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Abstract. Pythagorean picture fuzzy set (PPFS) is a combination of Picture Fuzzy Set and the

Yager’s Pythagorean Fuzzy Set [12–14]. In the first part of the paper [17] we introduced some basic

notions namely the set operators on PPFS. The missing part in our previous work is defining the

extension of such the operators on the Spherical Fuzzy Sets toward applications of multiattribute

group decision making problems. In this second part, we will tackle this issue and present some main

operators on PPFS such as the picture negation operator, picture t-norm, picture t-conorm, picture

implication operators on PPFS. Lastly, the compositional rule of inference in PPFS is presented

accompanied with a numerical example.

Keywords. Picture fuzzy set; Pythagorean picture fuzzy set; Picture logic operators; Decision-
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1. INTRODUCTION

Bui Cong Cuong and Vladik Kreinovich firstly defined the concept of the picture fuzzy
sets (PFS) in 2013 [8], which is the generalization of the Zadeh’ fuzzy sets [1] and the
Antanassov’s intuitionistic fuzzy sets [3]. This concept is particularly effective in approaching
the practical problems in relation to the synthesis of ideas, such as decisions making problems,
voting analysis, fuzzy clustering, financial forecasting. The basic notions of the picture fuzzy
sets theory were given in [9–11, 34, 35]. The connectives in picture fuzzy logic were also
presented in [8] that supported to new computing procedures in computational intelligence
and in other applications (see [17-33]).

In 2013 Yager introduced a new concept – Pythagorean fuzzy set (PFS, see [12–14]) with
some applications in decision making. This paper is devoted to Pythagorean Picture Fuzzy
set (PPFS) - a combination of Picture fuzzy set and the Pythagorean fuzzy set. Firstly,
we present basic notions on PPFS such as set operators and Cartesian product of PPFS,
Pythagorean picture relation, Pythagorean picture fuzzy soft set. Next, we will study some
basic operators of the Picture Fuzzy Logic on PPFS.
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2. PRELIMINARY

2.1. Pythagorean picture fuzzy sets

We first recall the basic notions of the picture fuzzy sets.

Definition 1.1. [9] A picture fuzzy set A on a universe U is an object of the form

A = {(u, x1A(u), x2A(u), x3A(u)) |u ∈ U} ,

where x1A(u), x2A(u), x3A(u) are respectively called the degree of positive membership,

the degree of neutral membership, the degree of negative membership of u in A, and the

following conditions are satisfied

0 ≤ x1A(u), x2A(u), x3A(u) ≤ 1 and 0 ≤ x1A(u) + x2A(u) + x3A(u) ≤ 1, ∀u ∈ U.

Then, ∀u ∈ U : x4A(u) = 1 − (x1A(u) + x2A(u) + x3A(u)) is called the degree of refusal

membership of u in A.

Definition 1.2. [17, 19] A Pythagorean picture fuzzy set (PPFS) A on a universe U is an

object of the formA = {(u, x1A(u), x2A(u), x3A(u)) |u ∈ U} , where x1A(u), x2A(u), x3A(u)
are respectively called the degree of positive membership, the degree of neutral membership,

the degree of negative membership of u in A, and the following conditions are satisfied

0 ≤ x1A(u), x2A(u), x3A(u) ≤ 1 and 0 ≤ x21A(u) + x22A(u) + x23A(u) ≤ 1, ∀u ∈ U.

Consider the set D∗ =
{
x = (x1, x2, x3)|x ∈ [0,1]3, x1 + x2 + x3 ≤ 1

}
, and

P ∗ = {x = (x1, x2, x3)|x ∈ [0,1]3, x21 + x22 + x23 ≤ 1}.

Denote 0D∗ = 0P ∗ = (0, 0, 1) ∈ P ∗, 1D∗ = 1P ∗ = (1, 0, 0) ∈ P ∗, D∗ ⊆ P ∗.

From now on, we will assume that if x ∈ P ∗, then x1, x2 and x3 denote, respectively,

the first, the second and the third component of x, i.e., x = (x1, x2, x3). Let x, y ∈ P ∗, y =

(y1, y2, y3).

We have a lattice (P ∗,≤1), where ≤1 is defined by ∀x, y ∈ P ∗

(x ≤1 y) ⇔ (x1 < y1, x3 ≥ y3) ∨ (x1 = y1, x3 > y3) ∨ ({x1 = y1, x3 = y3, x2 ≤ y2}) ,

(x = y) ⇔ (x1 = y1, x2 = y2, x3 = y3), ∀x, y ∈ P ∗.

We define the first, second and third projection mappings pr1, pr2 and pr3 on P ∗, as

pr1(x) = x1 and pr2(x) = x2 and pr3(x) = x3, for all x ∈ P ∗.

Note that, if for x, y ∈ P ∗ neither x ≤1 y nor y ≤1 x, then x and y are incomparable

w.r.t ≤1, denoted as x∥≤1
y.

For each x, y ∈ P ∗, we define

inf(x, y) =

{
min(x, y), if x ≤1 y or y ≤1 x,
(x1 ∧ y1, 1− x1 ∧ y1 − x3 ∨ y3, x3 ∨ y3), otherwise,
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sup(x, y) =

{
max(x, y), if x ≤1 y or y ≤1 x,
(x1 ∨ y1, 0, x3 ∧ y3), otherwise.

Proposition 1.1. With these operators (P ∗,≤1) is a complete lattice.

Proof. See [11].

Using this lattice, we easily see that every picture fuzzy set

A = {(u, x1A(u), x2A(u), x3A(u))| |u ∈ U} ,

corresponds an P ∗− fuzzy set mapping [11], i.e., we have a mapping

A : U → P ∗ : u → {(u, x1A(u), x2A(u), x3A(u)) |u ∈ U}.

Interpreting picture fuzzy sets as P ∗−fuzzy sets gives a way to increase flexibility in

calculating with membership degrees, since the triple of numbers formed by the three degrees

is an element of P ∗, and often allows to have more compact formulas.

Let PFS(U) denote the set of all the picture fuzzy set PFSs on a universe Uand

PPFS(U) denote the set of all the Pythagorean picture fuzzy set PPFSs on a universe

U. ■

Definition 1.3. For every two PPFSs A and B, the inclusion, union, intersection and

complement are defined as follows:

• A ⊆ B iff (∀u ∈ U, x1A (u) ≤ x1B (u) , x2A (u) ≤ x2B (u) , x3A (u) ≥ x3B (u)) ,

• A = B iff (A ⊆ B and B ⊆ A) ,

• A ∪B = {(u, x1A (u) ∨ x1B (u) , x2A (u) ∧ x2B (u) , x3A (u) ∧ x3B (u)) |u ∈ U } ,
• A ∩B = {(u, x1A (u) ∧ x1B (u) , x2A (u) ∧ x2B (u) , x3A (u) ∨ x3B (u)) |u ∈ U } ,

• A = Ac =
{(

u, x3A (u) ,
√
1−

(
x21A (u) + x22A (u) + x23A (u)

)
, x1A (u)

)
|u ∈ U

}
.

Definition 1.4. Let two sets U1and U2 be two universes and let

A = {(u, x1A(u), x2A(u), x3A(u)) |u ∈ U1},

and B = {(v, x1A(v), x2A(v), x3A(v)) |v ∈ U2} , be two PPFS sets. We define the Cartesian

product of these PPFS’s

A×B = {((u, v), x1A(u) ∧ x1B(v), x2A(u) ∧ x2B(v), x3A(u) ∨ x3B(v)) |(u, v) ∈ U1 × U2} .

We denote the set of all picture fuzzy sets over X1 ×X2 by PPFS(X1 ×X2).

Theorem 1.1. For every three universes U1, U2, U3 and four PPFSsO1, O2 ∈ PPFS(U1), O3 ∈
PPFS(U2)O4 ∈ PPFS(U3) there hold the relations

O1 ×O3 = O3 ×O1,

(O1 ×O3)×O4 = O1 × (O3 ×O4) ,

(O1 ∪O2)×O3 = (O1 ×O3) ∪ (O2 ×O3) ,

(O1 ∩O2)×O3 = (O1 ×O3) ∩ (O2 ×O3) .
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2.2. Pythagorean picture fuzzy relation

The Zadeh’ composition rule of inference (see [6, 11, 15]) is a well-known method in

approximation theory and in inference methods in fuzzy control theory. Intuitionistic fuzzy

relations were received many results by researches (see [4,5]). In this section we shall present

some preliminary results in Pythagorean picture fuzzy relations.

Let X,Y and Z be ordinary non-empty sets.

An extension of the results given in [6, 7] for PPFS is the following.

Definition 1.5. A Pythagorean picture fuzzy relation R is a Pythagorean picture fuzzy

subset of X × Y, given by

R = {((x, y), z1R(x, y), z2R(x, y), z3R(x, y)) |x ∈ X, y ∈ Y )} ,

where z1R : X × Y → [0, 1], z2R : X × Y → [0, 1], z3R : X × Y → [0, 1] satisfy the condition

0 ≤ z21R(x, y) + z22R(x, y) + z23R(x, y) ≤ 1 for every (x, y) ∈ (X × Y ) .

3. SOME MAIN PICTURE LOGIC OPERATORS ON PPFS

Consider the set P ∗ =
{
x = (x1, x2, x3)|x ∈ [0,1]3, x21 + x22 + x23 ≤ 1

}
.

From now on, we will assume that if x ∈ P ∗, then x1, x2 and x3 denote, respectively, the

first, the second and the third component of x, and x = (x1, x2, x3) is called a Pythagorean

picture fuzzy number.

Now we consider some basic connectives of the Picture Fuzzy Logic on PPFS.

3.1. Picture negation on PPFS

Picture negations on PPFS form an extension of the fuzzy negations [2, 5] and the intu-

itionistic fuzzy negations [4]. They are defined as follows.

Definition 2.1. A mapping N : P ∗ → P ∗ satisfying conditions N(0P ∗) = 1P ∗ and N(1P ∗) =

0P ∗ and N is nonincreasing is called a picture negation operator on PPFSs.

If N (N(x)) = x for all x ∈ P ∗, then N is called an involutive negation operator.

Definition 2.2. Let f1, f2 : P ∗ → D∗ be mappings on D∗. We say that the mapping f2 is

greater than f1 if f1(x) ≤1 f2(x), ∀x ∈ P ∗, then we denote f1 ≤ f2. We write f1 < f2, if

f1 ≤ f2 and f1 ̸= f2.

Let x = (x1, x2, x3) ∈ P ∗. We first give 2 drastic picture negation operators on PPFS

nd (x) =

{
0P ∗ if x ̸= 0P ∗

1P ∗ if x = 0P ∗ ,
nd2 (x) =

{
1P ∗ if x ̸= 1P ∗

0P ∗ if x = 1P ∗ .

Proposition 2.1. The operators nd and nd2 are picture negation operators on PPFS and for

each picture negation operator n(x) on PPFS nd(x) ≤1 n(x) ≤1 nd2(x), ∀x ∈ P ∗.

Definition 2.3. The mapping n0 : P ∗ → P ∗ is defined by n0(x) = (x3, 0, x1), for each

x ∈ P ∗.
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Proposition 2.2. n0 is a picture negation operator on PPFS. It is called the simple picture

negation.

Proof. See the proof in page 145 [11].

Definition 2.4. Let x = (x1, x2, x3) ∈ P ∗. Denote z4 =
√
1− (x21 + x22 + x23). The mapping

NS is defined by NS(x) = (x3, z4, x1), for each x ∈ P ∗.

Proposition 2.3. NS is an involutive picture negation operator on PPFS.

Proof. Indeed, NS(x) = (x3, z4, x1) = (x3,
√

1− (x21 + x22 + x23), x1) ⇒

NS(NS(x)) = NS(x3,
√

1− (x21 + x22 + x23), x1)

= (x1,

√
1− (x21 + (

√
1− (x21 + x22 + x23))

2 + x23, x3)

= (x1,

√
1− (x21 + (

√
1− x21 − x22 − x23)

2 + x23, x3)

= (x1,
√

x22, x3)

= x.

■

3.2. Picture t-norms and t-conorms on PPFS

Fuzzy t-norms on [0,1] and fuzzy t-conorms on [0,1] which are important connectives in

fuzzy logic were defined and considered in [2] (see also in [5, 6]).

Now we define picture t-norms and picture t-conorms on PPFSs, which are classes of

conjunction operators and classes of disjunction operators - main basic operators on PPFS

of the picture fuzzy logics. Picture fuzzy t-norms are direct extensions of the fuzzy t-norms

in [2,5,6] and of the intuitionistic fuzzy t-norms in [4]. Some simple t-norms and t-conorms

were firstly given in [17].

Let x = (x1, x2, x3) ∈ P ∗. Denote I(x) =
{
y ∈ D∗ : y = (x21, y2, x23), 0 ≤1 y2 ≤1 x

2
2

}
.

Definition 2.5. A mapping T : P ∗×P ∗ → D∗ is a picture t-norm on PPFSs if the mapping

T satisfies the following conditions:

1) T (x, y) = T (y, x), ∀x, y ∈ P∗ (commutative);

2) T (x, T (y, z)) = T (T (x, y), z), ∀x, y, z ∈ P ∗ (associativity);

3) T (x, y) ≤1 T (x, z), ∀x, y, z ∈ P ∗, y ≤1 z (monotonicity);

4) T (1P ∗ , x) ∈ I(x), ∀x ∈ P ∗ (boundary condition).

First we present some picture t-norms on Pythagorean picture fuzzy sets.
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For all x, y ∈ P ∗ :

Tmin (x, y) =
(
x21 ∧ y21, x

2
2 ∧ y22, x

2
3 ∨ y23

)
.

T2 (x, y) =
(
x21 ∧ y21, x

2
2y

2
2,max

(
x23, y

2
3

))
.

T3 (x, y) =
(
x21y

2
1, x

2
2y

2
2,max

(
x23, y

2
3

))
.

T4 (x, y) =
(
x21y

2
1, x

2
2y

2
2, x

2
3 + y23 − x23y

2
3

)
.

T5 (x, y) =

({
x21 ∧ y21 if x1 ∨ y1 = 1

0 if x1 ∨ y1 < 1
,

{
lx22 ∧ y22 if x2 ∨ y2 = 1

0 if x2 ∨ y2 < 1
,

{
x23 ∨ y23 if x3 ∧ y3 = 0

1 if x3 ∧ y3 ̸= 0

)
.

Theorem 2.1. The mappings Tmin(x, y), T2(X, y), T3(x, y), T4(x, y), T5(x, y) are picture t

- norms on PPFS.

Proof. Now we give some detail proofs of picture t - norms on PPFS.

Let x, y ∈ P ∗, x = (x1, x2, x3), y = (y1, y2, y3).

- The mapping Tmin is a picture fuzzy t-norm on PPFS.

Since x, y ∈ P ∗, then x21 + x22 ≤ 1− x23, and y21 + y22 ≤ 1− y23,

(x21 ∧ y21) + (x22 ∧ y22) ≤ min(1− x23, 1− y23) = 1−max(x23, y
2
3),

(x21 ∧ y21) + (x22 ∧ y22) + max(x23, y
2
3) ≤ 1,

nTmin(x, y) = ((x21 ∧ y21), (x
2
2 ∧ y22),max(x23, y

2
3)) ∈ D∗.

- The mapping T2(x, y), T3(x, y) are picture fuzzy t-norms on PPFS. Indeed, we remark

that x22.y
2
2 ≤ x22 ∧ y22 ⇒

(
(x21 ∧ y21) + x22.y

2
2 +max(x23, y

3
3)
)
≤ Tmin(x, y) ∈ D∗.

- For T3(x, y) we use the similar argument.

- The mapping T4 (x, y) =
(
x21y

2
1, x22y

2
2, x23 + y23 − x23y

2
3

)
is a picture fuzzy t-norm.

We have

lx21y
2
1 + x22y

2
2 ≤

(
1− x22 − x23

) (
1− y22 − y23

)
+ x22y

2
2

=
(
1− y22 − y23 − x22 + x22y

2
3 + x22y

2
3 − x23 + x23y

2
2 + x23y

2
3

)
+ x22y

2
2

=
(
1− x23 − y23 + x23y

2
3

)
+
(
x22y

2
2 + x22y

2
3 + x22y

2
2 + x23y

2
2 − x22 − y22

)
=
(
1− x23 − y23 + x23y

2
3

)
+
(
x22
(
y22 + y23 − 1

)
+ y22

(
x22 + x23 − 1

))
≤ 1− x23 − y23 + x23y

2
3.

⇒ x21y
2
1 + x22y

2
2 + x23 + y23 − x23y

2
3 ≤ 1.

To prove that T5(x, y) is a is a picture t-norm, we remark that

g(x, y) =

(
x21 ∧ y21 if x1 ∨ y1 = 1

0 if x1 ∨ y1 < 1

)
≤ x21 ∧ y21,
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g(x, y) =

(
x22 ∧ y22 if x2 ∨ y2 = 1

0 if x2 ∨ y2 < 1

)
≤ x22 ∧ y22.

■

Proposition 2.5. Let mapping t2 is a fuzzy t-norm on [0,1]. Then the mapping

Tt2 (x, y) =
(
min

(
x21, y

2
1

)
, t2(x

2
2, y

2
2), max

(
x23, y

2
3

))
is a picture fuzzy t - norm on PPFS.

Proof. See the proof of the given argument.

Definition 2.6. A mapping S : P ∗ × P ∗ → D∗ is a picture t-conorm on PPFS if Ssatisfies
all following conditions

1) S (x, y) = S (y, x) , ∀x, y ∈ P ∗.
2) S (x, S (y, z)) = S (S (x, y) , z) , ∀x, y, z ∈ P ∗.
3) S (x, y) ≤1 S (x, z) , ∀x, y, z ∈ P ∗, y ≤1 z.
4) S (x, 0P ∗) ∈ I (x) , ∀x ∈ P ∗.
Below are some examples of picture t-conorms on PPFS:
1) Smax (x, y) =

(
max

(
x21, y

2
1

)
,min

(
x22, y

2
2

)
,min

(
x23, y

2
3

))
.

2) S2 (x, y) =
(
max

(
x21, y

2
1

)
, x22y

2
2, min

(
x23, y

2
3

))
.

3) S3 (x, y) =
(
max

(
x21, y

2
1

)
, x22y

2
2, x23y

2
3

)
.

4) S4 (x, y) =
(
x21 + y21 − x21y

2
1, x22y

2
2, x23y

2
3

)
.

5) S5 (x, y) =

(
x21 ∨ y21,

{
x22 ∧ y22 if x2 ∨ y2 = 1

0 if x2 ∨ y2 < 1
, x23 ∧ y23

)
.

3.3. Some classes of picture implications for PPFS

In this section we present some classes of picture implications for Pythagorean picture
fuzzy sets, which are the direct generalizations of the classical implication operators and
some classes of the fuzzy implication operators (see, for example [2, 4–7].

First important class of picture implication operators on PPFS is the followings.
Let a, b ∈ P ∗, a = (a1, a2, a3), b = (b1, b2, b3).

Definition 2.7. A mapping I : P ∗ ×P ∗ → D∗ is a picture implication operator of the class
1 if it satisfies the following boundary conditions:

I(0P ∗ , 1P ∗) = 1D∗ , where 0P ∗ = 0D∗ = (0, 0, 1), 1P ∗ = 1D∗ = (1, 0, 0). (2.1)
I(0P ∗ , 0P ∗) = 1D∗ , I(1P ∗ , 1P ∗) = 1D∗ . (2.2) –(2.3)
I(1P ∗ , 0P ∗) = 0P ∗ . (2.4)

Clearly, this definition of picture implication is a direct generalization of the classical
implication and the definition of fuzzy implication operators given in [5].

Another class of the picture implications is defined in the following.

Definition 2.8. A mapping I : P ∗ × P ∗ → D∗ is a picture implication of the class 2 if it
satisfies the following boundary conditions (2.1) - (2.4) and

I(a1, b) ≥1 I(a2, b), ∀ a1 ≤1 a2, b ∈ P ∗. (2.5)
I(a, b1) ≤1 I(a, b2), ∀ b1 ≤1 b2, a ∈ P ∗. (2.6)

This definition is a direct generalization of the definition 1.15 of the fuzzy implication
operators given in [7, p. 22].



8 BUI CONG CUONG

Proposition 2.6. A picture implication operator of the class 2 is a picture implication
operator of the class 1.

Now we give some direct generalizations of the fuzzy implication operators.

Definition 2.9. Let n(x) be a picture negation operator and let S(x, y) be a picture fuzzy
t-conorm operator.

A mapping I : P ∗ × P ∗ → D∗ is given by

I(a, b) = S(n(a), b), ∀a, b ∈ P ∗. (2.7)

It is a new direct generalization of the fuzzy implications given in the Definition 6.1.3 [5,
p.146].

Proposition 2.7. The picture implication operators defined in the Definition 2.9 are picture
implication operators of the class 2.

Proof. Indeed, if

a = 0D∗ ⇒ I(0D∗ , b) = S(1D∗ , b), then I(0D∗ , 0D∗) = S(1D∗ , 0D∗) = (1, 0, 0) = 1D∗ ,
and I(0D∗ , 1D∗) = S(1D∗ , 1D∗) = (1, 0, 0) = 1D∗ .

I(1D∗ , 0D∗) = S(n(1D∗), 0D∗) = S(0D∗ , 0D∗) = 0D∗ ,
I(1D∗ , 1D∗) = S(n(1D∗), 1D∗) = S(0D∗ , 1D∗) = 1D∗ .

Moreover, S(x, y) is increasing monotone in each argument, n(x) is non-increasing map-
ping, then I(x, y) = S(n(x), y) is non-increasing in first argument and is increasing in second
one.

Now we give some picture fuzzy implication operators, which are usually referred to in
the literature as S-implications. ■

Definition 2.10. Let n(x) be a picture negation operator and let Smax(x, y) be a picture
t-conorm operator. A mapping I : P ∗ × P ∗ → D∗ is given by

I(x, y) = Smax(n(x), y), ∀x, y ∈ P ∗. (2.8)

Example 1.1. For a, b ∈ P ∗, a = (a1, a2, a3), b = (b1, b2, b3).
Now we have a new picture implication operator. Since

min(a, b) = (a1 ∧ b1, a2 ∧ b2, a3 ∨ b3), max(a, b) = (a1 ∨ b1, a2 ∧ b2, a3 ∧ b3),

and nS(a) = (a3, z4, a1), where z4 = 1−
√
(a21 + a22 + a23).

We have

I(a, b) = Smax(n(a), b) = Smax((a3, z4, a1), (b1, b2, b3))

= (a23 ∨ b21, z
2
4 ∧ b22, a

2
1 ∧ b23), ∀a, b ∈ P ∗. (2.9)

If we use n0(a) = (a3, 0, a1), we obtain

I(a, b) = Smax(n0(a), b) = Smax((a3, 0, a1), (b1, b2, b3))

= (a23 ∨ b21, 0, a
2
1 ∧ b23), ∀a, b ∈ P ∗. (2.10)
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Picture fuzzy implication operators on PPFS defined in (2.9) or (2.10) are generalizations
of the Kleene-Dienes implication Ib(x, y) = max(1 − x, y), where x, y ∈ [0, 1], in the fuzzy
logic.

Definition 2.11. A mapping I : P ∗ × P ∗ → D∗ is given by

I(a, b) =

{
1D∗ if a <1 1D∗ or b = 1D∗ ,

0D∗ otherwise,

where a ∈ P ∗, b ∈ P ∗.
It is a direct generalization of the standard sharp classical implication operator.

Proposition 2.8. It is a picture implication operator on PPFS of the class 2.

Proof.

If a <1 1D∗ then I(a, b) = 1D∗ ∀ b ∈ P ∗ then I(0D∗ , b) = 1D∗ ⇒ I(0D∗ , 0D∗) = 1D∗ and
I(0D∗ , 1D∗) = 1D∗ .

It means that the conditions (2.1) and (2.2) are satisfied. The condition (2.3) is satisfied
since b = 1D∗ ⇒ I(a, b) = 1D∗ , ∀a ∈ P ∗.

The conditions (2.4) and (2.5) are satisfied from the Definition 2.4.

Definition 2.12. A mapping I : P ∗ × P ∗ → D∗ is given by

I(a, b) =

{
1D∗ if a ≤1 b,
0D∗ otherwise,

where a ∈ P ∗, b ∈ P ∗.
It is a direct generalization of the standard strict implication operator.

Proposition 2.9. The mapping defined in the Definition 2.12 is a picture implication operator
of the class 2.

The proof is direct from the definition.
Another picture implication operator is the following.

Definition 2.13. A mapping I : P ∗ × P ∗ → D∗ is given by

r =

{
1D∗ if a ≤1 b,
b otherwise,

where r = I(a, b) ∈ D∗, a ∈ P ∗, b ∈ P ∗.
It is a new direct generalization of the standard strict implication

Proposition 2.10. It is a picture implication operator of the class 2.
The proof is direct from the Definition 2.8.

Definition 2.14. Let n(a) is a picture negation. A mapping I : P ∗ × P ∗ → D∗ is given by

I(a, b) =

{
1D∗ if a ≤1 b,
max(n(a), b) otherwise,

where a ∈ P ∗, b ∈ P ∗.
It is a new direct generalization of the Fodor’s fuzzy implication in [7] and is also an

picture implication operator on PPFS of the class 2.
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4. THE COMPOSITIONAL RULE OF INFERENCE

The compositional rule of inference (see [3]) constitutes an inference rule in approxi-
mate reasoning in which it is possible to draw vague conclusions from vague premises. The
mathematical pattern of the generalized modus ponens is follows.

Let X and Y be variables taking values in U and V , respectively. Let A, A∗ and B be
fuzzy subsets of appropriate spaces. From “If X is A then Y is B”, and “Y is B∗” can be
taken as a logical conclusion.

We can view the conditional statement above as a binary fuzzy relation R, that is, a
fuzzy set of U × V, and A∗ as a unary fuzzy relation on U. As such, the generalized modus
ponens can be examined with a general framework of relations. Firstly, if f : U → V is a
function, then the value b = f(a) may be viewed as the image of the projection of {a} into
V, that is as the set {b ∈ V : (a, b) ∈ f} .

When f is replaced by a relation R, and A is a subset of U, then the image of the
projection of A into V is the set

B = {v ∈ V : (u, v) ∈ R for some u ∈ A} .

In terms of indicator functions,

B(v) = ∨
u∈U

{(A× V ) (u, v) ∧R (u, v)} = ∨
u∈U

{A (u) ∧R (u, v)} .

This can be written as B = R ◦A, where ◦ is the composition operator of two sets.

When R and A∗ are fuzzy subsets of U × V and V, respectively, the same composition
R ◦A∗ yields a fuzzy subset of V.

When applying this procedure to the generalized modus ponens schema
IF X is A∗ THEN (X,Y ) is R, B∗ = R ◦A∗,

where R is a fuzzy relation on U × V representing the conditional “ If X is A then Y is B”.

Thus, if we define R(u, v) = (A(u) ⇒ B(v)) where ⇒ is a fuzzy implication operator
and more generally, the special t-norm T (x, y) = x∧ y can be replaced by an arbitrary fuzzy
t-norm operator T (u, v) in the composition operation among relations, leading to the result
of the Compositional Rule of Inference (CRI) [3, 6].

B∗(v) = ∨
u∈U

{T ((A(u) ⇒ B(v)), A(u))}. (3.2)

We can choose concrete t-norm operators and concrete fuzzy implication operators to
obtain concrete inference procedures in fuzzy logic.

Compositional rule of inference in picture fuzzy logic on PPFS, PPFL-CRI

Let X and Y be variables assuming values in U and V. Consider Pythagorean picture
fuzzy facts X is A∗ and R is a Pythagorean picture fuzzy relation between U and V, where
A∗ ∈ PPFS(U), R ∈ PPFR(U × V ). The PPFL-CRI allows us to infer the Pythagorean
picture fuzzy fact B.

Expressing this under the form of an inference schema, we get

If X is A∗ and R (X,Y ) is R then Y is B = R ◦A∗. (3.3)

We use a picture fuzzy implication operator I(a, b) to define the picture fuzzy relation
R.
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Given picture fuzzy sets A ∈ PFS(U) and B ∈ PFS(V ), we calculate,

(x1R(u, v), x2R(u, v), x3R(u, v))

= I((x1A(u, v), x2A(u, v), x1A(u, v)), (x1B(u, v), x2B(u, v), x3B(u, v))) (3.4)

for every (u, v) ∈ U × V.
Thus, we defined the picture fuzzy relation R. Using this definition with the picture fuzzy

composition operators of picture fuzzy relations on PPFS given in [7], it is clear that the
PPFL- ICR is an extension of the fuzzy-based CRI [5].

Using (3.2) and (3.3) with concrete Pythagorean picture fuzzy t-norms, picture fuzzy
implication operators combining with a concrete picture composition operator, (which was
given in [8] we obtain the conclusions of the PPFL-ICR.

5. A NUMERICAL EXAMPLE

We give an example of a fuzzy inference in medical diagnose with Pythagorean picture
fuzzy set information.

Let U =”cold”, V=”sore throat” with

U =


u1 = weakcold = (0.7, 0.1, 0.3)
u2 = mediumcold = (0.6, 0.2, 0.1)
u3 = verycold = (0.8, 0.1, 0.4)

 , V =


v1 = weak = (0.35, 0.2, 0.4)
v2 = medium = (0.5, 0.2, 0.3)
v3 = strong = (0.7, 0.1, 0.3)

 .

We use a picture fuzzy implication operator I(ui, vj) = Smax(n(ui), vj), for i = 1, 2, 3, j =
1, 2, 3 to define the picture fuzzy relation R.

Using picture negation n(a) = n0(a), we have

n(u1) = n0(u1) = (0.3, 0, 0.7), n(u2) = n0(u2) = (0.1, 0, 0.6), n(u3) = n0(u3) = (0.4, 0, 0.8).

The picture fuzzy relation is defined by R(ui, vj) = I(ui, vj) = Smax(n0(ui), vj), for
i = 1, 2, 3, j = 1, 2, 3. We obtain

R(u1, v1) = Smax((0.3, 0, 0.7), (0.35, 0.2, 0.4)) = ((0.35)2, 0, 0.16),

R(u1, v2) = Smax((0.3, 0, 0.7), (0.5, 0.2, 0.3)) = (0.25, 0, 0.09),

R(u1, v3) = Smax((0.3, 0, 0.7), (0.7, 0.1, 0.3)) = (0.49, 0, 0.09).

Analogously, we have

R(u2, v1) = Smax((0.1, 0, 0.6), (0.35, 0.2, 0.4)) = ((0.35)2, 0, 0.16),

R(u2, v2) = Smax((0.1, 0, 0.6), (0.5, 0.2, 0.3)) = (0.25, 0, 0.09),

R(u2, v3) = Smax((0.1, 0, 0.6), (0.7, 0.1, 0.3)) = (0.49, 0, 0.09),

R(u3, v1) = Smax((0.4, 0, 0.8), (0.35, 0.2, 0.4)) = (0.16, 0, 0.16),

R(u3, v2) = Smax((0.4, 0, 0.8), (0.5, 0.2, 0.3)) = (0.25, 0, 0.09),

R(u3, v3) = Smax((0.4, 0, 0.8), (0.7, 0.1, 0.3)) = (0.49, 0, 0.09).
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Let the real input be (a real forecast of “cold”)

A∗ ∈ PPFS(U) = {A∗(u1) = (0.3, 0, 0.4), A∗(u2) =, (0.9, 0, 0.2), A∗(u3) = (0.1, 0.05, 0.5)}.
Using Compositional Rule of Inference in Picture Fuzzy setting on PPFS, we have the

conclusion

B∗ ∈ PPFS(V ), B∗ = A∗ ◦R = (B∗(v1), B
∗(v2), B

3(v3)),

with

B∗(v1) = max(min(A∗(u1), R(u1, v1)),min(A∗(u2), R(u2, v1)),min(A∗(u3), R(u3, v1)))

= max(min((0.3, 0, 0.4), ((0.35)2, 0, 0.16)),min((0.9, 0, 0.2), ((0.35)2, 0, 0.16)),

min((0.1, 0.05, 0.5), (0.16, 0, 0.16)))

= max((0.3, 0, 0.4), ((0.35)2, 0, 0.16), (0.1, 0.05, 0.5)))

= (0.3, 0, 0.4).

B∗(v2) = max(min(A∗(u1), R(u1, v2)),min(A∗(u2), R(u2, v2)),min(A∗(u3), R(u3, v2)))

= max(min((0.3, 0, 0.4), (0.25, 0, 0.16)),min((0.9, 0, 0.2), (0.25, 0, 0.09)),

min((0.1, 0.05, 0.5), (0.25, 0, 0.09)))

= max((0.25, 0, 0.16), (0.25, 0, 0.09), (0.1, 0.05, 0.5)))

= (0.25, 0, 0.16).

B∗(v3) = max(min(A∗(u1), R(u1, v3)),min(A∗(u2), R(u2, v3)),min(A∗(u3), R(u3, v3)))

= max(min((0.3, 0, 0.4), (0.49, 0, 0.09)),min((0.9, 0, 0.2), (0.49, 0, 0.09)),

min((0.1, 0.05, 0.5), (0.49, 0, 0.09)))

= max((0.3, 0, 0.4), (0.49, 0, 0.09), (0.1, 0.05, 0.5))

= (0.49, 0, 0.09).

We obtain the conclusion B∗ ∈ PFS(V ),

B∗ = A∗ ◦R = (B∗(v1) = (0.3, 0, 0.4), B∗(v2) = (0.25, 0, 0.16), B3(v3) = (0.49, 0, 0.09)).

6. CONCLUSIONS

In this paper we have presented the Pythagorean Picture Fuzzy Set – a combination of
the Picture Fuzzy Set and the Yager’s Pythagorean Fuzzy Set. After some basic notions, we
introduced some main picture logic operators on PPFS, namely the picture negation, picture
t-norm on PPFs, picture t-conorm on PPFS and picture implications on PPFS. The new
operators are useful in practical computational intelligence problems.

In the future, we will extend the new theory of Pythagorean Picture Fuzzy Sets such as the
distance measure between PPFSs, the algebraic structures on PPFSs. They are important
tools to measure the analogousness between objects in PPFS and will be developed based on
the picture logic operators on PPFS. Furthermore, the theory of Pythagorean Picture Fuzzy
Set for decision-making problems will be studied deeply in the next researches
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