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ON THE DIRECT PRODUCT OF CHOICE FUNCTION

BINA RAMAMURTHY, VU NGHIA, VU DUC THI

Abstract. The closure operations and choice functions are equivalent descriptions of family of functional
dependencies. The direct product of closure operations play very important role in theory of relational
database, especially in combinatorics problems. The main goal of this paper is to define the direct product of
choice functions. Some properties about the direct product of choice functions are presented in our paper.

Tém tat. Céc todn t&r déng va cdc ham chon 13 nhitng mé td tuwong dwong cia ho cédc phu thudc ham.
Tich truc ti€p cla cic todn tir déng cé vai trd quan trong trong ly thuyét co s& dit liéu quan hé, dic biét vé
t& hop. Muc dich chinh cia bai bdo nay 1a dinh nghia khéi niém tich truc tiép cta cdc ham chon va sau dé
trinh bay moét s tinh chat cia né.

1. INTRODUCTION

Direct product of decomposition of a closure operation plays an important role in the theory and
pratice of relational database. We consider a relation of database as a matrix. A row contains the
data of one individual. The estimation of the minimum cardinality of rows of such matrix is very
valuable in pratice of relational database. The studies of estimation of the minimum cardinality of
rows for direct product of decomposition of a closure operation can be found variously in [5, 7, 14].
In this paper we present the new notion and properties of direct product of decomposition of choice
function.

In the next section some neccessary definitions and facts about relation database, some equivalent
descriptions of family of functional dependencies besides choice function and closure operation theory
are given.

2. BASIC DEFINITIONS

Let us give some formal definitions that are used in the next section. Those well-known concepts
in relational database given in this section can be found in [2, 3, 4, 7, 10, 20].

A relational database system of the scheme R(as, ..., ay,) is considered as a table, where columns
corespond to the attributres a;’s, while the row are n-tuples of relation r. Let X and Y be nonempty
sets of attributes in R. We say that instance r of R satisfies the functional dependency (FD) if two
tuples agree on the values in attributes X, they must also agree on the values in attributes Y. Here
is the formal mathematical definition of FDs.

Definition 2.1. Let U = {ay, ..., an,} be a nonempty finite set of attributes. A functional dependency
is a statement of the form A — B, where A,B C U. The FD A — B holds in a relaion R =
{h1,..., hp} over U if Vh;, h; € R we have h;(a) = hj(a) for all a € A implies h;(b) = h;(b) for all
b € B. We also say that R satisfies the FD A — B.

Let Fr be a family of all FDs that hold in R.

Definition 2.2, Then F' = Fr satisfies.
(1) A—- A€F,
(2)(A-BeFB-CcF)—=(A—-CcF),
B)(A—-BeFACC,DCB)=(C—-DEeF),
4 (A—-BeF,C—-DeF)=— (AUC—>BUDE€EF).
A family of FDs satisfying (1) — (4) is called an f-family over U.
Clearly, F is an f-family over U. It is known [2] that if F'is an arbitrary f-family, then there



ON THE DIRECT PRODUCT OF CHOICE FUNCTION 291

is a relation R over U such that Fr = F.
Given a family F' of FDs over U, there exits a unique minimal f-family F'* that contains F'. It
can be seen that I'" contains all FDs which can be derived from F by the rules (1) - (4).

Definition 2.3. A relation scheme s is a pair (U, F'), where U is a set of attributes, and F is a set
of FDs over U.

Denote A" = {a: A — {a} € F*}. A" is called the closure of A over s.

It is clear that A — B¢ FTif BC AT,

Clearly, if s = (U, F') is a relation scheme, then there is a relation R over U such that Fr = F’
(see [2]).
Definition 2.4. Let U be a nonempty finite set of attributes and P(U) be its power set. A map
L: P(U) — P(U) is called a closure operation (closure for short) over U if it satisfies the following
conditions:

(1) A C L(A) (Fxtensiveness Property),

(2) A C B implies L(A) C L(B) (Monotonicity Property),

(3) L(L(A)) = L(A) (Closure Propery).

Let s = (U, F') be a relation scheme. Set L(A) = {a: A — {a} € F'}, we can see that L is a

closure over U.

Theorem 2.1. ([2|) If F is a f-family and if Lr = {a:a € U and A — {a} € F}, then Ly is a
closure. Inversely, if L 1s a closure there exists only a f-family F over U such that L = Lp, and
F={A—B: A BCUBCL(A)}.

Let L C P(U). L is called a meet-irreducible family over U (sometimes it is called a family of
members which are not intersection of two other members) if A, B,C € L, then A = BN C implies
A=Bor A=C.

Let IC P(U), Uel,and A,Be = ANB €I, [ is called a meet-semilattice over U. Let
M c P(U).

Denote M = {NM' : M' C M}. We say that M is a generator of I if M™ = I. Note that
U € M™T but not in M, by convention it is the intersection of the empty collection of sets.

Denote N={AcT:A#n{A' el: AC A'}}.

In [7] it is proved that N is the unique minimal generator of 1.

It can be seen that N is a family of members which are not intersections of two other members.

Let L be a closure operation over U. Denote Z(L) = {A: L(A) = A} and N(L) = {A e Z(L) :
A#n{A € Z(L): Ac A'}}. Z(L) is called the family of closed sets of L. We say that N(L) is the
minimal generator of L.

It is shown [7] that if N is a meet-irreducible family then there is a closure L such that N is the
minimal generator of it.

Theorem 2.2. ([2]) There is an one-to-one correspondence between meet-irreducible families and

f-families on U.

Theorem 2.3. ([7]) There is 1-1 correspondence between meet-irreducible families and meet-semilattices

on U.

Definition 2.5. Let M C P(U), M is called a Sperner system over U if A, B € M, then A is not a
subset of B.

Definition 2.6. Let U be a nonempty finite set of attributes and P(U) be its power set. A map
C: P(U) — P(U) is called a choice function, if every A € P(U), then C(A) C A.

U is interpreted as a set of alternatives, A as a set of alternatives given to the decision-maker to
choose the best and C(A) as a choice of the best alternatives among A.
Let L be a closure operation, we define C' and H associated with L as follows:

C(A) =U — L(U — A) (x), and H(A) = AN LU — A) (%)
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We can easily prove that C'(4) and H(A) are two choice functions. And we name C(A) choice
function - I (for short, CF-T), and H(A) choice function - IT (for short, CF-II).

Theorem 2.4. The relationship like (*) is considered as a 1-1 correspondence between closures and
choice functions, which satisfies the following two conditions:

For every A, B C U,

(1) If C(A) C B C A, then C(A) = C(B) (Out Casting Property),

(2) If AC B, then C(A) C C(B) (Monotonicity Property).
Theorem 2.5. The relationship like (**) is considered as a 1-1 correspondence between closures and
choice functions, which satisfies the following two conditions:

For every A, B C U,

(1) If HLA) C B C A, then H(A) = H(B) (Out Casting Property).

(2) If AC B, then H(B)N A C H(A) (Heredity Property).

We also note that both €' and H uniquely determine the closure L as the following
L(A)=U-C{U - A)and H(A) = AULU - A).
For every A C U, the sets C(A) and H(A) form a partition of A, that is, C(A)U H(A) = A, and
C(A)NH(A) = 0.
Theorem 2.6. There is a 1-1 correspondence between CFs-1 and closure operations on U.

Theorem 2.7. There is a 1-1 correspondence between CFs-1I and closure operations on U.

3. RESULT

The direct product of closure operations play very important role in theory of relational database,
especially in combinatorics problems. A plenty of properties related to direct product of closure
operation can be found in [5], [14]. By relationship and interaction between closure operations and
choice fuctions, we introduce the new definitions of direct product of choice function - Is as well as
IIs. First of all, we have the following.

First of all, we are giving the formal definition of composition of functions.

Definition 3.1. Let f and g be two functions (e.g. closure operations, CFs - I, or IT) on U, and we
determine a map T as a composition of f and ¢ the following:

T(X) = f(9(X)) = f.9(X) = fg(X) for every X CU

Lemma 3.1. ([1]) Let Cy and Cy be CFs -I on U, then following 1s equivalence:
(1> Cl g 027
(2) C1Cs — C.

Corollary 3.1. If C is a CF-I on U, then CC = C.
Theorem 3.1. ([14]) Let Ly and Ly be closure operations on the disjoint ground sets Uy and Us

respectively. The direct product of closure operations Ly X Lo is defined as following.
(L1 X L)(X) = Li(X NnU)U Ly (X Nls), XU UUs.
Then (L1 x Lo)(X) s a closure operations on Uy U Us.
Here we give the generalization of above theorem.

Generalization 3.1. Let {L; | : = 1 — n} be closure operations on the disjoint ground sets {U;}
respectively. The direct product of those closure operations Ly X Lo X ... X Ly, 18 defined as following

(L X Ly % ... x Lp)(X) = | JLi(X N Uy)
=1
with X Q U1 UUQ U...u Un
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Then (L1 x La X ... Xx Ly)(X) is a closure operation on Uy UUs U ... UU,.

Theorem 3.2. Let C| and Cy be CFs -1 on the disjoint ground sets Uy and Uy respectively. The
derect product of CF-1, C1 x Cs, 1s defined as following.

(Cl XCQ)(X):Cl(XﬂUl)UCQ(XﬂU2)7 X§U1UU2.
Then (Cy X Co)(X) s a CF- I on Uy U Us.

PTOOf. For all X Q U1 U U27 (Cl X CQ)(X) == Cl(X n Ul) U CQ(X n Ug) Q (X n Ul) U (X n Ug) Q
XN U UlUy) = X. Thus, (C; x C3)(X) € X. For every X and Y C U; UU; and X C Y, then
XNnU, CYNU,and X NU; CY NUs. By using Monotonicity Property of Cy and Cs, we obtain
Cl(X n Ul) Q Cl(Y n Ul) and CQ(X n Ug) Q CQ(Y n Ug) Hence Cl(X n Ul) U CQ(X n Ug) Q
C1(Y NU)UCy(Y NTU3), that is (C1 X Co)(X) C (Cy x C)(Y) or (C7 x Cs) satisfies Monotonicity
Property. Now we need to show that (C7 x C3)(X) satisfies the Out Casting Property also. That is,
for every X, Y C Uy UUs and (C7 x Co)(X) = C1(X NU)UC(X NU;) CY C X, we need to show
that (C1 x C9)(X) = (C1 x C)(Y). Since Y C X, we have (C7 X C9)(Y) C (Cy x C9)(X). And it is
obvious that C1 (X NU;) CC1(XNU1)UC(X NUs) CY. Thus, we have C1(X NU)NU; CY N,
or C1(XNU;) CYNU;. Using Monotonicity Property of Cy, we have C1(C1(XNUy)) C C1(YNly)
or C1(X NU;) C C1 (Y NUp) due to Corollary 3.1. Similarly, we obtain Co(X NU;) C Co(Y N TY).
Therefore Cl(X n Ul) U CQ(X n Ug) - Cl(Yﬂ Ul) U CQ(Yﬂ Ug) or (Cl X CQ)(X) - (Cl X CQ)(Y)
Hence (C1 x C9)(X) = (Cy X C3)(Y). The proof is completed. n

Generalization 3.2 Let {C; | i = 1, ..., n} be CFs-I with on the disjoint ground sets {U;} respectively.
The direct product of CFs-1, Cy X Cy X ... X Cy, 18 defined as following

(C1 % Cox .. x Cu)(X) = [ JCi(X nUy)
i=1
withXQUluUluUlu...UUn.
Then (C; X Ca X ... X Cp)(X) is a CFs-l on U UU; UUL U ..U U,.

Theorem 3.3. Let Hy and Hy be CFEs-II on the disjoint ground sets Uy and Us respectively. The
derect product of CFs -1I, Hy X Hy s defined as following

(H1 X HQ)(X) = Hl(X n Ul) U HQ(X n U2)7 X - (U1 U Ug)

Then (Hy X H)(X) is a CFs-II on Uy U Us.

PTOOf. For all X Q (U1 U U2)7 (H1 X HQ)(X) == Hl(X n Ul) U HQ(X n Ug) Q (X n Ul) U (X n Ug) Q
XN (U Uls) =X. Thus, (H; X H3)(X) C X. Forevery X and Y CU; UU; and X C Y, we need
to prove that (H;, X Hy) satisfies Heredity Property. Since X C Y, we have X NU; C Y N Uy, and
X NU; CYNUs. By using Heredity Property of Hy and Hs, we obtain Hy(Y NUy) N (X NU;) C
Hy(XNUy) or HI(YNU)NX € Hi(XNUy). Similarly, we have Ho(YNU3)NX C Hy(XNUs). Hence,
(H1(YﬂU1>mX>U(H2(YmU2>mX) Q Hl(XﬂUl)UHQ(XﬂU2)7 then (Hl(YﬂUl)UHQ(YﬂUg))ﬂX Q
Hy (X NU)UH(X NUs), that is, (Hy X Ho)(Y)NX C (Hy x Hs)(X) or (Hy x Hs) satisfies Heredity
Property.

Now we need to show that (H; x Hs)(X) satisfies the Out Casting Property also. That is, for
every X and Y C U;UU; and (H; X Ho)(X) = Hi(XNU)UH(XNUs) CY C X, we need to show that
(H1 X HQ)(X) = (H1 X HQ)(Y) It is obvious that Hl(XmU1> - Hl(XﬂUl)UHQ(XﬂUg) - Y - X.
Then Hi(X NU)NU; CYNU;, CXNU; or H1(XNU) CYNU; € XNU;. Using Out Casting
Property of Hy, we obtain Hy(XNU;) = H; (Y NUY). Similarly, we attain Hy (X NUs) = Ho(Y NUs).
Therefore Hl(XmU1> UHQ(XQUQ) = Hl(XmU1> UHQ(Yﬂ Ug) or (H1 X HQ)(X) = (H1 X HQ)(Y)
The proof is completed. [

Generalization 3.3. Let {H; | ¢ = 1,2,...,n} be CFs-II with on the disjoint ground sets {U;}
respectively. The direct product of CFs-1I, Hy X Ho X ...H,, is defined as following with X C Uy U
UyU...uU,.
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(H1 X HQ X ... X Hn><X) = OHz(X n Ul>

Then (Hy X Hy X ... x Hy)(X) is a CF-Il on U; UUL U ... UU,.
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