Local units are
elements of an algebra that act as unit elements within subsets of algebra element [3].

3.2. Four-dimensional FNAA

The algebra with the multiplication of elements given in Table 1 contains a two-sided
global unit E, which is described by the following formula

E =

(
1

λ− 1
,

1

1− λ
,

1

1− λ
,

λ

λ− 1

)
.

The validity in the above formula is proved by direct substitution of the value E instead
of the unknown X in the vector equations X ◦A = A and A ◦X = A for an arbitrary value
A.

For use as an algebraic support, it is important that the FNAA contains vectors of a
sufficiently large prime order. To implement the latter, the four-dimensional FNAA will be
defined over the field GF (p), whose characteristic is equal to a prime number p = 2q + 1,
where q is a 512-bit prime. The generation of the required primes p is done by generating
many different 512-bit primes q and testing the values p = 2q + 1 for primality.

Table 1: Setting a 4-dimensional FNAA with a global two-sided unit (λ ̸= 1)

◦ e0 e1 e2 e3

e0 λe0 λe1 e0 e1

e1 e0 e1 e0 e1

e2 λe2 λe3 e2 e3

e3 e2 e3 e2 e3
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When specifying new versions of HDLP and building EDS protocols, unit elements of
various types will be used, which are contained in the FNAAs applied as carriers of signature
schemes. In the algebra discussed in this section, there are many local left-sided, right-sided,
and two-sided units. The condition of invertibility of some vector A = (a0, a1, a2, a3) is
determined by the fact that vector equations of the forms X ◦ A = E and A ◦X = E have
a unique solution. The first of these equations reduces to the following system of four linear
equations with unknowns x0, x1, x2, and x3, representing the coordinates of the vector X

(λa0 + a2)x0 + (a0 + a2)x1 =
1

λ− 1
,

(λa1 + a3)x0 + (a1 + a3)x1 =
1

1− λ
,

(λa0 + a2)x2 + (a0 + a2)x3 =
1

1− λ
,

(λa1 + a3)x2 + (a1 + a3)x3 =
λ

λ− 1
.

(1)

It is easy to see that system (1) splits into two independent systems of two equations,
the main determinant of each of which is equal to the same value

∆ = (1− λ) (a1a2 − a0a3) . (2)

From formula (2), we obtain the following invertibility condition for the vector A =
(a0, a1, a2, a3)

a1a2 ̸= a0a3. (3)

Consider the non-invertible vectors G = (g0, g1, g2, g3), for which the equality g1g2 = g0g3
holds true. The FNAA under consideration contains a set of elements that act on some given
non-invertible vector G as left-sided local units. Many such units can be found by solving a
vector equation of the form

X ◦G = G, (4)

which reduces to solving the following system of four linear equations
(λg0 + g2)x0 + (g0 + g2)x1 = g0,

(λg1 + g3)x0 + (g1 + g3)x1 = g1,

(λg0 + g2)x2 + (g0 + g2)x3 = g2,

(λg1 + g3)x2 + (g1 + g3)x3 = g3.

(5)

System (5) splits into two independent systems of two equations with two unknowns,
each of which has p different solutions giving p2 different solutions of the system (5), which
describe the following set of local left-sided units L corresponding to the vector G and all
possible powers Gk

L = (l0, l1, l2, l3) =

(
x0,

g0 − (λg0 + g2)x0
g0 + g2

, x2,
g2 − (λg0 + g2)x2

g0 + g2

)
, (6)

where x0, x2 = 0, 1, . . . , p− 1. The set of local left-sided units (6) includes p2 − p invertible
vectors and p non- invertible vectors.

Set of right-sided local units corresponding to a vector G and to vectors Gk, can be found
as solutions to the vector equation

G ◦X = G. (7)

Vector equation (7) is reduced to the following system of four linear equations
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(λg0 + g1)x0 + (g0 + g1)x2 = g0,

(λg2 + g3)x0 + (g2 + g3)x2 = g2,

(λg0 + g1)x2 + (g0 + g1)x3 = g1,

(λg2 + g3)x2 + (g2 + g3)x3 = g3.

(8)

System (8) splits into two independent systems of two equations with two unknowns,
each of which has p solutions that define p2 different solutions of the system (8). The latter
determine the following set of right-sided local units R

R = (r0, r1, r2, r3) =

(
x0, x1,

g0 − (λg0 + g1)x0
g0 + g1

,
g1 − (λg0 + g1)x1

g0 + g1

)
, (9)

where x0, x1 = 0, 1, . . . , p−1. The set of local right-sided units (9) includes p2−p invertible
vectors and p non-invertible vectors.

The intersection of sets (6) and (9) describes p different two-sided local units E, corre-
sponding to vectors of the form Gk (for k = 1, 2, . . . ). This intersection of sets is described
by the following formula

E=

(
x0,

g0 − (λg0 + g2)x0
g0 + g2

,
g0 − (λg0 + g1)x0

g0 + g1
,

g1g2 − λg20
(g0 + g1)(g0 + g2)

+
(λg0 + g1)(λg0 + g2)x0

(g0 + g1)(g0 + g2)

)
,

(10)
where x0 = 0, 1, 2, . . . , p− 1. The set (10) includes p− 1 invertible vectors and unique vector
EG that is a non-invertible element of the algebra. The vector EG is the unit of the cyclic
group generated by all possible all possible powers of the vector G. The EG value can be
calculated using the formula EG = Gω where ω is a devisor of the number p2 − 1. From
expressions (6) and (9) it is easy to obtain one more formula for calculating the value EG

EG =

(
k,

g1
g0

k,
g0 − (λg0 + g1)k

g0 + g1
,
g0g1 − (λg0 + g1)g1k

g20 + g0g1

)
, (11)

where k = g20
(
λg20 + g0g1 + g0g2 + g1g2

)−1
. Finding the value of EG by formula (11) has a

significantly lower computational complexity.

3.3. Six-dimensional FNAA

The 6-dimensional FNAA used in this article was obtained as a particular representative
of the FNAA class of arbitrary even dimension, given by the general method proposed in [15].
This FNAA is defined over the field GF (p), whose characteristic is equal to a prime number
p = 2q + 1, where q is a 512-bit prime number.

The global two-sided unit of this six-dimensional FNAA is the vector E = (1, 0, 0, 0, 0, 0).
The invertible 6-dimensional vectors of a this algebra have the order ω, that is a divisor of the
integer p2−1, includingly the value p2−1. Finding vectors having order ω = p2−1 is carried

out by choosing random invertible vectors Q and checking that the condition Q
p2−1

d ̸= E
holds true for all prime divisors d | p2 − 1.

When developing a blind signature protocol on a 6-dimensional FNAA, non-invertible
vectors that have a local order equal to a prime number q of large size and a value of
the structural coefficient λ, which is a quadratic residue in GF (p), are used. In [15], the
existence of two types of non-invertible vectors was shown. Non-invertible vectors G =
(g0, g1, g2, g3, g4, g5) of the first type satisfy the following condition
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Table 2: Setting a 6-dimensional FNAA over GF (p) by method [15]

◦ e0 e1 e2 e3 e4 e5

e0 e0 e1 e2 e3 e4 e5

e1 e1 λe0 e5 λe4 e3 λe2

e2 e2 e3 e4 e5 e0 e1

e3 e3 λe2 e1 λe0 e5 λe4

e4 e4 e5 e0 e1 e2 e3

e5 e5 λe4 e3 λe2 e1 λe0

(g0 + g2 + g4)
2 = λ(g1 + g3 + g5)

2. (12)

Non-invertible vectors G = (g0, g1, g2, g3, g4, g5) of the second type satisfy the following
condition

(g0 − g2)
2 + (g0 − g4)

2 + (g2 − g4)
2 = λ((g1 − g3)

2 + (g1 − g5)
2 + (g3 − g5)

2). (13)

If the structure coefficient λ is a quadratic non-residue in the field GF (p), then there is a
single non-invertible vector (0, 0, 0, 0, 0, 0) of the first type. If the structure coefficient λ is a
quadratic residue, then there are a set of non-invertible vectors of both the first and second
types. For large sizes of the characteristic of the field GF (p), the probability of obtaining
a non-invertible vector by randomly choosing 6-dimensional vectors is very low; therefore,
to find non-invertible vectors in the considered 6-dimensional FNAA in [15] algorithms for
generating non-invertible vectors are proposed, in which relations (12) and (13) are used.

The non-invertible 6-dimensional vectors of the considered FNAA are of the order ω
equal to all possible divisors of the number p2 − 1, includingly the value p2 − 1. Finding
non-invertible vectors of order ω = q is performed by choosing random non-invertible vectors

N and checking whether the condition G = N
p2−1

q ̸= E holds true.

4. BLIND SIGNATURE PROTOCOLS

4.1. Initial signature scheme on the four-dimensional algebra

We will assume that the 4-dimensional FNAA used as an algebraic carrier of the proposed
digital signature scheme is given over a ground finite field GF (p), where a 512-bit prime with
the structure p = 2q+1, is used as a characteristic p, where q is a prime number of a large size,
for example equal to 512 bits. To construct a post-quantum EDS scheme with the possibility
of performing a formal reductionist security proof proposed earlier in [18] for EDS schemes
based on the computational difficulty of the DL problem, we will use the Schnorr signature
scheme [20] as a prototype. Unlike the prototype, in which the base cyclic group is explicitly
set as an algebraic carrier of the cryptoscheme, in the EDS scheme based on the HDLP the
base cyclic group is hidden and the EDS authentication includes calculations in two other
cyclic groups. The values obtained in the latter are interconnected through the values of the
elements of the basic cyclic group. Due to the said interconnection the correct operation of
the EDS scheme based on the proposed version of the HDLP is ensured.

The mutual commutativity of masking operations with the exponentiation operation is
used in the following procedure for generating a public key in the form of a triplet of vectors
(Y, Z, T ):
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1. Generating various random coordinate values g0, g1, g2 and g3, satisfying the condition
g1g2 = g0g3, choose a random non-invertible vector G, whose local order is equal to
p− 1.

2. Using the formula (10) and choosing random values of the variable x0, generate an
invertible vector Q∗ of the order q, which is a local two-sided unite of the non-invertible
vector G.

3. Generate a random natural number α < q that is a primitive element in the finite field
GF (p) and compute an invertible vector Q of the order q, which possesses the property

if permutability with the non-invertible vector G: Q = α
p−1
q Q∗. One can easily see

that the vector Q has order equal to the prime q.

4. Generate two random 4-dimensional vectors A and B of the order q, for which the
no-equalities A ◦B ̸= B ◦A, A ◦Q ̸= Q ◦A, and B ◦Q ̸= Q ◦B, hold true.

5. Generate at random natural number x < q and calculate the first element of the public
key in the form of the vector Y = A ◦Qx ◦A−1.

6. Calculate the second element of the public key in the form of the vector Z = B◦Q◦B−1.

7. Calculate the third element of the public key in the form of the vector T = A◦G◦B−1.

When generating the public key in the form of a triplet of vectors (Y,Z, T ), the following
random elements were selected, which are secret parameters: the generator of the basic cyclic
group Q, non-invertible vector G (permutable with vector Q), invertible vectors A and B,
and natural number x. It is assumed that after the formation of the public key, its owner
only needs to store as his private secret key the values x, Q, A and D = G ◦B−1, which are
used in the digital signature generation procedure.

In the proposed initial signature scheme, the procedure for generating a signature in the
form of a pair of numbers (e, s) to some electronic document M includes the following steps:

1. Generate at random an integer k < q.

2. Calculate the vector-fixator V = A ◦Qk ◦D.

3. Calculate the first signature element in the form of number e = Fh(M,V ), where Fh

is a specified hash function.

4. Calculate the second signature element in the form of the number s

s = k − ex mod q.

The procedure for verifying the authenticity of the signature (e, s) to the document M is
performed using the public key (Y, Z, T ) as follows:

1. Calculate the vector Ṽ = Y e ◦ T ◦ Zs.

2. Calculate the value ẽ = Fh(M, Ṽ ).

3. Compare values ẽ and e. If ẽ = e then the signature (e, s) is recognized as genuine.
Otherwise, the signature is rejected.

The formal proof of the correctness of the proposed EDS scheme is to show that substitu-
tion of the signature value, calculated correctly in accordance with the signature generation
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procedure, to the input of the authentication procedure will lead to confirmation of the EDS
authenticity. This substitution sets the following

Ṽ = Y −e ◦ T ◦ Zs =
(
A ◦Qx ◦A−1

)e ◦A ◦G ◦B−1
(
B ◦Q ◦B−1

)s
= A ◦Qex ◦G ◦Qs ◦B−1 = A ◦Qex ◦Qs ◦G ◦B−1

= A ◦Qex ◦Qk−ex ◦D = A ◦Qk ◦D
= V

⇒ Fh

(
M, R̃

)
= Fh (M,R) ⇒ ẽ = e .

To understand the method of implementing the blind signature protocol based on the
described initial EDS scheme, it is useful to consider an alternative signature generation
procedure, in which only one secret value is used, namely, the discrete logarithm value in
the hidden group, i.e. the value x. An alternative procedure for generating EDS requires
one additional exponentiation operation and is described as follows:

1. Generate a pair of random non-negative integers t < q and u < q.

2. Calculate the vector-fixator V = Y t ◦ T ◦ Zu.

3. Calculate the first signature element e = Fh(M,V ).

4. Calculate the second signature element s

s = u+ (t− e)x mod q.

4.2. Initial signature scheme on the six-dimensional algebra

We assume that the 6-dimensional FNAA used as an algebraic support is given over a
ground finite field GF (p), where the characteristic p represents a prime number having the
structure p = 2q+1 with a prime q of sufficiently large size (384 or more bits). To construct a
post-quantum EDS scheme with the possibility of performing a formal reductionist security
proof, proposed earlier in [18] for EDS schemes based on the computational complexity of
DL problem, we use the Schnorr signature scheme [20] as a prototype. In contrast to the
prototype, in which the basic cyclic group is explicitly defined as the algebraic carrier of the
cryptoscheme, in the EDS scheme based on the HDLP, the basic cyclic group is hidden and
EDS authentication involves calculations in two other cyclic groups. The values obtained in
the latter are interfaced through the values of the elements of the basic cyclic group, which
ensures the correct operation of the EDS scheme based on the proposed version of the HDLP.

The mutual commutativity of masking operations with exponentiation is used in the
following procedure for generating a public key in the form of a triplet of vectors (Y,Z, T ):

1. Generating different random values for the coordinates g0, g1, g2, g3, g4, and g5, for
which equality (12) holds true, choose a random non-invertible vector G, whose local
order is equal to a prime number q.

2. Generating different random values for the coordinates a0, a1, a2, a3, a4, and a5, for
which equalities (12) and (13) do not hold simultaneously, choose a random invertible
vector A, whose order is equal to the number p2−1, and the non-equality A◦G ̸= G◦A
is fulfilled.

3. Calculate a vector equal to the inverse value of the vector A: A−1 = Ap2−2.
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4. Generating different random values for the coordinates b0, b1, b2, b3, b4, and b5, for which
equalities (12) and (13) do not hold simultaneously, choose a random invertible vector
B, whose order is equal to the number p2 − 1, and the non-equality B ◦G ̸= G ◦ B is
fulfilled.

5. Calculate a vector equal to the inverse value of the vector B: B−1 = Bp2−2.

6. Generate a random natural number x < q and calculate the first element of the public
key as a vector Y = A ◦Gx ◦A−1.

7. Calculate the second element of the public key as a vector Z = B ◦G ◦B−1.

8. Generate a random natural number d < q and calculate the third element of the public
key as a vector T = A ◦Gd ◦B−1.

When forming a public key in the form of triplet of vectors (Y, Z, T ) the following random
elements, which are secret parameters, were selected: the generator of the basic cyclic group
G, invertible vectors A and B and non-negative integers x and d. It is assumed that after the
formation of a public key, its owner only needs to store the following values as his personal
secret key x, d, G, A, and B−1, which are used in the digital signature generation procedure.

In the proposed initial signature scheme, the procedure for generating a signature in the
form of a pair of numbers (e, s) to some electronic document M includes the following steps:

1. Generate a random natural number k < q.

2. Calculate the fixator-vector V = A ◦Gk ◦B−1.

3. Compute the first signature element as the binary number e = Fh(M,V ) where Fh is
a specified hash-function.

4. Compute the second signature element as the binary number s
s = k − d− ex mod q.

Procedure for verifying a signature (e, s) to the document M is executed using the public
key (Y,Z, T ) as follows:

1. Calculate the vector Ṽ = Y e ◦ T ◦ Zs

2. Calculate the value ẽ = Fh(M, Ṽ )

3. Compare values ẽ and e. If ẽ = e then the signature (e, s) is recognized as genuine.
Otherwise, the signature is rejected.

Formal proof of the correctness of the proposed EDS scheme is performed as follows
Ṽ = Y −e ◦ T ◦ Zs =

(
A ◦Gx ◦A−1

)e ◦A ◦Gu ◦B−1
(
B ◦G ◦B−1

)s
= A ◦Gex ◦Gd ◦Gs ◦B−1 = A ◦Gex+d ◦Gk−d−ex ◦B−1

= A ◦Gk ◦B−1

= V

⇒ Fh

(
M, R̃

)
= Fh (M,R)

⇒ ẽ = e.
Just as in the EDS scheme on the 4-dimensional algebra, an alternative EDS generation

procedure can be used to calculate the signature, which includes the following steps:

1. Generate a pair of random natural numbers t < q and u < q.

2. Calculate the fixator-vector V = Y t ◦ T ◦ Zu.

3. Compute the first signature element as the binary number e = Fh(M,V )

4. Compute the second signature element as the binary number s
s = u+ (t− e)x mod q.

Note that the alternative procedures for generating a signature in both the signature
schemes match.
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4.3. Method of applying blinding multipliers

In general, the DL problem is formulated in a finite cyclic group Γ contained, for example,
in some given FNAA, as a solution of an equation of the form W = Gx, where W and G
are some given elements of the group Γ, x is an unknown natural number. If over one of
the elements W and G or over both of them the operations of automorphic or homomorphic
mapping of FNAA using secret parameters is performed, then the specified two elements will
be mapped in the vectors of Y and Z correspondingly. The HDLP consists in calculating
the value x using the known values Y and Z. The latter generally lie in different cyclic
groups contained in the FNAA and different from Γ. The main contribution to the security
of cryptosystems based on HDLP is made by the exponentiation operation to an integer
power of large size. This operation is called basic.

The use of functions of automorphic or homomorphic mapping of FNAA as masking
operations is determined by the fact that in order to ensure the possibility of constructing
cryptosystems based on HDLP, it is necessary to provide the property of mutual commu-
tativity of the base operation with each of the masking operations. If this requirement is
met, [14, 13]. Within the framework of this analogy, the following method of constructing a
blind signature scheme based on the DL problem is proposed. Select an EDS scheme based
on the DL problem and constructed by analogy with the Schnorr EDS scheme [20], for which
a method is known for constructing a blind EDS scheme using two different types of blinding
multipliers: 1) the multiplier formed as a result of exponentiating the value of the signer’s
public key to a random power µ and 2) the multiplier formed as a result of exponentiating
the generator G to a random power ε. In the well-known blind signature protocol [18], at
the first step, the signer generates a fixator (his one-time public key) and passes it to the
user, who forms two blinding multipliers of the specified types and sequentially multiplies
the fixator by each of them. The same mechanism can also be used when constructing a
blind signature scheme based on the HDLP, introducing the following clarification: when
performing multiplication by blinding multipliers, it should be taken into account that the
EDS verification equation is set in a non-commutative algebra, so multiplication by each
of the blinding multipliers should be performed strictly on the right or strictly on the left,
depending on the multiplier and the original EDS scheme used.

The initial signature schemes introduced in Subsections 4.1 and 4.2 are analogs of the
Schnorr EDS scheme implemented on the basis of the HDLP. It should be noted that in
the initial EDS schemes based on the computational complexity of the HDLP, for forging a
signature it is enough to calculate the values x and d when using the public key. Indeed, to
calculate the signature, you can use the alternative procedure for generating a signature, in
which the fixator-vector is calculated using three elements of the public key Y,Z and T in
correspondence with the formula V̄ = Y t ◦T ◦Zu, where t < q and u < q are random natural
numbers. Taking into account the existence of an alternative procedure for generating EDS,
it is possible to formulate the version of the HDLP, used in the introduced EDS scheme as
the calculation of a natural number x when using a known public key.

In the blind signature protocol, the value of the fixator-vector V̄ = Y t ◦T ◦Zu generated
by the signer, is passed to the client to inset blinding multipliers. The last formula tells us
that a blind digital signature protocol should include a step at which the client generates a
random natural numbers µ < q and ε < q and forms blinding multipliers Y µ and Zε, and
then calculates the value of the fixator-vector V = Y µ ◦ V̄ ◦Zε, associated with the genuine
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signature, which will be used by the client to calculate the first element e of the authentic
signature and calculate the first element ē of the blind signature (the calculation of the first
element does not require knowledge of the secret key associated with the public key). An
important distinguishing feature is the use of the multiplier Y µ as the left operand, and the
multiplier Zε as the right operand.

4.4. A blind signature protocol on the four-dimensional algebra

To build a blind EDS protocol, we will use the basic digital signature scheme described
in Subsection 4.1.

The proposed blind digital signature protocol includes the following steps:

1. The signer generates a random number k < q and calculates the fixator-vector V̄ =
A ◦Gk ◦D. Then he sends the value of V̄ to client who wish to obtain from the signer
a digital signature to the document M .

2. The client generates two random natural numbers µ < q and ε < q and calculates the
vector V = Y µ ◦ V̄ ◦ Zε and the first element of genuine signature e = Fh(M,V ).

3. The client then calculates the first element of the blind signature ē = e−µ mod q and
sends it to the signer.

4. Using his private secret key x, the signer calculates the second element s̄ of blind
signature:s̄ = k − ēx mod q. He then sends the value s̄ to the client.

5. By value s̄, the client calculates the second element s of the authentic signature to the
document M : s = s̄+ ε mod q.

Procedure for verifying a signature (e, s) to the document M is executed using the public
key (Y,Z, T ) as follows:

1. Calculate the vector Ṽ = Y e ◦ T ◦ Zs

2. Calculate the value ẽ = Fh(M, Ṽ )

3. If ẽ = e then the signature (e, s) is accepted as genuine one. Otherwise, the signature
is rejected.

The correctness of the described blind EDS protocol is proved by substituting the sig-
nature for the input of the specified verification procedure and demonstrating that it passes
verification as a genuine signature.

The proof of correctness of the blind digital signature protocol

Ṽ = Y e ◦ T ◦ Zs = Y ē+µ ◦ T ◦ Z s̄+ε

= Y µY ē ◦ T ◦ Z s̄ ◦ Zε = Y µ ◦ V̄ ◦ Zε = V

⇒ ẽ = Fh

(
M, Ṽ

)
= Fh (M,V ) = e.

4.5. The blind signature protocol on the six-dimensional algebra

To build a blind EDS protocol, we will use the basic digital signature scheme described
in Subsection 4.2.

The proposed blind signature protocol on the 6-dimensional algebra includes the following
steps:
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1. The signer generates a random number k < q and calculates the fixator-vector V̄ =
A◦Gk ◦B−1. He then directs the value V̄ to the client who wants to receive the signer’s
EDS to the document M .

2. The client generates two random natural numbers µ < q and ε < q and computes the
vector V = Y µ ◦ V̄ ◦Zε and the first element of the authentic signature e = Fh(M,V ).

3. The client then calculates the first element of the blind signature ē = e−µ mod q and
sends it to the signer.

4. Using his private secret key x, the signer calculates the second element s̄ of blind
signature s̄ = k − d− s̄x mod q. He then directs the value s̄ to the client.

5. By the value of s̄ the client calculates the second element s of the authentic signature
to the document M s = s̄+ ε mod q.

Procedure for verifying a signature (e, s) to the document M is executed, using the public
key (Y,Z, T ), in full compliance with the verification procedure of the initial signature scheme
described in Section 4.2. The proof of correctness of the protocol is identical to the proof of
correctness of the blind signature protocol described in Subsection 4.4.

5. DISCUSSION

When developing the signature schemes described in Section 4, a design criterion was
used, which can be formulated as follows: based on the use of public parameters of the
EDS scheme, it should be computationally impossible to specify a periodic function that takes
values in an explicitly specified cyclic group and contains a period that depends on the value
of the discrete logarithm x.

In both described EDS schemes, the public key elements Y and Z are generators of
various cyclic groups contained in the algebraic support of the cryptoscheme. The groups
generated by the vectors Y and Z are associated with a hidden cyclic group, so when using
the matching element T of the public key, you can specify a periodic function from two
integer variables i and j with a period (−1, x), the length of which depends on the value of
x: F (i, j) = Y i ◦ T ◦ Zj = Y i−1 ◦ T ◦ Zj+x. However, the values of the function F (i, j) lie
in many different cyclic groups contained in the FNAA used as an algebraic support. At
the same time, it is impossible to distinguish any fixed cyclic group, which with a significant
probability includes the values of the function F (i, j). This circumstance does not allow us
to apply the quantum Shor algorithm [21] to find the value of x.

An important technique for constructing EDS schemes based on the HDLP is to use
the matching element T of the public key, which is a non-invertible vector. This technique
eliminates the possibility of calculating the inverse value T−1, with which it would be possible
to construct a periodic function F ∗(i, j) = Y i ◦ (Z∗)j = Y ◦ (T ◦ Z ◦ T−1)j .

In the case of a blind signature protocol on the 4-dimensional FNAA, a hidden group
generated by an invertible element of the Q algebra is used, and the matching parameter
is calculated by the formula T = A ◦ G ◦ B−1, which uses a non-invertible element G that
is mutually permutable with the vector Q. The permutability property of these elements
is necessary to ensure the correctness of the EDS scheme. When forming a public key, a
non-invertible vector G is first generated, which has a local order equal to a sufficiently large
prime number, and then a two-sided local unit is selected Q∗, corresponding to the vector
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G and being permutable with G. Since the vector Q is computed by scalar multiplication

of the invertible vector Q∗ of order q and number α
p−1
q , the order of which is also equal to

q, then the order of the vector Q is equal to q. Evidently the vector Q is permutable with
the vector G. When using a 4-dimensional FNAA as algebraic support of the HDLP-based
signature schemes one obtains higher performance than in the case of using the FNAA having
dimensions m ≥ 6. However, one can expect that in the latter case some possible future
attacks on the signature schemes on 4-dimensional FNAAs will be potentially inefficient.
The use of the 6-dimensional FNAA as an algebraic support illustrates some features of the
signature scheme design.

In the case of a blind signature protocol on the 6-dimensional FNAA, it is not obvious
how one can generate an invertible vector Q that would be permutable with a non-invertible
vector G, therefore, as a hidden group, the group generated by the non-invertible vector G
is used, which is also used to specify the non-invertible matching element T of the public
key T = A ◦ Gd ◦ B−1. Exponentiation of the vector G to power d when computing the
vector T is connected with the fact that without this exponentiation operation, there would
be a linear relationship between the elements T and Z of the public key through the vector
X = A ◦ B−1 : T = X ◦ Z. The latter equation can be solved reducing it to the solving
a system of six linear equations. After finding the value of X one can compute the vector
Z ′ = X ◦ Z ◦X−1, such that Y = Z ′x, i. e. the HDLP could be reduced to ordinary DL
problem.

The Schnorr signature scheme [20] and the blind signature protocols [1, 18] use compu-
tation in the finite ground field GF (p). To provide 109-bit security level one should set the
size of the prime p equal to 2048 or more bits. The computational complexity of the multi-
plication operation modulo p is a quadratic function of the size of p. Taking into account the
latter, one can state that the proposed initial signature schemes and blind signature proto-
cols on the 4-dimensional (6-dimensional) FNAA have significantly higher (about the same)
performance. However the cryptoschemes [18, 20], are not resistant to quantum attacks.
Post-quantum resistance is the main advantage of the proposed cryptoschemes against the
blind signature protocols [1, 2, 18].

One can expect that post-quantum resistance can be provided by the blind signature
protocols designed on the base of post-quantum signature schemes Falcon [8], Crystals-
Dilithium [6], and Rainbow [5] (finalists of the NIST competition in nomination of post-
quantum signature algorithms [19]). However, in the latter case the sum size of public
key and signature is very large (> 3000 bytes) that is a significant disadvantage for many
practical applications of blind signatures.

To improve significantly the performance of the proposed cryptoschemes one can use a
FNAAs set over the field GF (p) with prime p = 2q + 1, where the prime q = 2256 + (c−1)

2
with an odd 32-bit integer c (selected so that the value p = 2257 + c is prime). In this case
the multiplication modulo p can be performed without executing the arithmetic division
operation. Selection of the other cryptoscheme parameters do not affect on the performance.

6. CONCLUSIONS

A method for constructing blind EDS protocols based on the HDLP is proposed and a
specific version of such a protocol is developed when using two different algebraic carriers
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each of which contains a global two-sided unit: a 4-dimensional and a 6-dimensional FNAAs
set over a finite ground field GF (p). A characteristic feature of the proposed blind signature
protocols based on the hidden discrete logarithm problem is the use of left-sided and right-
sided masking multipliers, which is determined by the fact that the vectors that are elements
of the public key are non-permutable.

The proposed protocols are of practical interest as post-quantum blind signature proto-
cols, due to the fact that they have a fairly high performance and relatively small size of the
public parameters of the cryptoscheme.
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