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NUMMERICAL MODEL OF NON HYDROSTATIC VERTICAL
BI-DIMENSIONAL FLOW

TRAN GIA LICH, PHAN NGOC VINH

Abstract. A splitting technique in the x and z directions to solve Navier—Stokes equations for simulation
of non-hydrostatic vertical bi-dimensional flows is presented. The finite-difference method in a Cartesian
coordinate system and an UPWIND scheme for the convection terms are applied in the model. Several test
cases are done to validate the model on the aspects of the qualitative property. Calculated results have been
compared to the analytical solution of problem in a special case.

Tém tdt. Bai bdo trinh bay mét ki thuat phan 13 theo cdc phuong z va z d€ gidi hé phuong trinh Navier—
Stockes m6 phdng bai todn dong chdy 2 chiéu ding phi thiy tinh. Phuong phép sai phan hitu han trong hé
toa do Dé cac va so d6 nguoc dong ddi véi thanh phin tii duoc ding trong mé hinh. Céc téc gid da thuc
hién mét vai phuong 4n tinh ki€m tra mé hinh vé mét dinh tinh, so sénh két qui tinh todn tir mé hinh véi

nghiém gidi tich clda bai todn trong mét trudmg hop dic biét.

1. MATHEMATICAL MODEL

1.1. Governing equations

It is well known that the Navier—Stokes equations describing bi-dimensional vertical flow for the
viscous incompressible fluid consist of 2 momentum equations as follows (see [1,2,3,7,10]):
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The system of equations (1.1) with the initial condition: U (x, z,0) = U(z, z) and the boundary
conditions on the boundary 9G of the considered region G:

Up(z, 2,t

where U; = (u,w) has a unique solution in the space of generalized functions (see [1],[7]). The
equation system with the gravitational force g can be written as:
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Place the coordinate origin to be at the mean water level. The x axis is horizontal and the z
axis is taken positive upwards.

Replace the variable p by P, with P = p — pg(¢ — 2) and suppose that density of the fluid does
not vary in time and space, i.e. p = const, say, p = 1. The system of equations (1.2) now becomes:
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In this case the system of equations has the same structure as (1.1).
1.2. Initial conditions
u(@, z,0) = u’(z,2), w(z,20)=w’(z,2), pz,z0)=p"(z,2), (1.4)

where, u%(x, 2), w°(z, z), p°(x, z) are known functions.

1.3. Boundary conditions

In addition to the initial conditions, the solution of the equation system (1.3) requires the fol-
lowing boundary conditions (see [6]):

At the water surface.
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At the bottom:
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At the open boundary:
The normal velocity component at the land boundary is null, that means:
Ju
— =0. 1.7
o (1.7)

At the solid boundary:

Commonly, the water level is given at all times, if water level is unknown at the boundary, the
radiation condition is applied. For the outflow, the flux can be calculated from the model and for the
inflow, the flux is either given or calculated from the radiation condition.

2. ALGORITHM AND NUMERICAL BACKGROUND

It is difficult to directly find pressure P in system of equations (1.3). In the case of quasi-
stationary flows, to overcome this, according to the authors Yanenko N. N. and Belotserkovsky O. M.,
the artificial compression component is added to the continuity equation and the modified Navier—
Stokes equations are obtained (see [2,7,10])
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The system of equations (2.1) is solved by the splitting method. In other words, each one-
dimensional equation system in the z and z directions are successively solved as follows (see [8,10])

(2.1)
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where, q1:p+p%7 q2:P+p%.

Assuming that, the solutions of (2.1) at the time step tj are known. In order to find its solutions
at the next time step i1 = & + dt, two main calculation steps are carried out as follows:

a. Step 1: To specify the surface water elevation &(x, t).

Integrating the continuity equation of (1.3) in the z direction from the bottom to the water

surface, we obtain:
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According to Leibniz's formula, it follows from (2.4):

£ £
ou 0 o0& oh
— =— [ —dz=—— d —= —.
We = Wn /8:}6 i 8x/u Z+u§8:}c+uhax
—h —h

Using the conditions at the bottom and the water surface, we obtain:
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where w = T / udz is the depth-averaged velocity.
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For ensuring the stability of numerical results, the viscosity artificial term is added into equation
(2.5) (see [4]) and one gets:
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And, there are two ways to specify the surface water elevation &(z, t):
% For equation (2.5), an explicit finite-difference scheme is used:

g k(T
dt 2dx

—0. (2.7)
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% For equation (2.6), an implicit finite-difference scheme is used:
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or in the reduced form:
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b. Step 2: Calculation of the velocity field (u,w) and the pressure P.

Discretizing the equation system (2.2) by an implicit finite-difference scheme in the x direction,

and an UPWIND scheme is used for advection terms:
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Replacing (ql)]flﬁ,}/Q resulted from (2.12) into (2.10), we have:
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Also, equation (2.11) has the following reduced form:
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The value of (ql)]flﬁ,}/ % can be drawn either from equation (2.12):
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or from equation (2.10):
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Also, from equation (2.16), the followings are obtained:
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The value of (g2)5F} can be calculated as follows:
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Equations (2.9), (2.13), (2.14), (2.18) and (2.19) can be solved by the double sweep method
(see 4]). The coefficients of these equations satisfy the condition on prominent 3-diagonal matrix:
i.e. |Bu] = |anm| + |vnl, so the linear algebraic equation systems have the unique solution and do not
accumulate a numerical error.

Determining solution values at the boundaries:

For calculating the solution values at the boundary we use the following complementary equations
(see [8,9]):
At the left boundary:
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dw O%w
— = 20— 2.21
( dt >x U oa? 2.21)
At the right boundary:
du dqy 9%u
— — =2u—. 2.22
(dt>xl+<dt>xl 02 (2.22)
If w > 0, one more equation (2.21) is added.
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Where, (d%:)m = a—{ %)\i (t=1,2,3), \1 =2, A\a = =2 and A3 = 2u.
At the bottom:
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At the water surface.
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Where, (d—J;) . = a—{ a—Jani (:=1,2,3), 01 =2, 0o = —2 and 03 = 2w, and [ represents one of

the following functions: u, w, g1 or gs.

3. NUMERICAL EXPERIMENTS AND DISCUSSION OF THE RESULTS

In [8], the steady pressure field on the valves of a sluice with the free surface being given has
been calculated. In this work, the following test cases are carried out for validation of the model
on the aspects of qualitative property and calculated results have been compared to the analytical
solution of problem in a special case.

3.1. Test cases on qualitative property

1. Computed domain is a 2 open-end rectangular canal with a constant depth A = 14 m. Constant
water level is given at 2 open boundaries. Fig. 1 shows that, in the vertical direction Z, velocity profile
at the bottom layer varies under the Logarithmic law.
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2. Computed domain is a close rectangular canal with a constant depth A = 14cm. Wind
strength W = 10m/s is taken. Fig. 2 shows the conservation of water mass in the canal. In other
words, at the surface layer, flow direction is the wind’s. On the contrary, at bed layer, flow has to
have the opposite direction.

3. Computed domain is a 2 open-end rectangular canal with a varied depth. The first part of
the domain has a constant depth of 5m, next, depth changes sharply and increase to 14m and then
remains a constant depth of 5m as long as the end of the rectangular. Constant discharge is given
at the open boundary on the left, and at the other one constant water level is given. An eddy flow
is detected just after the terrace where the depth changes sharply (see Fig. 3).

Iug. 1. Velocity profile for computational case 1

Iwg. 2. Velocity profile for computational case 2

Iwg. 3. Velocity profile for computational case 3

4. Computed domain is a 2 open-end rectangular canal with a varied depth. The first part of
the domain has a constant depth of 5m, depth then changes sharply and increase up to 14m and
remains that depth as long as the end of the rectangular. A constant discharge is given at the open
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boundary on the left, and at the other one a constant water level is also given. Velocity field at the
bottom layer and just after the terrace where the depth change sharply has a direction opposite to
mean velocity’s (see Fig. 4).

5. Computed domain is a 2 open-end rectangular canal with a gradually-varied depth. Constant
discharge is given at open boundary on the left, and at the one constant water level is given. Velocity
profile is indicated in Fig. 5, an eddy flow is also found at the deepest part of the rectangular.

Iwg. 4. Velocity profile for computational case 4

Iwg. 5. Velocity profile for computational case 5

Iwg. 6. Velocity profile for computational case 6

For all above-mentioned computational cases, length of the canal is L. = 1500m. The domain
is covered by a grid of 31 x 15. Time step di = 2s, coefficient of Chezy = 40 are taken. Numerical
results reach their stable values after around 1.5h of calculation.

As an example, the calculated water level along the canal is shown separately in Fig. 6 for the
computational case 5, whereas, for the rest cases, the calculated water level are indicated in the very
same figures (1 - 4) of velocity profile. In Fig. 6, for purpose of tracing the water level only, their values
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are multiplied to 100 so that its change along the canal can be observed more obviously. Additionally,
the dashed line just below the water level one is the mean water level.

3.2. Test case for analytical solution

Computed domain is a close rectangular canal with a constant depth A = 20m, a length L =
95 km. With constant wind stress 79, at the central point of the canal, velocity profile in the vertical
direction has the following form (see [5]):

73H7'0<1 i)(l i)
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where z is distance from the water surface to considered site.

Comparison of calculated results and the analytical solution of problem shows in Fig. 7.

Fug. 7. Comparison of calculatred result with analitical solution

4. CONCLUSIONS

A simple algorithm has been presented and applied for test cases on the qualitative properties
as well as on the analytical solution with the different calculated domains.

Calculated results are in agreement with the analytical solution of problem in a special case.

The model should be developed to 3D for application to practical domains with complicated
depth.
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NOMENCLATURE

x, z: Cartesian coordinates in the longitudinal and the vertical directions, respectively, [m]
t: time variable, [s]

u, w: velocity components in the x and z directions, respectively, [m/s]

p: fluid pressure, [N/m?]

p: density of fluid, [KGB/m?]

g: acceleration of gravity, [m/s?]

v, u: horizontal and vertical turbulent viscosity coefficients, [m?/s]
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Laplace’s operator: A = E) + 5.2

&: water surface elevation, [m]

h: bottom depth, [m]

H = h+¢&: flow depth, [m]

T, Tp: wind stress at the water surface and bed shear stress [N/m?|
po: air density (= 1.3kg/m?)

Cy: empirical coefficient (= 2.5 x 1073)

W: wind strength in the = direction at the height of 10 m above the ground, [m/s]
Ch: Chezy coefficient, [m'/2/s|

us, ws: velocity components the water surface [m/s|

up, wp: velocity components at the bottom, [m/s]

7. the normal vector to the considered boundary

k: the superscript referring to the time step

n, m: the subscripts referring to the space step
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