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FUZZY FUNCTIONAL DEPENDENCIES WITH LINGUISTIC QUANTIFIERS

HO THUAN, TRAN THIEN THANH

Abstract. In this paper, we give a definition of Fuzzy Functional Dependency with Linguistic Quantifiers
(QFFD) on the fuzzy relational database models. QFFD is an extension of Fuzzy Functional Dependency
(FFD) by substituste quantifier for all by linguistic quantifiers such as most, a few, at least half... In order
to extend, we give a compatibility degree of a tuple with a fuzzy functional dependency based on Fuzzy
Implication Operators (FIOs). In this work, a system of axioms for QFFDs similar to Armstrong’s axioms
is presented. The soundness of these axioms is proved. In order to testing membership in closures of set of
QFFDs, we give some algorithms in polynomial time for computing minimum family of deppendency sets.
The correctness of these algorithms is proved.

Tém t&t. Trong bai bdo nay chiing t6i dwa ra khéi niém phu thuéc ham mo véi lugng tir (QFFD) trén mo
hinh co s& dit lieu quan hé m&. Pay 14 mét dang phu thuoe dit litu mé rong tir khai niém phu thuéc ham
m& bang cdch thay thé hrong tir chit “véi moi” bing cdc luong tir ngén ngit. PE mé réng, ching téi dua
ra mot danh gid do thda phu thuéc ham cia mét bo trong quan hé nhe cic todn tik kéo theo me. Céc luong
tir ngdbn ngit duoc xem nhu nhimg tdp md va duge ddnh gid qua cdc ham thudc. Viéc mé rong khai niém
phu thuéc ham cho phép mo ta nhiéu phu thudc dit lisu mém déo hon va gin véi thue té hon, phuc vu cho
viéc khai théc tri thitc tit cic co s& dit liéu md. Trong bai bdo nay chiing t6i cling dua ra mét hé tién dé cho
cdc QFFD véi lugng tir tang tuong tur hé tién dé Armstrong cho cdc phu thuoc ham. Tinh xdc ddng ctia hé
tién dé cling duoc ching minh. PE gidi quyét bai todn thanh vién cho tap cdc QFFD, ching téi dua ra khéi
niém tap phu thuée va cdc thuat todn cé dé phic tap da thicc d€ tinh cde tap phu thuse.

1. INTRODUCTION

Data dependencies are the most important topics in theory of relational database. Several authors
have proposed extended dependencies in fuzzy relational database models. In[1,4-6,8,9,11,12,16,17]
various definitions of FFD and fuzzy multivalued dependencies (FMVD) were given. These depen-
dencies are extension of dependencies in classical relational model.

An FFD X ~-, Y holds in a relation » if and only if for all £,,%; in r if equality measure
of t1[X] and ¢5[X] more or less determines equality measure of ¢;[Y] and ¢3[Y]. In this paper, we
give an extension of FFD by using fuzzy linguistic quantifiers to replace quantifier for all and this
dependency is called Fuzzy Functional Dependency with Linguistic Quantifiers (QFFD). The QFFD
is a really extension of FFD in that allows to reflect more significant situations in real world.

This paper is organized as follows. Section 2 presents some of the basic definitions of the
possibility-based relational database model. In Section 3, we introduce the concept of FFD based on
FIOs. Definition of QFFD is presented in Section 4. In Section 5 we give some algorithms for testing
membership in closure of QFFDs. Section 6 concludes this paper and give some perspectives of the
present work.

2. POSSIBILITY-BASED FUZZY RELATIONAL DATABASE MODEL

2.1. Possibility distribution

Definition 2.1. Let X be a variable which takes values in a universe of discourse D. A possibility
distribution of X, denoted by wx is a map from D to [0, 1].
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Possibility-based relational database model represents data by means of possibility distributions.
Let A be an attribute whose domain is D. Our entire knowledge about the value of A for an object
x will be represented by a possibility distribution 74,y on DU {e}, where ¢ is an extraneous element
denoting the case where A does not apply to x.

Definition 2.2. A proximily relation is a mapping p : D x D — [0, 1] such that for z,y € D,
ple, 2) = 1 (refleaivity), and p(z,y) = ply, z) (symmetry).

Definition 2.3. A fuzzy relation scheme is a triple (R, C, o), where R = { A1, As,..., A, } is the set
of attributes, C' = (c1,¢a, ..., ¢y) is the set of associated proximity relations, o = (a1, s, ..., ay) is
the set of associated thresholds (o; € [0,1], 1 <7 < n).

Definition 2.4. A fuzzy relation instance r on scheme (R, C,a) is a subset of the cross product
(D) XII(D3) X - - - XII(D,,), where D; = dom(A;)U{e}, and TI(D;) is set of possibility distributions
on D;.

2.2. Equality measure

Let t,# be fuzzy tuples in relation r on scheme (R,C,a), t = (7a,,Tay,...,Ta,), ' =
(s oy ), X = {As, Aiy, ..., Ai } is & set of attributes of R.
Equality measure of two values m4,, 7, , denoted by =, (ma,,7,,), is defined by

—ec (ﬂ-Aﬂ 7(-{41) = sup min<7TAi <x>7 A, <y>>

z,y€D;

Equality measure of two tuples ¢ and ¢’ on X, denoted by ~ (¢[X],'[X]), is defined by

~ (t[X]7 tl[XD = min <:c (ﬂ-Ail ; ﬂ{Ail )7 —c (TrAiZ ; 7T{Ai2>7 ey e (ﬂ-Aik ; 7(-{4%)) .
3. FUZZY FUNCTIONAL DEPENDENCY

Definition 3.1. Let r be a relation of scheme (R, C,a), X and Y be subsets of R, and I be a fuzzy
implication operator. Relation » is said to satisfy the fuzzy functional dependency X determines Y
to the degree ¢, ¢ € [0, 1], denoted by X ~-, Y, if and only if

min I (~ ([X], ¢[X]), ~ (Y], £]Y]) = ¢.

tt’er

Based on FIOs of Gédel and Dienes, we suggets a FIO using for FF'D as below:

1 ifa<b
I(a7b){ ne=

max(1 —a,b), otherwise

?

Let r be a fuzzy relation of scheme (R, C,a). X,Y be subsets of R, ¢ € [0, 1].
Compatibility degree with a fuzzy functional dependency X ~~» Y of tuple ¢ in r, denoted by
o(t(r)| X ~Y), is defined by

Compatibility degree with a fuzzy functional dependency X ~-, Y of relation r, denoted by o (r|X ~~
Y'), is defined by

|7"XWWY|

?

o(r[X v V) =

7|

where rx.. v is set of tuples of » such that o(¢(r)|X ~ Y) > ¢.
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4. FUZZY FUNCTIONAL DEPENDENCY WITH LINGUISTIC QUANTIFIERS

4.1. Linguistic quantifiers

Human discourse is very rich and diverse in its quantifiers, e.g, about 5, almost all, a few, many,
most, as many as possible, nearly half, at least half. Zadeh, using Fuzzy logic, introduced the concept
of linguistic quantifier to represent a large number of possible quantifiers. Zadeh suggested that
the semantic of linguistic quantifier can be captured by using fuzzy subsets for its representation.
He distinguished between two types of linguistic quantifiers, absolute and proportional. Absolute
quantifiers are used to represent amounts that are absolute in nature such as about 2, more than 5,...
These absolute linguistic quantifiers are closely related to the concept of the counting or number of
elements. Proportional quantifiers are used to represent amounts that are relative in nature such
as most, at least half. A proportional quantifier can be represented by a fuzzy subset @ in the unit
interval, [0,1], such that for any x € [0, 1], pg(x) indicates the degree to which the proportion x is
compatible with the meaning of the quantifier it represents.

A proportional quantifier @) have membership function pq : [0, 1] — [0, 1], satisfies: pq(0) = 0,
and Jx € [0, 1] such that pug(z) = 1.

A non-decreasing quantifier satisfies: Va, b if @ > b then pg(a) > pg(b).

The membership function of a non-decreasing proportional quantifier can be represented as

0 if x<a

po (@) = ‘Z:Z ifa<az<b

1 if x>0

with «, b,z € [0, 1].

Some examples of proportional quantifiers, where the parameters, (a, b) are most = (0.3,0.8), at
least half = (0,0.5) and as many as possible = (0.5,1).

In the rest of this paper, we suppose that @ is a non-decreasing quantifier with membership
function pg. Denote:

Q= inf {x}

nq(x)=1
4.2. Fuzzy functional dependency with linguistic quantifiers

Definition 4.1. Let » be a relation of scheme (R, C, o), X and Y be subsets of R, and ) be a linguistic
quantifier, ¢ € [0, 1]. Relation 7 is said to satisfy the fuzzy functional dependency X determines Y to
the degree ¢ with quantifier @, denoted by X ~-, Y, if and only if ug(o(r|X ~, Y)) = 1.

Remark 4.1. The FFD is a special case of QFFD with quantifier for all (FA for short), i.e, relation
r holds QFFDs of the form FA(X ~-, Y), if and only if » holds FFD X ~, Y.

4.3. Axioms of QFFDs

QFFD1 (Reflezivity): If Y € X then Q(X ~, Y), for all @ and for all ¢ € [0, 1].

QFFD2 (Augmentation): If Q(X ~, Y) then Q(XW ~~, YW), for all W C R.

QFFD3 (Transitivity 1): If Q(X ~,Y) and Y ~,, Z then Q(X ~~, Z).

QFFD3’ (Transitiwvity 2): If X ~~, Y and QY ~+, Z) then Q(X ~~, Z).

QFFD4 (inclusion for threshold): If Q(X ~+,Y) then Q(X ~ Y), forall 0 < ¢' < .

QFFD5 (inclusion for quantifier): If Q(X ~,Y) then Q' (X ~», Y), for all Q' such that |Q'| < |Q).

Lemma 4.1 Azioms QFFD1-QFFDS are sound.

Proof.

Reflexivity: Let r be a relation of scheme (R,C,a),and Y C X C R. Since Y C X then ¥,y € r
we have &~ (t1[X], t2|X]) <=~ (#1]Y], t2[Y]). Hence I(~ (t1[X],t2[X]), ~ (t1[Y],t2[Y])) = 1. Conse-
quently o(r|X ~,Y) =1, Ve € [0,1].
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For any non-decreasing quantifier @), we have pug(o(r|X ~+, Y)) = 1. Hence Q(X ~, Y') holds in r.
Augmentation: Assume that Q(X ~~, Y') holds in relation r. Since Q(X ~, Y') holds in » then

pQ(o(r|X ~ Y)) =1 (%)
Vi, € rx.,y, Yta € r we have I(~ (t1[X], t2[X]), ~ (t1[Y], t2[Y])) > @. It is easy to show that
I~ ([ XW] G XW]), & (L [YW] Y W) = I(x (L[X], 62[X]), & (4[Y], 22Y]) = .
Since (x) and @ is a non-decreasing quantifier then pg(o(r|XW ~, YW)) =
Hence r holds Q(XW ~-, YW).
Transitivity 1: Assume that Q(X ~, Y) and Y ~~, Z holds in relation r.
From Q(X ~+, Y) we have pug(o(r|X ~, Y)) =1
Hence Vt; € rx.. v, Vta € r we have I(~ (t[X], t2[X]), = (t1[Y], oY ])) ®.
Since Y ~~, Z holds in r then I(~ (¢1[Y], t:2[Y]), &~ (t1]Z], t2[Z])) = ¢
Hence I(~ (t1[X],t2[X]), = (t11Z],12[Z])) = . Consequently Q(X ~~ Z) holds in .
Transttivity 2: The proof is similar to that for Transitivity 1.
Inclusion for threshold: Assume that Q(X ~+, Y) holds in relation r, and ¢’ < ¢.
We have pg(o(r|X ~, Y)) = 1. Since ¢/ < ¢ then pg(o(r|X ~4 Y)) = 1. Hence Q(X ~vy Y)
holds in r.
Inclusion for quantifier: Assume that Q(X ~-, Y) holds in relation r, and |Q'| < |@|. We have
pg(a(r|X ~y Y)) = 1. Since |Q'| < [Q| then pug(o(r|X ~, Y)) = 1. Hence Q'(X ~», Y) holds in
7. n

The following axioms are easily obtained from QFFD1 - QFFDS.
QFFDG6 (Union 1): If Q(X ~,, Y) and X ~,, Z then Q(X ~~, Y Z), where ¢ = min(ep1, ¢2).
QFFDG6’ (Union 2): If X ~~,, Y and Q(X ~»,, Z) then Q(X ~~, YZ), where ¢ = min(p1, ¢2).
QFFD7 (Pseudo-transitivity): If Q(X ~~,, Y) and WY ~,, Z then Q(XW ~, Z),

where ¢ = min(¢1, p2).

QFFDS8 (Decomposition): If Q(X ~,Y) then Q(X ~», Z), forall Z C Y.
Proof.

Union 1:

By QFFD4, we have Q(X ~~, Y) and X ~», Z.

By QFFD2, we have Q(X ~+, XY) and XY ~, YZ.
By QFFD3, we have Q(X ~, Z).

Union 2: similar to the above proof.

Pseudo-transitivty:

By QFFD4, we have Q(X ~, Y) and WY ~, Z.

From Q(X ~, Y) and by QFFD2, we have Q(XW ~, YW).
By QFFD3, we have Q(XW ~~, Z).

Decomposition.:
Since Z C Y and by QFFD1 we have Y ~~, Z.
By transitivity axiom we have Q(X ~, Y).

4.4. Closure of QFFDs

Definition 4.2. Let F be set of QFFDs of scheme (R, C,«). Closure of I, denoted by ", is the
set of all QFFDs that can be derived from F' by application of the axioms QFFD1-QFFDS.

Remark 4.2. Since axioms QFFD4, QFFD5, QFFDS, we have if Q(X ~, Y) € FT then Q' (X ~
YN e FT,VY' ' CY, ¢ <, |Q]<|Q| Hence F' is an infinite set.
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Definition 4.3. Let F be set of QFFDs of scheme (R, C, o). Minimum Closure of F, denoted by
F+7 is defined by

_—
F = {Q X~,Y)|Y e maxset {Y;}, Q= sup Qi}, o= sup V4 }7
( ) Q(XWWYi)GF*{ } Qi(waY)eFJr{ } QX g, Y)€F+{ }
where  max-set {Y;} is family of maximum-set of ¥;s, sup {Q:} is a quantifier @ such
QX Y;)EFT Qi(X~, YV)EFT
that |@Q| = sup {1Q:l}-
Qi (X~ o,Y)eF+

5. MEMBERSHIP PROBLEM

Membership problem: Let I’ be a set of QFFDs of scheme (R, C, ), Q(X ~, Y) be a QFFD.
We have to determine whether that Q(X ~, Y) € F'T?

Now we introduce the following concepts.

5.1. Family of dependency sets

Definition 5.1. Let I be a set of QFFDs of scheme (R, C,«), X be a subset of attributes, @ be a
linguistic quantifier, ¢ € [0,1]. Family of dependency sets for X (with respect to F', @, ¢), denoted
by Depr(X,Q, ), is defined by

Remark 5.1. Since axioms QFFD4, QFFD5, QFFDS, we have if Y € Depr(X,Q, ) then Y’ €
Depr(X,Q,¢), W' C V.

Definition 5.2. Let I be a set of QFFDs of scheme (R, C,«), X be a subset of attributes, @ be a
linguistic quantifier, ¢ € [0, 1]. Minimum family of dependency sets for X (with respect to F', Q, ¢),
denoted by Depp(X, @, ¢), is defined by

Depp(X,Q,p) = {Y CR|Y € max—setQ(wayi)eFJr{Yi}} .

Proposition 5.1. Q(X ~,Y) € FT if and only if 37 € Depp (X, Q, @) such that Y C Z.
Proof. (=) Since Q(X ~, Y) € F then Y € Depp(X,Q, ). By Definition 5.2. we have 37 €
Depr(X,Q, p) such that Y C Z.

(«=) Assume that 37 € Depp(X, @, ¢) such that Y C Z. Since Z € Depp(X, Q, ¢) then Q(X ~~,
Z)e FT.
By Decomposition axiom, we have Q(X ~~,Y) € FT. [

5.2. Algorithm for computing Dep (X, Qo, vo)

Denote X5 (o) = {A € R|X ~,, Ac FT}L
It is easily to prove that X% () CY,VY € Depr (X, Q, p).
Algorithm 5.1. X%(p0)
Input: X, po, F'
Output: X7:(p0)
Method:
Var OLDX, NEWX, XPLUS : Set of attributes;
NEWX := X



102 HO THUAN, TRAN THIEN THANH

Repeat
OLDX:=NEWX;

For each V ~~, W in I' do
If (p > o) and (V € NEWX) Then
NEWX :=NEWX U W ;
End If
End For
Until NEWX = OLDX;
XPLUS := NEWX,
Return (XPLUS)

Theorem 5.1. Algorithm 5.1 is correct and time complexity 1s O(n.p. min(n, p)), where n is number
of attributes in R and p is number of QFFDs wn I,

Proof. The proof is similar to that for the algorithm computing the attributeset closure in classical
relational model. See [13] for detail. ]

Algorithm 5.2. Dep (X, Qo, vo)

Input: X, Qo, o, F.

Output: Depp(X, Qo, ¢o).

Method:

Var XPLUS, 7 : Set of attributes;

TEMP, OLDD, NEWD, DPLUS: Family of set of attributes;
XPLUS: =X % (v0);

NEWD:={XPLUS};

Repeat (1)
OLDD:=NEWD;
For each Q(V ~~, W in F do (2)
TEMP:={z};
If (Q = FA) and (¢ > o) Then
For each Z in NEWD do (3)
If V C 7 Then
TEMP:=TEMP U {ZWU XPLUS} ;
End If
End For

Else If (|Q| > |Qo|) and (¢ > @o) and (V € XPLUS) Then
TEMP:=TEMP Uc {WU XPLUS} ;

End If
End If
NEWD:=NEWD uc TEMP;

End For
Until NEWD = OLDD;
DPLUS := NEWD;
Return (DPLUS);

where Uc is union operator for maximum-sets, and FA is quantifier for all.

Denote: NEWD®  TEMP® are values of variables NEWD, TEMP of i*" step in Repeat-loop of
Algorithm 5.2, respectively.
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Example 5.1. R = {4, B,0, D, E,G}, F = { C ~08 B, CD ~+g.85 B, M(B ~0.9 A), AMP(C ~+0 g5
%BCD ~0.9 By, M(E ~g9 G), ALH(G ~g.95 C), C ~v9 G, M(CG ~g.95 A)}. Let’s compute

Depp(C, M, 0.85), where ALH = “at least half’ < M = “most” < AMP = “as many as possible”

< FA= “for all’.

XPLUS = {CG}

TEMPY = {CDG,CGA}; NEWDW = {CDG, CGA}

TEMP® = {BCDG}; NEWD® = {BCDG,CGA}

TEMP®) = {BCDGE,CGA}; NEWD® = {BCDGE, CG A}

TEMP® = {@}; NEWD® = NEWD®),

Depr(C,M,0.85) = {BODGE,CGA}.

Theorem 5.2. The time complexity of Algorithm 5.2 is O(n.p*), where n is number of attributes in
R and p s number of QFFDs in F.

Proof. Checking the inclusion and performing the union Uc in the if-statement takes O(n)+O(n.p) ~
O(n.p) time. Since For-loop (3) can be excuted at most p times then the excution of one cycle of
For-loop (2) takes O(n.p?) time.

Since For-loop (2) can be excuted at most p times, for each step in this For-loop takes O(n.p?).
Hence the excution of one cycle of Repeat-loop (1) takes O(n.p3) time.

The repeat-loop (1) can be excuted at most p times. Hence time complexity of this loop is
O(n.p*).

The time complexity of Algorithm 5.1. for computing the X} () is O(n.p. min(n, p)). Hence
the time complexity of Algorithm 5.2. is O(n.p. min(n, p)) + O(n.p*) = O(n.p*). ]

Lemma 5.1. Algorithm 5.2. terminates.

Proof Since F and R are finite sets then Algorithm 5.2 terminates, i.e. there exists step k*F such
that NEWD®) = NEWD(—1), n

Now we denotes NEWD*) as return of Algorithm 5.2.

Lemma 5.2. For all j > k we have NEWDYUc TEMPY) = NEWDUY),

Proof. We prove this lemma by induction on j.

For j = k, since NEWD®*~1) Uc TEMP®*~1 = NEWD®*) = NEWD*~1 then

TEMP®) = TEMP%*~1. Hence NEWD®*) Uc TEMP®*) = NEWD®*). Consequently, the basis of
induction is true.

Assume that lemma is true for j, i.e. NEWDU) Uc TEMPYW = NEWD{. We have to show that
lemma is true for 5 + 1.

Since NEWD Uc TEMPU) = NEWDW) then TEMPUY) = TEMP ),

Hence NEWDUTD ue TEMPUT) = NEWDUHD),

The lemma, is proved. [

Lemma 5.3. [fU ~, Y € T, ¢ > o and 3Z ¢ NEWD®) such that U C Z then Y C Z.

Proof. We prove this lemma by induction that for any G that F' C G C F'T obtained during this
construction, we have:

IfU~,Y €G, ¢ > poand IZ € NEWD®) such that U C Z then Y C Z (%)
Basis of induction G = F: We consider two cases:

Case 1: U C XPLUS. Since U ~, Y € F and ¢ > g then Y € XPLUS. Hence Y C Z,VZ <
NEWD®).

Case 2: U € XPLUS. Since U C Z and U ~, Y € F, by Algorithm 5.2 we have YZ ¢ TEMP®).
Since Lemma 5.2 then 37’ € NEWD®) such that YZ C Z'. Since 7 is a maximum-set in NEWD()
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and Z € XPLUS then Z' = Z. Hence Y C Z.

Hypothesis: Assume that G satisfies ().

Let G’ be a set of QFFDs obtained from G by one application in {QFFD1-QFFD5}. We have to
show that:

IfU ~, Y €G> ¢ and 37 € NEWD®) such that U C Z then Y C Z (")
If U~ Y € G, by hypothesis then («') is true.

If U~ Y ¢ G. There are four cases:

Case 1: U ~», Y is obtained from G by application reflexive axiom (QFFD1). We have Y C U.
Hence Y C Z. Consequently (*') is true.

Case 2: U ~~, Y is obtained from G by application of augmentation axiom. There exists U ~, Y’ €
G such that Y =U'Y', U’ C U.

By hypothesis, we have Y/ C Z. Since U’ C U C Z then Y C Z. Hence (x') is true.

Case 3: U ~+, Y is obtained from G by application of transitivity axiom. There exists U ~», V € G
and V ~», Y € G. Since U ~+, V € GG then by hypothesis V C Z. Since V ~,Y cGand V C Z
then by hypothesis Y C Z. Hence (*') is true.

Case 4: U ~», Y is obtained from G by application inclusion for threshold axiom (QFFD4). There
exists U~ V € G, where ¢/ > ¢. Since ¢/ > g, then by hypothesis Y C Z. Hence (x') is true.

The lemma, is proved. [

Lemma 5.4. If U C XPLUS, QU ~,Y) € F*, 0> ¢ and |Q| > |Qo| then 3Z € NEWD®) such
that Y C Z.

Proof. Similar to the proof of Lemma 5.3. [

Lemma 5.5. NEWD*) = Dep (X, Qo, o) if and only if following conditions holds
(i) If Y € NEWD®) then Qo(X =y Y) € FT.
(i) If Q(X ~, Y) € F*, |Q| > |Qo|, and ¢ > wo then 3Z € NEWD®) such that Y C Z.

Proof. (=) (i) Tt is trival by Priposition 5.1.

(ii) Since Q(X ~, V) € F* and |Q| > |Qo|, ¢ > o then Qo(X ~+,, Y) € FT. By Proposition 5.1
there exists Z € NEWD®) (= Dep (X, Qo, ©o)) such that Y C Z.

(<) Assume that NEWD®) satisfies conditions (i) and (ii). In order to prove NEWD®) = Dep (X, Qo, ©o)
we have to show that:

a) YY € NEWD®) then 3Z € Depp(X, Qo, o) such that Y C Z and

b) VZ € Depp(X, Qo, o) then Y € NEWD®) such that Z C Y.

For a) YY € NEWD®) by (i) we have Qo(X ~,, Y) € FT. By (ii) then 3Z € Depp(X, Qo, ¢o)
such that Y C 7.

For b) ¥Z € Depp(X, Qo,¢o), by Proposition 5.1 we have Qo(X ~v,, Y) € FT. By (ii) then
3Y € NEWD®) such that Z C Y. Hence NEWD®) = Dep (X, Qo, ©0).

The proof is complete. [

Theorem 5.3. Algorithm 5.2. s correct.

Proof. By Lemma 5.5 we have to show that:

(i) If Y € NEWD®) then Qo(X ~»,, Y) € FT.

(i) If Q(X ~+, Y) € F*,|Q| > |Qol, and ¢ > g then 1Z € NEWD®) such that Y C Z.

First we prove (i). We show that YY" € NEWDW then Qo(X ~~,, Y) € F* (3) by induction on j.
Basis j=0: we have NEWD(® = {XPLUS}. Clearly X ~,, XPLUS ¢ F'*.

Hypothesis: Assume that (3) is true for 7 — 1. We have to show that (3) also is true for 7.

VY € NEWDU) = NEWDU -1 uc TEMPU-D.

If Y €« NEWDU 1, by hypothesis (3) is true.
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Ity ¢ NEWDU-1. We have Y € TEMPU 1. By Algorithm 5.2, we consider two cases:

Case 1: AV ~sy, W € F and Z € NEWDU Y such that ¢ > ¢g, V C Z and Y = ZW U XPLUS.
Since Z € NEWDU 1, by hypothesis we have Qo(X ~yy Z) € FT. From V C Z, by QFFD2 we
have Z ~,, ZW € FT. By transitivity we have Qo(X ~,, ZW) € F7.

Case 2: 3Q(V ~, W) € F such that |Q] > |Qol, ¢ > o, V € XPLUS, Y = W U XPLUS.

Since Q(V ~», W) € F and |Q| > |Qol, ¢ = ¢o then by QFFD4, QFFD5 we have Qo(V ~,, W) €
FT. By V C XPLUS then X ~~,, V € F*. By QFFD3, we have Qo(X ~~,, W) € F*. By QFFD2
then Qo(X ~~y, WUXPLUS) € F™. Hence Qo(X ~y, Y) € FT. Consequently (i) is proved. Now
we prove (ii) by induction that for any G, that F' C G C F'* obtained during this construction, we
have

VQ(X ~, Y) € G, |Q| > |Qo| and ¢ > ¢o then 3Z € NEWD®) such that Y C Z (4)

Basis G = I From Q(X ~+, Y) € Fand |@Q| > |Qol, ¢ > ¢o, by Algorithm 5.2 we have YUXPLUS <
TEMP®. Hence 37 ¢ NEWD®) such that ¥ C Z. Consequently (4) is true.

Hypothesis: Assume (4) is true.
Let G’ be a set of QFFDs obtained from G by one application of axiom in {QFFD1-QFFD5}. We
have to show that

V(X ~, Y) €G!, |Q] > |Qo| and ¢ > ¢ then 1Z € NEWD®) such that Y C Z (4)
If Q(X ~,Y) € G, by hypothesis (47) is true. If Q(X ~~, Y) € G. There are six cases:
Case 1: Q(X ~, Y) is obtained from G by reflexivity axiom. Since Y C X then Y C Z VZ ¢
NEWD®). Hence (47) is true.
Case 2: Q(X ~-, Y) is obtained from G by augmentation axiom. There exists Q(X ~, Y') € G,
Y = X'V, X' C X.
By hypothesis 3Z ¢ NEWD®) such that Y’ C Z. Since X' € X C Z then Y C Z. Hence (47) is true.
Case 3: Q(X ~+, Y) is obtained from G by Transitivity 1 axiom (QFFD3). There exists Q(X ~-
V)€ Gand V ~, Y € G. By hypothesis 17 € NEWD®) such that V C Z.
By Lemma 5.3 we have Y C Z. Hence (4) is true.
Case 4: Q(U ~~, Y') is obtained from G by Transitivity 2 axiom (QFFD3’). There exists X ~, V € G
and Q(V ~, Y) € G. By Lemma 5.4 we have Y C Z.
Case 5: Q(U ~+, Y) is obtained from G by QFFD4. There exists Q(U ~, V) € G and ¢/ > ¢. By
hypothesis we have (4’) is true.
Case 6: Q(U ~, Y) is obtained from G by QFFD5. There exists Q' (U ~+, V) € G and |Q'| > |Q).
By hypothesis we have (47) is true.

The proof is complete. [

The minimum family of dependency sets Depp(X, @, ¢) is dependent to @ and . In following
part, we give concept of family of dependency sets (with respect to F') that only dependent to X and
F.

Definition 5.3. Let F be a set of QFFDs of scheme (R, C, ), X C R, ) is a quantifier, ¢ € [0, 1].
Family of dependency sets of X (with respect to F'), denoted by Depp(X), is set of triple (Y, Q, ¢)
such that Q(X ~~,Y) € F™

Depr(X) ={(Y.Q,9)|QX ~, Y) € F''}.
Remark 5.2. By axioms QFFD4, QFFD5, QFFDS8, we have if (Y, Q, ¢) € Depp(X) and ¥YY' C Y,
@< 1@l ¢ < ¢ then (V/, ) € Depr(X).

Definition 5.4. Let I be a set of QFFDs of scheme (R,C,a), X C R, Q be quantifier, ¢ € [0, 1].
Minimum family of dependency sets of X (with respect to F'), denoted by Depr(X), is defined by

Depp(X) =4, Q, Y e maxset {Y;}, Q= su it o= su i }
pr(0) = {20 Stden LG U R L S S Q(wa;)em{(p}
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Proposition 5.2. Q(X ~, Y) € F' if and only if (Z,Qz, ¢z) € Depp(X) such thatY C Z,|Q| <
|Qz|, 0 < vz

Proof. (=) Since Q(X ~~, Y) € F7' then (Y,Q,¢) € Depp(X). By definition of Depy(X) then
AZ, Rz, ¢z) € Depp(X) such that Y C 7, |Q| < |Qz|, v < vz.

(<) Assume that (7, Qz, ¢z) € Depp(X) such that Y C Z,|Q| < |Qz|, » < ¢z

Since (Z,Qz,¢z) € Depp(X) then (Z,Qz,¢z) € Depr(X). Hence Qz(X ~,, Z) € Ft. By
axioms QFFD4, QFFD5, QFFDS we have Q(X ~,Y) € FT. [

Algorithm 5.3. Depy(X)
Input: X, F
Output: Depp(X)
Method:
Var TEMP, OLDD, NEWD, DPLUS : Set of triple (Set of attributes, Quantifier, [0,1]);
NEWD:={(X,FA,1)};
Repeat
OLDD:=NEWD;
For each Q(V ~~, W) in I do
TEMP:={z};
For each (Z,Qz, vz) in NEWD do
If (Q = FA) or (Qz = FA)) and (V C Z) Then
TEMP:=TEMP Uc <{(ZW, min(Q, @z), min(yp, ¢z)}
End If
End For
If V C X Then
TEMP:=TEMP Uc < {(XW, Q, ©)}
End If
NEWD:=NEWD Uc <« TEMP;
End For
Until NEWD = OLDD;
DPLUS:=NEWD;
Return (DPLUS), {DPLUS = Dep (X))}
where Uc < is a union operator of maximum-triples, min(@, @z) = @ if |Q] < |Qz|, Qz otherwise.

Example 5.2. R and F as same as in Example 5.1. Let’s compute Dep (C).

NEWD© = {(C,FA,1)}

TEMP®) = {(BC,FA,0.8),(CD,AMP,0.85), (CG,FA,0.9)};

NEWD®) = {(C,FA,1), (BC,FA,0.8), (CD,AMP,0.85), (CG,FA,0.9)};

TEMP® = {(BCD,AMP,0.85), (ABC,M,0.8), (CGA,M, 0.9)};

NEWD®) —

{(C,FA,1), (BC,FA,0.8), (CG, FA,0.9), (BCD,AMP,0.85), (ABC,M,0.8), (CGA,M,0.9)};
TEMP®) = {(BCDE,AMP,0.85)};

NEWD®) =
{(C,FA,1), (BC,FA,0.8), (CG,FA,0.9), (ABC, M, 0.8), (CGA,M,0.9), (BCDE,AMP,0.85)};
TEMP®W = {&};

NEWD® = NEWD®),
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DepF(C> -
{(CﬂFA,l)7 (BC,FA,0.8), (CG,FA,0.9), (ABC,M,0.8), (CGA,M,0.9), (BCDE7AMP7O.85)}

It is similar to above results, the following results are easily obtained.

Theorem 5.4. The time complexity of Algorithm 5.3 is O(n.p*), where n is number of attributes in
R and p s number of QFFDs in F.

Lemma 5.6. Algorithm 5.3. terminates.
Lemma 5.7. For all j > k we have NEWDY) U C, < TEMPY = NEWDWY.

Lemma 5.8. Suppose that Q(X ~, V) € FT and (Z,Q.,vz) € NEWD® Q| < |Qzl,¢ < ¢z,
and V. C Z. If V ~+, Y € F* then W, Qw, pw) € NEWD®) such that |Q| < |Qwl, ¢ < ¢w, and
YZCW.

Lemma 5.9. If QU ~, Y) € FT, and (Z,FA,¢z) € NEWD®) U C Z, ¢ < ¢z then
W, Qw, ew) € NEWD®) such that |Q| < |Qw|, ¢ < ow, and YZ CW.

Lemma 5.10. NEWD*) = Dep(X) if and only if following conditions holds
(i) If (V,Q, ) € NEWD®) then Q(X ~,Y) € F+.
(i) fQ(X ~, Y) € FT, then I(Z,Qz, pz) € NEWDW) such that |Q| < |Qz|, ¢ < ¢z, and Y C Z.

Theorem 5.5. Algorithm 5.3 is correct.

6. CONCLUSION

This paper deals with concept of Fuzzy functional dependency with linguistic quantifiers. The
main result of this work is some algorithms for computing minimum family of dependency sets. A
futher study involving, the completeness of axioms for QFFDs, an extension to fuzzy multivalued
dependency with linguistic quantifier, and its applications in knowledge discovery from fuzzy data
has been on going.

REFERENCES

[1] Bhattacharjee T. K., Mazumdar A. K., Axiomatisation of fuzzy multivalued dependencies in a
fuzzy relational data model, Fuzzy Sets and Systems 96 (1998) 343-352.

[2] Buckles B. P., Petry F.E., A fuzzy representation of data for relational databases, Fuzzy Sets
and Systems 7 (1982) 213-226.

[3] Buckles B.P., Petry F. E., Information-theoretic characterization of fuzzy relational databases,
IFEE Trans. Sys. Man. Cybernet. 13 (1983) 74-77.

[4] Chen G., Kerre E.E., Vandenbulcke J., A computational algorithm for the FFD transitive
closure and a complete axiomatization of fuzzy functional dependence, International Journal of
Intelligent Systems 9 (1994) 421-439.

[5] Chen G., Fuzzy functional dependency as a sort of semantic knowledge: representation, preser-
vation and use, in: Knowledge Management wn Fuzzy Databases, Pons O., Vila M. A., Kacprzyk
J., eds., Springer-Verlag, New-York, 2000, 122-134.

[6] Cubero J.C., Vila M. A., A new definition of fuzzy functional dependency in fuzzy relational
databases, International Journal of Intelligent Systems 9 (1994) 441-448.

[7] Dubois D., Prade H., Possibility Theory: An Approach to Computerized Processing of Uncer-
tainty, Plenum Press, New York, 1938.

[8] H. Thuan, T.T. Thanh, On the functional dependencies and multivalued dependencies in fuzzy
relational databases, Journal of Computer Science and Cybernetics 17 (2) (2001) 13-19.

[9] Jyothi S., Babu M. S., Multivalued dependencies in fuzzy relational databases and lossless join
decomposition, Fuzzy Sets and Systems 88 (1997) 315-332.



108 HO THUAN, TRAN THIEN THANH

[10] Kraft D.H., Petry F. E., Fuzzy information systems: managing uncertainly in databases and
information retrieval systems, Fuzzy Sets and Systems 90 (1997) 183-191.

[11] L.T. Vuong, H. Thuan, A relational database extended by application of fuzzy set theory and
linguistic variables, Computers and Artifical Intelligence 8 (2) (1989) 153-168.

[12] Nakata M., On inference rules of dependencies in fuzzy relational data models: Functional
dependencies, in : Knowledge Management tn Fuzzy Databases, Pons O., Vila M. A., Kacprzyk
J., eds., Springer-Verlag, New-York, 2000, 36—66.

[13] Paredaens J., et al., The Structure of the Relational Database Model, Springer-Verlag, New-York,
1989.

[14] Petry F., Bosc P., Fuzzy Databases: Principles and Applications, Kluwer, Norwell, MA, 1996.

[15] Shenoi S., Melton A., An extended version of the fuzzy relational database model, Information
Sciences 52 (1990) 35-52.

[16] Shenoi S., Melton A., and Fan L.T., Functional dependencies and normal forms in the fuzzy
relational database model, Information Sciences 60 (1992) 1-28.

[17] Sozat M.1., Yazici A., A complete axiomatization for fuzzy functional and multivalued depen-
dencies in fuzzy database relations, Fuzzy Sets and Systems 117 (2001) 161-181.

[18] Ullman J.D., Principles of Database System, Comp. Science Press, 1980.

[19] Yazici A. et al., The integrity constraints for similarity - based fuzzy relational databases,
International Journal of Intelligent Systems 13 (1998) 641-659.

[20] Zadeh L., Fuzzy sets as a basic for theory of possibility, Fuzzy Sets and Systems 13 (1978) 3-28.

Recewed September 12, 2001

Ho Thuan - National Institute of Information Technology, Hanor.
Tran Thien Thanh - Pedagogical Institute of Quy Nhon, Binh Dinh.



