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Abstract. Modeling amino acid substitution process is a core task in bioinformatics. New advanced

sequencing technologies have generated huge datasets including whole genomes from various species.

Estimating amino acid substitution models from whole genome datasets provides us unprecedented

opportunities to accurately investigate relationships among species. In this paper, we review state-of-

the-art computational methods to estimate amino acid substitution models from large datasets. We

also describe a comprehensive pipeline to practically estimate amino acid models from whole genome

datasets. Finally, we apply amino acid substitution models to build phylogenomic trees from bird

and plant genome datasets. We compare our newly reconstructed phylogenomic trees and published

ones and discuss new findings.

Keywords. Evolutionary analysis; Amino acid substitution models; Protein analysis; Genome

analysis; Maximum likelihood estimation.

1. INTRODUCTION

The information of evolutionary relationships among species plays an important role in
genomic studies such as determining gene functions, investigating genetic-related diseases,
developing new drugs/vaccines, or understanding population history. Therefore, develop-
ing computational methods to analyze evolutionary relationships among sequences is a key
problem in bioinformatics. To this end, the substitution process among nucleotides/amino
acids during the evolution must be properly modeled. The nucleotide/amino acid substitu-
tion models are required in maximum-likelihood (ML) phylogenetic tree reconstructions or
Bayesian methods to calculate the likelihood of data [1]. Note that the ML and Bayesian
methods have been proved to be more accurate than other methods (e.g., maximum parsi-
mony methods, distance-based methods) in analyzing the evolutionary relationships among
species based on their genetic data [1]. Using nucleotide/amino acid substitution models
helps the ML and Bayesian methods avoid systematic errors (i.e., back mutations, par-
allel mutations, multiple mutations) when constructing phylogenies from diverse datasets.
The distance-based approach requires nucleotide/amino acid substitution models to estimate
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pairwise distances between sequences. Employing wrong nucleotide/amino acid substitution
models results in incorrect phylogenetic trees. The amino acid substitution models such as
PAM [2] or BLOSUM [3] can also play as score matrices in the sequence similarity search.
The roles and applications of amino acid substitution models are summarized by [4].

A nucleotide substitution model comprises a 4×4 matrix representing instantaneous sub-
stitution rates among 4 nucleotides, i.e., Adenine (A), Thymine (T), Guanine (G), and
Cytosine (C); and a nucleotide frequency vector describing nucleotide frequencies. A general
time-reversible nucleotide substitution model has only 8 free parameters that can be directly
estimated from nucleotide sequences under the study [1]. In short, estimating nucleotide
substitution models is not a computationally expensive task.

Amino acid sequences are more conserved than nucleotide sequences, therefore, they are
frequently used to construct evolutionary relationships among species, especially among dis-
tantly related-species. Modeling amino acid substitutions is orders of magnitude more chal-
lenging than modeling nucleotide substitutions. An amino acid substitution model comprises
a 20× 20 instantaneous substitution rate matrix and an amino acid frequency vector of the
20 amino acids. The time-reversible amino acid substitution model contains 208 parameters,
therefore, small or medium size datasets normally do not provide enough phylogenetic sig-
nals for correctly estimating such large number of parameters. To solve this problem, amino
acid substitution models are empirically estimated from large protein datasets in advance.

Computational methods have been proposed to estimate amino acid substitution models
since 1970s. The counting methods calculate the number of observed changes between amino
acids in a set of protein sequences to estimate substitution rates among amino acids. They
were applied to small protein datasets to estimate Dayhoff (PAM) models [2], or latter JTT
model [5] or BLOSUM model [3]. Note that the counting methods are only applicable for
closely-related protein datasets.

Maximum likelihood methods have been proposed to estimate amino acid substitution
models from diverse datasets. Whelan and Goldman applied the maximum likelihood method
to estimate WAG model from a dataset of 3,905 globular amino acid sequences [6]. Experi-
ments showed that the WAG model outperformed the Dayhoff and JTT models in building
maximum-likelihood trees. Approximate maximum likelihood approach has been developed
to estimate amino acid substitution models from larger datasets [7-10]. Note that amino
acid substitution models that were estimated from general protein datasets such as WAG
[6], LG [7] or Q.pfam [9] are called general amino acid substitution models.

Among available amino acid substitution models, PAM and BLOSUM are frequently used
as score matrices in the sequence similarity search. However, as the models were constructed
from a limited number of closely-related protein sequences, they are normally not as good
as newly estimated general models such as Q.pfam in analyzing large and diverse protein
datasets.

The general amino acid substitution models are suitable for analyzing general protein
sequences, however, they do not properly describe amino acid substitutions of viruses due
their rapid evolution. A number of models have been estimated for different viruses such as
HIV models for HIV viruses [11]; FLU model for influenza viruses [12] or FLAVI model for
flaviviruses [13]. Experiments revealed that the virus-specific models were much better than
general models in analyzing amino acid data from viruses.

The next generation sequencing technologies have produced a huge amount of nucleotide
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and amino acid sequences. Thousands of genomes from various species give us unprece-
dented opportunities to investigate the evolutionary relationships among species from the
genome point of views. The current model estimation methods are not designed to work
on whole genome datasets due to the computational expense of estimating a large number
of parameters and the heterogeneity of evolutionary rates among genes. In other words,
methods to analyze whole genome datasets must be able to handle thousands of genes with
the variability of evolutionary rates among genes.

2. METHODS

2.1. Amino acid substitution model

The substitutions between amino acids during the evolution is typically modeled by a
time-homogeneous, time-continuous, and stationary Markov process [1, 6, 7, 9]. An amino
acid substitution model M comprises an instantaneous substitution rate matrix Q = {qx,y}
representing instantaneous substitution rates between amino acids, and an amino acid fre-
quency vector πππ = {πx}. Specifically, the model has four conditions:

- The substitution rate from amino acid x to amino acid y is independent of the substi-
tution history of amino acid x (Markov property).

- The substitution rates among amino acids are constant over time (time-homogeneous).

- The substitutions between amino acid can occur at any time in the process (time-
continuous).

- The frequencies of amino acids are at equilibrium (stationary).

The matrix Q and vector πππ are dependent and Qπππ = 0. Technically, Q can be decomposed
into qx,y = πyrx,y and qx,x = −

∑
x ̸=y

qx,y where R = {rx,y} is the exchangeability rate matrix

between amino acids. The matrix R contains 380 parameters (20 entries on the main diagonal
can be determined from off-diagonal entries). Typically, we assume that the amino acid
substitution process is time-reversible, i.e., exchangeability rate from amino acid x to amino
acid y is required to be the same as the exchangeability rate from y to x. Thus, rx,y = ryx
and Rconsists of 190 parameters.

Given an instantaneous substitution rate matrix Q, the transition probability matrix
P (t) = {pxy (t)} in which pxy (t) is the probability to change from amino acid x to amino
acid y during the evolutionary time t can be computed as following

pxy (t) = eQt.

The probability P (t) is used to calculate the likelihood of data in phylogenetic analysis.
Note that the instantaneous substitution rate matrix Q is normally scaled such that the
expected number of substitutions per time unit is one (i.e., −

∑
πxqxx = 1). As a result,

pxy (t) is the probability to change from amino acid x to amino acid y after t substitutions.

2.2. Model estimation

Till now, maximum likelihood is the best approach to estimate amino acid substitution
models. A time-reversible amino acid substitution model M consists of 208 parameters
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that must be estimated from a number of protein (amino acid) alignments to overcome
the overfitting problem. Given a dataset AAA = (A1, . . . , An) of n protein alignments, the
maximum-likelihood method estimate a model M to maximize the likelihood value L (AAA|M).

We assume that protein alignments are independent, thus, the likelihood value L (AAA|M)
can be calculated from individual alignments as following

L (AAA|M) =

n∏
i=1

L(Ai|M),

where L(Ai|M) is the likelihood of alignment Ai. To calculate L(Ai|M) we have to determine
phylogenetic tree Ti for alignment Ai. Let TTT = (T1, . . . Tn) be the tree set corresponding to
the dataset AAA, i.e., Ti is the corresponding phylogenetic tree constructed from alignment Ai.
The likelihood L (AAA|M) can be calculated as following

L (AAA|M) =

n∏
i=1

L(Ai|M) =

n∏
i=1

L(Ai|M,Ti).

The heterogeneity of amino acid substitution rates among sites can be modeled by a site
rate model V . Typically, a site rate model V combines a gamma distribution model Γ and
an invariant rate model I [14]. We also assume that amino acid substitutions among sites
are independent, thus, the likelihood value L (AAA|M,V,TTT ) can be specifically calculated as
following

L (AAA|M,V,TTT ) =
n∏

i=1

L(Ai|M,V, Ti) =
n∏

i=1

li∏
j=1

L (Aij |M,V, Ti) ,

where li is the length of alignment Ai, and Aij is the data at site j of alignment Ai. The like-
lihood value L (Aij |M,V, Ti) can be calculated by the conditional probability P (Aij |M,V, Ti)
of data Aij given substitution model M, site rate model V and tree Ti.

The maximum likelihood estimation method determines parameters of amino acid substi-
tution model M (together with site rate model V and tree set TTT ) to maximize the likelihood
value L (AAA|M,V,TTT ) .

2.3. Approximate maximum likelihood estimation

Finding the maximum likelihood value L (AAA|M,V,TTT ) is computationally difficult because
we have to simultaneously estimate a large number of parameters of substitution model M ,
site rate model V , and especially tree set TTT . Approximate maximum likelihood methods
have been proposed to estimate parameters of a model M from large datasets [6, 7, 10].
The methods revealed that the parameters of model M can be accurately estimated using
nearly optimal trees TTT and site rate model V . Thus, we can iteratively estimate parameters
of model M, trees set TTT , and site rate model V instead of estimating them simultaneously.

Given a set of protein alignments AAA, the approximate maximum likelihood method in-
cludes four main steps as follows (see Figure 1):

� Initial step: Initialize the current best-fit modelQ by the most proper available model,
e.g., LG for general dataset or FLU for virus dataset. The amino acid frequency vector
π can be estimated by counting directly from protein alignments AAA.
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� Building tree step: Determine maximum likelihood trees TTT and site rate model V
for alignments AAA based on the current best-fit model Q.

� Estimating model step: Estimating parameters of a new model Q′ based on align-
ments A, maximum likelihood trees TTT and site rate model V .

� Stopping step: If Q and Q′ are highly correlated, stop the estimation process and
consider Q′ as the best-fit model for the dataset. Otherwise, assign Q by Q′ and go to
the Building tree step.

 

Amino acid alignments

Initialize current best-fit model Q

Build maximum likelihood trees T, and

site rate model V

Estimate new model Q'

Q = Q'

Consider Q' as the best-fit

estimated model

YES

NO

Q Q'

Figure 1: The approximate maximum likelihood method to estimate an amino acid
substitution model from a set of amino acid alignments

2.4. Fast maximum likelihood estimation method

The approximate maximum likelihood method is still computational expensive when
working on alignments with a large number of sequences due to the step of building maximum
likelihood trees. For example, building maximum likelihood trees took 319 out of 324 hours
to estimate an amino acid model from a dataset of 100 alignments in the HSSP database
[8]. Although a number of phylogenetic reconstruction methods such as IQPNNI [15, 16],
IQ-TREE [17], PhyML [18] or RaxML [19] have been proposed to efficiently build maximum
likelihood trees from large alignments, they are not efficient enough to build thousands of
maximum likelihood trees to estimate amino acid substitution models.
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To overcome the computational burden in building maximum likelihood trees from large
alignments, alignment splitting methods have been proposed to divide large alignments into
smaller alignments such that the smaller alignments still contain enough phylogenetic sig-
nals to estimate amino acid substitution models. The maximum likelihood trees will be
constructed from smaller alignments instead of large alignments. A fast and accurate proce-
dure, called FastMG, has been proposed to combine the alignment splitting algorithm and
the approximate maximum likelihood method to estimate amino acid substitution models
from large datasets [8].

The FastMG procedure includes two main phases: alignment splitting and model esti-
mating. The alignment splitting phase applies the tree-based alignment splitting algorithm
to divide large alignments into smaller alignments such that each smaller alignment contains
at most k sequences and at least k/2 sequences. The k value is determined to compromise
the computational expense in building maximum likelihood trees and the amount of phy-
logenetic signals for correctly estimating substitution rates among amino acids. The model
estimating phase employs the approximate maximum likelihood method to estimate amino
acid substitution models from smaller alignments instead of large original alignments.

The FastMG procedure was examined on large datasets, i.e., HSSP dataset and Pfam
dataset. Experiments showed that the FastMG procedure was an order of magnitude faster
than the approximate maximum likelihood method, and more importantly there was no
apparent loss in the quality of the estimated model. Note that k = 16 was recommended to
compromise the estimation time and model quality.

2.5. Model assessment

Phylogenetic trees represent the evolutionary relationships among species where nodes
represent species and branch lengths indicate the divergence in terms of the number of
substitutions or the evolutionary time between two species. The phylogenetic trees are
typically constructed based on either nucleotide or amino acid data. The amino acid data are
more conserved than the nucleotide data, therefore more preferable to study the evolutionary
relationships among diverse species.

A number of amino acid substitution models have been estimated from large empirical
amino acid datasets for different data types. The model finder method should be applied to
select the best fit model for the data under the study [20]. The Akaike information criterion
(AIC) [21] and Bayesian information criterion (BIC) [22] can be used to measure the fit of
a model to the data. The AIC and BIC scores are calculated from the likelihood value of
the constructed tree and the penalty of free parameters in the models used to build the tree.
The better AIC/BIC score indicates the better model in building the maximum likelihood
tree.

3. ESTIMATING AMINO ACID SUBSTITUTION MODELS FROM
WHOLE GENOMES

3.1. Genome partitioning

The first step in estimating amino acid substitution models from whole genomes is to
divide genomes into separated partitions (loci or subsets) such that sites in the same partition
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are assumed to evolve under the same amino acid substitution process (substitution models,
site rate models). This can be done by using prior knowledges such at gene boundaries or
codon positions to group sites into subsets [14, 23-25].

Dividing genomes into separated loci by prior knowledges has two limitations: 1) the
gene boundary or codon information are not always available for genomes under the study;
2) it is not biologically plausible to assume that all sites of the same gene or at the same
codon position are under the same evolutionary process. They might evolve at different
rates and follow different substitution patterns. To handle the problem, computational
methods to divide genomes into proper partitions have been proposed [25-29]. The alignment
partitioning methods classify sites into several disjoint partitions (a partition scheme) based
on their site rates and amino acid substitution patterns.

The site rate-based partitioning methods group sites with similar evolutionary rates into
the same subset [25-27]. The methods work well on a number of datasets, however, they
suffer a critical pitfall that they group all invariant sites (or nearly invariant sites) into one
subset. The partition of all invariant sites significantly increases the likelihood of data but
results in biased trees [28, 30].

Amino acid sites with similar evolutionary rates might follow different amino acid sub-
stitution patterns. We need to combine both site rates and amino substitution patterns to
classify sites such that sites in the same partition have similar evolutionary rates and sub-
stitution patterns (amino acid substitution model). The mPartition method [29] has been
recently proposed with three key ingredients: site rate-based partitioning; model-based par-
titioning; and invariant site partitioning. First, the mPartition algorithm classifies sites into
different partitions based on their evolutionary rates, i.e., sites in the same partition have
similar evolutionary rates. Second, the mPartition method determines the best-fit amino
acid substitution model for each partition. The substitution models are used to re-classify
sites into partitions based on their best-fit models, i.e., sites are re-classified into partitions
with the highest likelihood values. Finally, the mPartition algorithm was designed to classify
invariant sites into different partitions proportionally to their likelihood values with respect
to the partitions to avoid the pitfall of site rate-based partitioning methods. Experiments
on both real and simulated datasets showed that the mPartition method outperformed site
rate-based methods in both constructing true trees and maximum likelihood trees.

3.2. Model heterogeneity

Using the same site rate model V for all alignments/partitions is not biologically realistic.
To solve the problem, a set of site rate models VVV = (V1, . . . , Vn) for alignments AAA, i.e., Vi is
the site rate model for alignment Ai are determined during the model estimation procedure.
Typically, the site rate model Vi combines a gamma distribution model and an invariant rate
model [14]. The distribution-free rate models with several site rate categories can be also
employed to better describe the rate heterogeneity among sites [20].

The approximate maximum likelihood approach using the same amino acid substitution
model Q to build maximum likelihood trees for all alignments must be improved, i.e., each
alignment/partition of the genome should be analyzed with its best-fit substitution model.
To this end, we revise the Building tree step such that the best-fit substitution model for each
alignment will be selected from a set of published models and the currently estimated model
Q. Let MMM = {M1,M2, . . . ,Mn} be the set of substitution models where Mi is the best-fit
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substitution model for alignment Ai. Note that Mi can be either the currently estimated
model Q or one of published models. We build the maximum likelihood tree Ti for alignment
Ai using site rate model Vi and substitution model Mi.

The QMaker algorithm was developed to include both site rate models VVV and substitution
models MMM into the model estimation process [9]. It consists of five main steps:

- Initial step: Initialize the current best-fit model Q by the most proper published
model (e.g., LG for general datasets or FLU for virus datasets).

- Model finder step: For each alignment Ai, select the best-fit substitution model Mi

(chosen from published models and the current best-fit model Q), and the site rate
model Vi.

- Tree building step: For each alignment Ai, construct tree Ti based on the site rate
model Vi and substitution model Mi.

- Model estimation step. Estimate parameters of new model Q′ from all alignments
AAA using maximum likelihood trees TTT , site rate models VVV , and substitution models M.M.M.

- Stopping step: If Q and Q′ are highly correlated, stop the estimation process and
consider Q′ as the best-fit model for the dataset. Otherwise, assign Q by Q′ and go to
the Model finder step.

Experiments on whole genome datasets showed that QMaker was better than other model
estimation methods. The amino acid substitution models estimated from whole genome
datasets significantly outperformed available models in building maximum likelihood trees.

Figure 2 describes an overview scheme for estimating amino acid substitution models from
genome datasets. Note that we should apply the alignment splitting algorithms to divide
alignments with a large number of sequences into smaller alignments to avoid computational
obstacle.

4. PHYLOGENOMIC TREES

We applied amino acid substitution models estimated from whole genome datasets [9] to
build phylogenomic trees for plants and birds. The Plant dataset consists of 1308 loci with
more than 430 thousands amino acid sites from 38 plant species [31]. The phylogenomic tree
for plants was constructed using IQ-TREE 2 software [32] using newly estimated amino acid
substitution model Q.plant [9]. Figure 3 shows that our phylogenomic tree and the published
tree [31] have the same topology. Most of branches on both trees have high bootstrap support
values indicating that the tree topologies are highly reliable.

The Bird dataset contains 8295 loci with more than 4.5 million amino acid sites from 48
bird species [33]. The phylogenomic tree for birds was constructed using the newly estimated
model Q.bird [9]. Figure 4 shows that our phylogenomic tree has different topology in
comparison with the published tree (i.e., red branches indicate the difference between two tree
topologies). For example, the Pigeon is grouped together with Yellow-throated-sandgrouse
in the published tree while it is grouped with Common cuckoo in our phylogenomic tree.
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Whole genomes

Initialize current best-fit model Q

Build maximum likelihood trees T

Estimate new model Q'

Q = Q'

Consider Q' as the best-fit

estimated model

YES

NO

Q Q'

Determine partitions and 
Split large alignments

Determine models V, M

Figure 2: The overall scheme to estimate amino acid substitution models from whole
genome datasets

5. CONCLUSIONS

The advanced sequencing technologies have created a huge amount of genomic data
from different species. Studying the relationships among species from amino acid sequences
requires amino acid substitution models. The time-reversible amino acid substitution models
have a large number of parameters, therefore, they should be estimated from large/genome
datasets.

We analyzed the state-of-the-art algorithms to estimate time-reversible amino acid sub-
stitution models from large datasets. As estimating amino acid substitution models is a
complex process, each algorithm was designed to solve or improve some step in the estima-
tion process. The approximate maximum likelihood algorithms can be efficiently used to
estimate trees and models iteratively to reduce computational burden. The mPartition al-
gorithm should be used to partition genomes into different partitions such that sites in each
partition evolve under similar evolutionary models. The QMaker method is recommended
to fully incorporate the heterogeneity of site rate and substitution models into the model
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Figure 3: The published tree of 38 plant species (left) obtained from the paper  (Ran et al.  

Figure 3: The published tree of 38 plant species (left) obtained from the paper [31]. Our
phylogenomic tree constructed from the Plant genome dataset using the Q.plant model

(right). The numbers on branches are bootstrap support values.

estimation process (i.e., each partition should be analyzed with its best-fit site rate and sub-
stitution models). Notably, the FastMG algorithm can be applied to split alignments with a
large number of sequences into smaller alignments to significantly reduce the running time
to build maximum likelihood phylogenetic trees. We strongly recommend researchers to fol-
low our model estimation scheme in Figure 2 to efficiently estimate amino acid substitution
models from genome datasets.

Finally, we constructed phylogenomic trees from Bird and Plant genome datasets includ-
ing thousand loci with several million amino acid sites. The constructed phylogenomic tree
for birds and the published one have identical topology with high bootstrap support val-
ues indicating their high reliability. However, the constructed phylogenomic tree for plants
shows several topological differences in comparison with the published tree. The new and
interesting findings require further assessments from biologists.

Up to date, amino acid substitution models are assumed to be time-reversible, i.e., back-
ward and forward substitution rates are equally likely. The time-reversible assumption helps
reduce the complexity in estimating amino acid substitution models, however, it is not biolog-
ically realistic. The assumption does not allow us to identify the root of tree, a central inter-
est in phylogenetic studies. Two key computational obstacles in building time-nonreversible
models are estimating a large number of parameters and constructing rooted maximum like-
lihood trees. These computational obstacles remain challenges for researchers in this field.
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Figure 4: The published tree of 48 birds (left) obtained from the paper  (J-H Ran et al. 2018). 
Figure 4: The published tree of 48 birds (left) obtained from the paper [33]. Our

phylogenomic tree constructed from the Bird dataset using the Q.bird model (right). The
numbers on branches are bootstrap support values.
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