
Journal of Computer Science and Cybernetics, V.37, N.3 (2021), 291–320

DOI 10.15625/1813-9663/37/3/15902

COMPUTATION COMPLEXITY OF DEEP RELU NEURAL
NETWORKS IN HIGH-DIMENSIONAL APPROXIMATION

DINH DŨNG1, VAN KIEN NGUYEN2,�, MAI XUAN THAO3

1Information Technology Institute, Vietnam National University, Hanoi
144 Xuan Thuy, Cau Giay, Hanoi, Vietnam

2Faculty of Basic Sciences, University of Transport and Communications,
No.3 Cau Giay Street, Lang Thuong Ward, Dong Da District, Hanoi, Vietnam

3Department of Natural Sciences, Hong Duc University,
565 Quang Trung, Thanh Hoa, Vietnam

Abstract. The purpose of the present paper is to study the computation complexity of deep

ReLU neural networks for approximation of functions in Hölder-Nikol’skii spaces of mixed smooth-

ness Hα
8pIdq on the unit cube Id :� r0, 1sd. In this context, for any function f P Hα

8pIdq, we

explicitly construct nonadaptive and adaptive deep ReLU neural networks having an output that

approximates f with a prescribed accuracy ε, and prove dimension-dependent bounds for the com-

putation complexity of the approximation, characterized by the size and depth of this deep ReLU

neural network, explicitly in d and ε. Our results show the advantage of the adaptive method of

approximation by deep ReLU neural networks over nonadaptive one.

Keywords. High-dimensional approximation; Deep ReLU neural networks; Nonadaptive approxi-

mation; Adaptive approximation; Hölder-Nikol’skii space of mixed smoothness.

1. INTRODUCTION

Neural networks and their applications have been of great interest for almost 80 years,
started from the foundational works of McCulloch and Pitts [25], Hebb [19] and of Rosenblatt
[31]. Recently, deep neural networks have been successfully applied to a wide variety of
Machine Learning problems [22, 23, 38]. A typical deep neural network model is based on
a hierarchy of composition of linear functions and a given nonlinear activation function.
Among all the activation functions, Rectified Linear Unit (ReLU) activation maxp0, xq is the
most commonly used in deep neural networks. Compared to traditional nonlinear activation
functions (tanh and sigmoid), the ReLU function provides the same benefits but accelerates
the training speed of deep neural networks since its gradient is very simple (either 0 or 1

Dedicated to Professor Phan Dinh Dieu on the occasion of his 85th birth anniversary.

*Corresponding author.
E-mail addresses: dinhzung@gmail.com (D. Dũng); kiennv@utc.edu.vn (V.K. Nguyen);
maixuanthao@hdu.edu.vn (M.X. Thao)

© 2021 Vietnam Academy of Science & Technology

mailto:anonymous@ioit.ac.vn
mailto:kiennv@utc.edu.vn
mailto:maixuanthao@hdu.edu.vn

292 DINH DŨNG, VAN KIEN NGUYEN, MAI XUAN THAO

depending on the sign of input). Deep ReLU neural networks do not need to take additional
time for computing error terms during training phase. Deep ReLU neural networks has found
many applications in different fields such as computer vision [10, 18] and speech recognition
[24, 35].

It is observed that there is a closed relation between approximating by deep ReLU net-
works and B-spline interpolation and quasi-interpolation representation, in particular by
piecewise linear functions. There have been numerous papers addressing the expressive
power of deep ReLU neural networks in approximating different sets of functions such as
analytic functions [8, 26], differentiable functions [29, 39], oscillatory functions [14], func-
tions in isotropic Sobolev or Besov spaces [1, 7, 11, 16, 40], functions with dominating mixed
smoothness [27, 34] or in approximating solutions to partial differential equations [9, 28, 33],
to mention just a few. The main advantage of deep ReLU neural networks in approximat-
ing functions is that they can output compositions of functions cheaply and consequently
improve the convergence rate of approximation error, see [7, 8, 39]. We refer the reader to
recent surveys [14, 30] for results in deep ReLU neural network approximation theory.

Function spaces having mixed smoothness appear naturally in many models of real world
problem in mathematical physics, finance and other fields. For instance, in a recent work
on regularity properties of solutions of the electronic Schrödinger equation, Yserentant [41]
has shown that the eigenfunctions of the electronic Schrödinger operator have a certain
mixed smoothness. Triebel [37, Chapter 6] has indicated a relation between Faber bases and
sampling recovery in the context of spaces with mixed smoothness and solutions of Navier-
Stokes equations. In particular, when initial data belongs to spaces with mixed smoothness,
Navier-Stokes equations admit a unique solution. In mathematical finance, many problems
are expressed as the expectation of some payoff function depending on quantities, such as
stock prices, which are solutions of stochastic equations governed by Brownian motions.
The payoff function normally has kinks and jumps and belongs to a very high dimensional
space. To approximate the expected value one can apply preliminary integration method
with respect to a single well chosen variable to obtain a function of d � 1 variables which
belongs to appropriate mixed Sobolev spaces in which Quasi-Monte Carlo can be applied
efficiently, see [13] and references therein. For a survey on various aspects of high-dimensional
approximation of functions having a mixed smoothness we refer the reader to the book [5].

In approximation theory, modern problems driven by a lot of applications in Information
Technology, Mathematical Finance, Chemistry, Quantum Mechanics, Meteorology, and, in
particular, in Uncertainty Quantification and Deep Machine Learning are being formulated
in very high dimensions. Many times, numerical methods for such problems may demand
computational cost increasing exponentially in dimension when the accuracy increases and
as a consequence the method becomes intractable when the dimension of input data is
large. This phenomenon is called “curse of dimensionality”. Hence, the problem of estimat-
ing dimension-dependent error in high-dimensional approximation problems arises naturally.
Hyperbolic crosses and sparse grids promise to rid the “curse of dimensionality” in some
problems when high-dimensional data belongs to certain classes of functions having mixed
smoothness. Approximation methods and sampling algorithms for functions having mixed
smoothness constructed on hyperbolic crosses and sparse grids give a surprising effect since
hyperbolic crosses and sparse grids have the number of elements much less than those of
standard domains and grids but give the same approximation error. This essentially reduces

COMPUTATION COMPLEXITY OF DEEP RELU NEURAL NETWORKS 293

the computational cost, and therefore makes the problem tractable.
In the recent paper [3], we have studied the approximation by deep ReLU neural networks,

of functions from the Hölder-Zygmund space of mixed smoothness defined on the unit cube
Id when the dimension d may be very large. The approximation error is measured in the
norm of the isotropic Sobolev space. For any function f from this space, we explicitly
constructed a deep ReLU neural network having an output that approximates f with a
prescribed accuracy ε, and proved tight dimension-dependent estimates of the computation
complexity of this approximation, characterized as the size and depth of this deep ReLU
neural network, explicitly in d and ε.

The purpose of the present paper is to study the computation complexity of deep ReLU
neural networks for approximation of Hölder-Nikol’skii functions having mixed smoothness
on the unit cube Id :� r0, 1sd. Let us introduce the space Hα

8pIdq of our interest. For
univariate functions f on I :� r0, 1s, the difference operator ∆h is defined by

∆hfpxq :� fpx� hq � fpxq,
for all x and h ¥ 0 such that x, x � h P I. If u is a subset of t1, . . . , du, for multivariate
functions f on Id the mixed difference operator ∆h,u is defined by

∆h,u :�
¹
iPu

∆hi
, ∆h,∅ � Id,

for all x � px1, . . . , xdq and h � ph1, . . . , hdq such that x,x � h P Id. Here the univariate
operator ∆hi

is applied to the univariate function f by considering f as a function of variable
xi with the other variables held fixed. If 0 α ¤ 1, we introduce the semi-norm |f |Hα

8puq for

functions f P CpIdq by

|f |Hα
8puq :� sup

h¡0

¹
iPu

h�α
i }∆h,upfq}CpIdph,uqq

(in particular, |f |Hα
8p∅q � }f}CpIdq), where Idph, uq :� tx P Id : xi � hi P I, i P uu. The

Hölder-Nikol’skii space Hα
8pIdq of mixed smoothness α then is defined as the set of functions

f P CpIdq for which the norm

}f}Hα
8pIdq :� max

u�t1,...,du
|f |Hα

8puq

is finite. From the definition we have that Hα
8pIdq � CpIdq. Denote by C̊pIdq the set of all

functions f P CpIdq vanishing on the boundary BId of Id, i.e., the set of all functions f P CpIdq
such that fpxq � 0 if xj � 0 or xj � 1 for some index j P t1, . . . , du. Denote by Ůα,d

8 the set
of all functions f in the intersection H̊α

8pIdq :� Hα
8pIdq X C̊pIdq such that }f}Hα

8pIdq ¤ 1.
As a continuation of [3], the present paper investigates nonadaptive and adaptive high-

dimensional approximation by deep ReLU neural networks for functions from the classes
Ůα,d
8 . The approximation error is measured in the norm of L8pIdq. In this context, we pay

attention on the computation complexity of the deep ReLU networks, characterized by the
size and depth of this deep ReLU neural network, explicitly in d and tolerance ε. A key tool
for explicit construction of approximation methods by deep ReLU networks for functions in
Hα
8pIdq is truncations of tensorized Faber series.
The main contribution of the present paper is as follows.
Based on the decomposition of continuous functions by tensorized Faber series, for any

f P Ůα,d
8 we explicitly construct a deep ReLU neural network Φεpfq having the output that

294 DINH DŨNG, VAN KIEN NGUYEN, MAI XUAN THAO

approximates f in the L8pIdq-norm with a prescribed accuracy ε and having computation
complexity expressing the dimension-dependent size

W pΦεpfqq ¤ Cαd

�
Kd

1

pd� 1q!

 1

α
�1

ε�
1
α logp2ε�1qpd�1qp 1

α
�1q�1, (1)

where K1 � B1{pα�1q4α�1 with B � p2α � 1q�1. The idea in proving the above result is
to use truncation of Faber series Rnpfq as an intermediate approximation. Precisely, we

first approximate function f P Ůα,d
8 by Rnpfq and then approximate Rnpfq by a deep ReLU

network.
The advantage of this method is that the deep ReLU neural networks are easily con-

structed and they have the same architecture for all functions in Ůα,d
8 , i.e., it is nonadaptive.

However, since this method uses Rnpfq as an intermediate approximation, a disadvantage of
it is that the computation complexity of deep ReLU networks is not better than that when
approximating functions f P Ůα,d

8 by the linear method Rnpfq.
To overcome this disadvantage we develop a technique used in [40] and [7] for the uni-

variate case. By this, we first represent the difference f �Rnpfq in a special form and then
approximate terms in this representation by deep ReLU networks. We emphasize that ex-
tension of technique in [40] and [7] to multivariate case and mixed smoothness is non-trivial

task since one needs to construct a set of finite cardinality to approximate functions in Ůα,d
8 .

For any f P Ůα,d
8 we explicitly construct a deep ReLU neural network Φεpfq of adaptive

architecture having the output that approximates f in the L8pIdq-norm with a prescribed
accuracy ε and having a size estimated by

W pΦεpfqq ¤ Cαd
2

�
Kd

2

pd� 1q!

 2

α
�2

ε�
1
α

�
logp2ε�1q log logp2ε�1q�p1� 1

α
qpd�1q

, (2)

where K2 � 4p2α�3Bq 1
2α�2 pα�1 logp2α�1qq1{2. Comparing (1) and (2) we find the later

estimation improves logp2ε�1q. Notice that the terms in right-hand side of both (1) and (2)
which depend on dimension d only decay as fast as super exponential in d.
The outline of this paper is as follows. In Section 2, we introduce necessary definitions and
elementary facts on deep ReLU neural networks. Section 3 is devoted to recall a decompo-
sition of continuous functions on the unit cube Id by Faber system and approximation of
functions f P Ůα,d

8 by truncations of Faber series Rnpfq as well as by sets of finite cardinality.
In Section 4, we explicitly construct nonadaptive deep ReLU neural networks that approxi-
mate functions in Ůα,d

8 and prove upper estimates for size and the depth required. Section 5
presents an improvement for approximation by adaptive deep ReLU neural networks of the
results obtained in Section 4. In Section 6, we give an application of our results in numerical
approximation of solutions to elliptic partial differential equations. Conclusions are given in
Section 7.
Notation. As usual, N is the natural numbers, Z the integers, R the real numbers and
N0 :� ts P Z : s ¥ 0u; N�1 � N0 Y t�1u. The letter d is reserved for the underlying
dimension of Rd, Nd, etc. If x P R, txu is defined to be the largest integer no larger than
x. Vectorial quantities are denoted by boldface letters and xi denotes the ith coordinate
of x P Rd, i.e., x :� px1, . . . , xdq. For x P Rd, we denote |x|p :� p|x1|p � . . . � |xd|pq1{p if
0 p 8, |x|8 � maxt|x1|, . . . , |xd|u, supppxq � tj : xj �� 0u and 2x :� p2x1 , . . . , 2xdq. If
k, s P Nd

0, we denote 2�ks :� p2�k1s1, . . . , 2
�kdsdq. We use the abbreviation: L8 :� L8pIdq

COMPUTATION COMPLEXITY OF DEEP RELU NEURAL NETWORKS 295

and } � }8 :� } � }L8 . Universal constants or constants depending on parameters α, d are
denoted by C or Cα,d, respectively. Values of constants C and Cα,d in general, are not
specified except the case when they are precisely given, and may be different in various
places. |A| denotes the cardinality of the finite set |A|.

2. DEEP RELU NEURAL NETWORKS

In this section we introduce necessary definitions and elementary facts on deep ReLU
neural networks. There is a wide variety of neural network architectures and each of them is
adapted to specific tasks. We only consider feed-forward deep ReLU neural networks such
that only connections between neighboring layers are allowed.

Definition 1. Let d, L P N, L ¥ 2, N0 � d, and N1, . . . , NL P N. Let W ℓ � pwℓ
i,jq,

ℓ � 1, . . . , L, be Nℓ �Nℓ�1 matrix, and bℓ � pbℓjq P RNℓ .

� A neural network Φ with input dimension d and L layers is a sequence of matrix-vector
tuples

Φ � �pW 1, b1q, . . . , pW L, bLq�.
We will use the following terminology.

– The number of layers LpΦq � L is the depth of Φ;

– NwpΦq � maxℓ�0,...,LtNℓu is the width of Φ; NpΦq � pN0, N1, . . . , NLq the dimen-
sion of Φ;

– The real numbers wℓ
i,j and bℓj are edge and node weights of Φ, respectively;

– The number of nonzero weights wℓ
i,j and bℓj is the size of Φ and denoted by W pΦq;

– When LpΦq ¥ 3, Φ is called a deep neural network, and otherwise, a shallow neural
network.

� A neural network architecture A with input dimension d and L layers is a neural network

A � �pW 1, b1q, . . . , pW L, bLq�,
where elements of W ℓ and bℓ, ℓ � 1, . . . , L, are in t0, 1u.

The above defined networks are sometimes called standard networks to distinguish with
networks allowing for connections of neurons in non-neighboring layers. A deep neural net-
work can be visualized in a graph. The graph associated with a deep neural network Φ
defined in Definition 1 consists of L � 1 layers which are numbered from 0 to L. The ℓth
layer has Nℓ nodes which are numbered from 1 to Nℓ. If wℓ

i,j �� 0, then there is an edge
connecting the node j in the layer ℓ� 1 to the node i in the layer ℓ. In Figure 1 we illustrate
a deep neural network with input dimension 3 and 5 layers.

Definition 2. Given L P N, L ¥ 2, and a neural network architecture A � �pW 1
, b

1q, . . . ,
pW L

, b
Lq�. We say that a neural network Φ � �pW 1, b1q, . . . , pW L, bLq� has architecture A

if

� NpΦq �NpAq;
� wℓ

i,j � 0 implies wℓ
i,j � 0, b

ℓ
i � 0 implies bℓi � 0 for all i � 1, . . . , Nℓ, j � 1, . . . , Nℓ�1,

and ℓ � 1, . . . , L. Here wℓ
i,j are entries of W

ℓ
and b

ℓ
i are elements of b

ℓ
, ℓ � 1, . . . , L.

296 DINH DŨNG, VAN KIEN NGUYEN, MAI XUAN THAO

input

layer

1st

layer

2nd

layer

3rd

layer

4th

layer

output

layer

Figure 1: The graph associated to a deep neural network with input dimension 3 and 5 layers

For a given deep neural network Φ � �pW 1, b1q, . . . , pW L, bLq�, there exists a unique deep

neural network architecture A � �pW 1
, b

1q, . . . , pW L
, b

Lq� such that

� NpΦq �NpAq;

� wℓ
i,j � 0 ðñ wℓ

i,j � 0, b
ℓ
i � 0 ðñ bℓi � 0 for all i � 1, . . . , Nℓ, j � 1, . . . , Nℓ�1, and

ℓ � 1, . . . , L.

We call this architecture A the minimal architecture of Φ (this definition is proper in the
sense that any architecture of Φ is also an architecture of A).

A deep neural network is associated with an activation function which calculates out-
put at each node. The choice of activation function depends on the problem under con-
sideration. In this paper we focus our attention on ReLU activation function defined by
σptq :� maxtt, 0u, t P R. We will use the notation σpxq :� pσpx1q, . . . , σpxdqq for x P Rd.

Definition 3. A deep ReLU neural network with input dimension d and L layers is a neural
network

Φ � �pW 1, b1q, . . . , pW L, bLq�,
in which the following computation scheme is implemented

z0 :� x P Rd,

zℓ :� σpW ℓzℓ�1 � bℓq, ℓ � 1, . . . , L� 1,

zL :�W LzL�1 � bL.

We call z0 the input and with an ambiguity denote Φpxq :� zL the output of Φ and in some
places we identify a deep ReLU neural network with its output.

Several deep ReLU neural networks can be combined to form a larger deep ReLU neural
network whose output is a linear combination or composition of outputs of sub-networks. In
the following, we introduce parallelization, concatenation and special construction.

Lemma 1 (Parallelization). Let N P N, Ω � Rd be a bounded set, λj P R, j � 1, . . . , N .
Let Φj, j � 1, . . . , N be deep ReLU neural networks with input dimension d. Then we can
explicitly construct a deep ReLU neural network denoted by Φ so that

Φpxq �
Ņ

j�1

λjΦjpxq, x P Ω,

COMPUTATION COMPLEXITY OF DEEP RELU NEURAL NETWORKS 297

with LpΦq � maxj�1,...,NtLpΦjqu and

W pΦq �
Ņ

j�1

W pΦjq �
¸

j:LpΦjq LpΦq

pLpΦq � LpΦjq � 2q ¤ 3N max
j�1,...,N

W pΦjq.

The network Φ is called the Parallelization network of Φj, j � 1, . . . , N .

A proof of Lemma 1 can be found in [3]. The last estimate in Lemma 1 is due to
2 ¤ L ¤ maxj�1,...,N W pΦjq.

Another way to construct a ReLU network whose output is a linear combination of
outputs of other ReLU networks is to use special networks. A special deep ReLU neural
network with input dimension d can be defined as follows. In each hidden layer a special
role is reserved for d first (top) nodes and the last (bottom) node. Concatenation of top d
nodes and the bottom node in each layer to the corresponding nodes in the next layer form
d � 1 parallel channels. The nodes in these d � 1 channel are free of activation. The top d
parallel channels are called the source channels and just carry x � px1, . . . , xdq forward. The
bottom channel is called collation channel. The nodes in the bottom channel are used to
collect intermediate outputs by addition. This channel never feeds forward into subsequent
calculation, it only accepts previous calculations. It has been shown in [3] that if Φ is a
special deep ReLU neural network with input dimension d depth L and x P Id, then there is
a deep ReLU neural network Φ1 such that

LpΦ1q � LpΦq (3)

and Φ1pxq � Φpxq. In view of the proof of [3, Lemma 4.2] we find only node weights in the
collation channel of Φ and Φ1 are different. Therefore we deduce

W pΦ1q ¤W pΦq � LpΦq ¤ 2W pΦq. (4)

Lemma 2 (Special Construction). Let N P N, Ω � Rd be a bounded set, λj P R, j �
1, . . . , N . Let Φj, j � 1, . . . , N be deep ReLU neural networks with input dimension d. Then
we can explicitly construct a deep special ReLU neural network denoted by Φ so that

Φpxq �
Ņ

j�1

λjΦjpxq, x P Ω,

with LpΦq � °N
j�1 LpΦjq and W pΦq ¤ °N

j�1W pΦjq � pd� 1qLpΦq.
An illustration of a special network Φ whose output is a linear combination of network

Φj , j � 1, . . . , N is given in Figure 2.

Lemma 3 (Concatenation). Let Φ1 and Φ2 be two ReLU neural networks such that output
layer of Φ1 has the same dimension as input layer of Φ2. Then, we can explicitly construct
a ReLU neural network Φ such that Φpxq � Φ2pΦ1pxqq for x P Rd. Moreover we have
LpΦq � LpΦ1q � LpΦ2q and W pΦq ¤ 2W pΦ1q � 2W pΦ2q.

A proof of the above lemma can be found in [29]. The network Φ in this lemma is called
the concatenation network of Φ1 and Φ2.

298 DINH DŨNG, VAN KIEN NGUYEN, MAI XUAN THAO

input x

Φ1pxq
λ1Φ1pxq

�λ2Φ2pxq

output

Φpxq

Figure 2: Illustration of a special deep ReLU neural network (d � 2)

3. APPROXIMATION BY SETS OF FINITE CARDINALITY

In this section we recall a decomposition of continuous functions on the unit cube Id
by Faber series, interpolation approximation by truncated Faber series and by set of finite
cardinality. They are a key tool for explicit construction of approximation methods by deep
ReLU networks for functions in Hölder-Nikol’skii spaces of mixed smoothness.

Let φpxq � p1 � |x � 1|q�, x P R, be the hat function (the piece-wise linear B-spline
with knots at 0, 1, 2), where x� :� maxpx, 0q for x P R. For k P N�1 we define the functions
φk,s by

φk,spxq :� φp2k�1x� 2sq, k ¥ 0, s P Zpkq :� t0, 1, . . . , 2k � 1u,
and

φ�1,spxq :� φpx� s� 1q, s P Zp�1q :� t0, 1u.
For a univariate function f on I, k P N�1, and s P Zpkq we define

λk,spfq :� �1

2
∆2

2�k�1f
�
2�ks

�
, k ¥ 0, λ�1,spfq :� fpsq,

where
∆2

hfpxq :� fpx� 2hq � 2fpx� hq � fpxq,
for all x and h ¥ 0 such that x, x� h P I. If m P N0 we put

Rmpfq :�
m̧

k�0

qkpfq, qkpfq :�
¸

sPZpkq

λk,spfqφk,s. (5)

For k P N0, we define the functions φ�k,s P C̊pIq by
φ�k,spxq :� φp2k�1x� s� 1q, s P Z�pkq :� t1, . . . , 2k�1 � 1u, (6)

and for f P C̊pIq one can check

Rmpfq �
¸

sPZ�pmq

fp2�m�1sqφ�m,s .

COMPUTATION COMPLEXITY OF DEEP RELU NEURAL NETWORKS 299

Hence Rmpfq P C̊pIq interpolates f at the points 2�m�1s, s P Z�pmq, that is,
Rmpfqp2�m�1sq � fp2�m�1sq, s P Z�pmq.

Put Zpkq :��d
j�1Zpkjq. For k P Nd

�1, s P Zpkq, we introduce the tensorized Faber basis
by

φk,spxq :� φk1,s1px1q � . . . � φkd,sdpxdq, x P Id. (7)

We also define the linear functionals λk,s for multivariate function f on Id, k P Nd
�1, and

s P Zpkq by

λk,spfq :�
d¹

i�1

λki,sipfq,

where the univariate functional λki,si is applied to the univariate function f by considering
f as a function of variable xi with the other variables held fixed.

We have the following representation by Faber series for continuous functions on Id (see
[2, Section 4] and [36, Theorem 3.10]).

Lemma 4. The tensorized Faber system

φk,s : k P Nd

�1, s P Zpkq(is a basis in CpIdq.
Moreover, every function f P CpIdq can be represented by the Faber series

f �
¸

kPNd
�1

qkpfq, qkpfq :�
¸

sPZpkq

λk,spfqφk,s

converging in the norm of CpIdq.
When f P Ůα,d

8 , λk,spfq � 0 if kj � �1 for some j P t1, . . . , du, hence we can write

f �
¸
kPNd

0

qkpfq

with unconditional convergence in CpIdq, see [36, Theorem 3.13]. In this case it holds the
following estimate

|λk,spfq| � 2�d

����
d¹

i�1

∆2
2�ki�1f

�
2�ks

�����
� 2�d

����
d¹

i�1

�
∆2�ki�1f

�
2�ks� 2�ki�1ei

��∆2�ki�1f
�
2�ks

������ ¤ 2�αd2�α|k|1 ,

(8)

for k P Nd
0, s P Zpkq. Here teiui�1,...,d is the standard basis of Rd.

For f P C̊pIdq, we define the operator Rm by

Rmpfq :�
¸

|k|1¤m

qkpfq �
¸

|k|1¤m

¸
sPZpkq

λk,spfqφk,s.

The truncated Faber series Rmpfq P C̊pIdq completely determined by values of f at the points
2�k�1s, for pk, sq P Gdpmq, where

Gdpmq :� pk, sq : |k|1 ¤ m, s P Z�pkq
(
,

300 DINH DŨNG, VAN KIEN NGUYEN, MAI XUAN THAO

Z�pkq :�
±d

j�1 Z�pkjq and 1 � p1, . . . , 1q P Nd. Moreover, Rmpfq interpolates f at the points

2�k�1s, for pk, sq P Gdpmq, i.e.,
Rmpfqp2�k�1sq � fp2�k�1sq, pk, sq P Gdpmq.

The following lemma gives a d-dependent estimate of the approximation error by Rmpfq of
f P Ůα,d

8 , see [4].

Lemma 5. Let d ¥ 2, m P N, and 0 α ¤ 1. Then we have

sup
fPŮα,d

8

}f �Rmpfq}8 ¤ 2�αBd 2�αm

�
m� d

d� 1

, B � p2α � 1q�1.

We make use the abbreviations: xj :� px1, . . . , xjq P Rj ; x̄j :� pxj�1, . . . , xdq P Rd�j

with the convention x0 :� 0 for x P Rd and j � 0, 1, . . . , d � 1. When j � 1 we denote x1
instead of x1.

For f P Ůα,1
8 we explicitly construct the function Sf P C̊pIq by

Sf :�
¸

sPZ�pmq

2�αpm�1qlspfqφ�m,s, (9)

where we put l0pfq � 0 and assign the values Sf p2�m�1sq � 2�αpm�1qlspfq from left to right
closest to fp2�m�1sq for s � 1, . . . , 2m�1 � 1. If there are two possible choices for lspfq we
choose lspfq that is closest to the already determined ls�1pfq. We define

Sαpmq :�
Sf : f P Ůα,1

8

(
. (10)

It has been proved that the set Sαpmq is finite and it holds the estimate |Sαpmq| ¤ 32
m�1

,
see [4]. Moreover, by Lemma 5 and [4, Lemma 2.3] for f P Ůα,1

8 and m P N0 we have

}f � Sf }8 ¤ }f �Rmpfq}8 � }Rmpfq � Sf }8 ¤ 2�pm�1qα� 1
2 � 2�pm�1qα

2α � 1
. (11)

In case of high dimensions we have the following.

Lemma 6. Let m ¡ 1, d ¥ 2 and 0 α ¤ 1. For f P Ůα,d
8 , let the function Smpfq be

defined by

Smpfqpxq :�
¸

|k̄1|¤m

2�αp|k̄1|1�d�1q
¸

s̄1PZpk̄1q

φk̄1,s̄1
px̄1qSKk̄1,s̄1

pfqpx1q, (12)

where SKk̄1,s̄1
pfq P Sαpm � |k̄1|1q is as in (9) for the function Kk̄1,s̄1

pfq. Then it holds the

inequality

}f � Smpfq}8 ¤ Bd2�αm

�
m� d

d� 1

.

Moreover, for the set
Sα,dpmq :�

Smpfq : f P Ůα,d
8

(
,

we have Ndpmq :� |Sα,dpmq| ¤ 32
m�1pm�d�1

d�1 q.
For a proof of the above lemma we refer the reader to [4].

COMPUTATION COMPLEXITY OF DEEP RELU NEURAL NETWORKS 301

4. DEEP RELU NEURAL NETWORK APPROXIMATION
A NONADAPTIVE METHOD

In this section, we explicitly construct a nonadaptive deep ReLU neural network having
an output that approximates every function f P Ůα,d

8 in the L8pIdq-norm with a prescribed
accuracy ε and prove dimension-dependent error estimates of its size and depth. Nonadap-
tivity means that its architecture is the same for all f P Ůα,d

8 . Our technique is first to
approximate f by its truncation of Faber series Rnpfq and then approximate Rnpfq by a
deep ReLU network. Since the case d � 1 was already considered (see, e.g., [1, 7, 11]), we
study the high dimension case when d ¥ 2. Our main result in this section is read as follows.

Theorem 7. Let d P N, d ¥ 2 and α P p0, 1s. Then there is ε0 � ε0pd, αq P p0, 1s such that
for every ε P p0, ε0q we can explicitly construct a deep neural network architecture Aε with

the following property. For every f P Ůα,d
8 , we can explicitly construct a deep ReLU neural

network Φεpfq having the architecture Aε such that

}f � Φεpfq}8 ¤ ε.

Moreover, we have

W pAεq ¤ Cαd

�
Kd

1

pd� 1q!

 1

α
�1

ε�
1
α logp2ε�1qpd�1qp 1

α
�1q�1 (13)

and LpAεq ¤ C log d logp2ε�1q,
where K1 � B1{pα�1q4α�1 with B given in Lemma 5 and Cα depends only on α.

To prepare for proving Theorem 7 we recall results of approximating the product
±d

j�1 xj
and φk,s by deep ReLU neural networks, see [33] and [3].

Lemma 8. For every δ P p0, 1q, d P N, d ¥ 2, we can explicitly construct a deep ReLU
neural network ΦP so that

sup
xPr�1,1sd

�����
d¹

j�1

xj � ΦP pxq
����� ¤ δ.

Furthermore, if xj � 0 for some j P t1, . . . , du then ΦP pxq � 0 and there exists a constant
C ¡ 0 independent of δ and d such that

W pΦP q ¤ Cd logpdδ�1q and LpΦP q ¤ C log d logpdδ�1q .
Lemma 9. For every dimension d ¥ 2, δ P p0, 1q and for the d-variate hat functions φk,s,
k P Nd

0, s P Zpkq, defined as in (7), we can explicitly construct a deep neural network
Φδpφk,sq so that

}φk,s � Φδpφk,sq}8 ¤ δ

and
W pΦδpφk,sqq ¤ Cd logpdδ�1q and LpΦδpφk,sqq ¤ C log d logpdδ�1q . (14)

Moreover, suppΦδpφk,sq � suppφk,s.

The above result allows us to construct a deep ReLU network Φε

�
Rnpfq

�
to approximate

Rnpfq.

302 DINH DŨNG, VAN KIEN NGUYEN, MAI XUAN THAO

Lemma 10. Let d P N, d ¥ 2, n P N, α P p0, 1s and ε P p0, 1q. Then for every f P Ůα,d
8 we

can explicitly construct a deep ReLU network Φε

�
Rnpfq

�
of the same architecture Aε so that

��Rnpfq � Φε

�
Rnpfq

���
8
¤ ε. (15)

Moreover, we have

W
�
ΦεpRnpfqq

� ¤ Cd2n
�
n� d� 1

d� 1

logpdBdε�1q (16)

and
L
�
ΦεpRnpfqq

� ¤ C log d logpdBdε�1q. (17)

The estimates (16) and (17) also hold for W pAεq and LpAεq respectively.

Proof. For every pair k, s with |k|1 ¤ n and s P Zpkq, by applying Lemma 9 with δ :�
B�dε, we explicitly construct a deep ReLU neural network Φδpφk,sq so that suppΦδpφk,sq �
suppφk,s,

}φk,s � Φδpφk,sq}8 ¤ B�dε, (18)

and it holds the estimates (14) for W pΦδpφk,sqq and LpΦδpφk,sqq. We approximate Rnpfq
by the output

Φε

�
Rnpfq

�pxq � ¸
|k|1¤n

¸
sPZpkq

λk,spfqΦδpφk,sqpxq

of the network Φε

�
Rnpfq

�
which is a parallelization of the networks tΦδpφk,squ|k|1¤n, sPZpkq.

Notice that the interiors of suppΦδpφk,sq and suppΦδpφk,s1q have empty intersection if s ��
s1. Moreover, for every x P Id, there is an s P Zpkq such that x P suppφk,s, and hence, by
using (8) and (18) we get the estimates

|Rnpfqpxq � Φε

�
Rnpfq

�pxq| � ¸
|k|1¤n

��λk,spfq
�
φk,spxq � Φδpφk,sqpxq

���
¤ 2�αd

¸
|k|1¤n

2�α|k|1εB�d

¤ εp1� 2�αqd
ņ

j�0

2�αj

�
j � d� 1

d� 1

.

From
8̧

j�0

�
j �m

m

tj ¤ p1� tq�m�1, t P p0, 1q, (19)

see [6, Lemma 2.2], we obtain (15).
By using Lemma 1 and the estimates (14), the size and the depth of Φε

�
Rnpfq

�
can be

estimated as

W pΦε

�
Rnpfq

�q ¤ C|tpk, sq : |k|1 ¤ n, s P Zpkqu| max
|k|1¤n,sPZpkq

W pΦδpφk,sqq

� C
ņ

ℓ�0

2ℓ
�
ℓ� d� 1

d� 1

d logpdBdε�1q

¤ Cd2n
�
n� d� 1

d� 1

logpdBdε�1q,

COMPUTATION COMPLEXITY OF DEEP RELU NEURAL NETWORKS 303

and
LpΦε

�
Rnpfq

�q ¤ max
|k|1¤n,sPZpkq

LpΦδpφk,sqq ¤ C log d logpdBdε�1q.

The proof is completed by noticing that Φε

�
Rnpfq

�
has the architecture Aε (independent

of f) which is defined as the minimal architecture of the deep ReLU neural network Φε

obtained by parallelization of the networks tΦδpφk,squ|k|1¤n, sPZpkq with the output

Φεpxq �
¸

|k|1¤n

¸
sPZpkq

Φδpφk,sqpxq, x P Id.

Hence, the estimates (16) and (17) also hold for W pAεq and LpAεq respectively. ■

We are ready to prove Theorem 7.

Proof. Denote n0 the natural point from which the function hpnq � 2�αBd2�αn
�
n�d
d�1

�
is

decreasing and hpn � 1q ¤ 2�αn{2 for all n ¡ n0. We put ε0 � minthpn0q, hpdqu. For
ε P p0, ε0q we define n ¡ maxtn0, du by

2�αBd2�αn

�
n� d

d� 1

¤ ε

2
 2�αBd2�αpn�1q

�
n� 1� d

d� 1

. (20)

With ε1 � ε{2 in Lemma 10 and Φεpfq � Φε1pRnpfqq we have

}f � Φεpfq}8 ¤ }f �Rnpfq}8 � }Rn � Φε1pRnpfqq}8 ¤ 2�αBd2�αn

�
n� d

d� 1

� ε

2
¤ ε.

We define Aε as the minimal architecture of the deep ReLU neural network Φε obtained by
parallelization of the networks tΦδpφk,squ|k|1¤n, sPZpkq with the output

Φεpxq �
¸

|k|1¤n

¸
sPZpkq

Φδpφk,sqpxq, x P Id.

Then Φεpfq has the architecture for all f P Ůα,d
8 . From Lemma 10 we have

W pAεq ¤ Cd2n logp2dε�1Bdq
�
n� d� 1

d� 1

.

From the choice of n we have

2dε�1Bd ¤ d2α2αn
�
n� d

d� 1

�1

¤ 2αn2d

�
n� d

d� 1

�1

¤ 2αn .

By this and (20) we get

W pAεq ¤ Cd

�
2ε�1Bd

�
n� d� 1

d� 1

1{α

αn

�
n� d� 1

d� 1

¤ Cd
�
2ε�1Bd

�1{α
n

�
n� d� 1

d� 1

 1
α
�1

¤ Cd
�
ε�1Bd

�1{α
n

�p2nqd�1

pd� 1q!

 1

α
�1

.

304 DINH DŨNG, VAN KIEN NGUYEN, MAI XUAN THAO

Now hpn�1q ¤ 2�αn{2 and (20) lead to ε
2 ¤ 2�αn{2 which implies n ¤ 2

α logp2ε�1q. Therefore
we get

W pAεq ¤ Cd
�
ε�1Bd

�1{α
logp2ε�1q

�p4α�1 logp2ε�1qqd�1

pd� 1q!

 1

α
�1

� Cd
�
Bd

�1{α�p4α�1qd�1

pd� 1q!

 1

α
�1

ε�
1
α logp2ε�1qpd�1qp 1

α
�1q�1,

and (13) follows. We also have

LpAεq ¤ C log d log
�
d2ε�1Bd

� ¤ Cαn log d ¤ C log d logp2ε�1q.

■

5. DEEP RELU NEURAL NETWORK APPROXIMATION - AN
ADAPTIVE METHOD

In this section, we explicitly construct an adaptive method of approximation with accu-
racy ε ¡ 0 by deep ReLU neural networks of functions f P Ůα,d

8 . This method reduces the
computation complexity expressing as the size and depth of the approximating deep ReLU
networks comparing with the computation complexity of the nonadaptive method given in
Theorem 7. As mentioned the univariate case was already considered in [7] (0 α 1q)
and [40] (α � 1), we focus our attention on multivariate case when d ¥ 2. The main result
of this section is read as follows.

Theorem 11. Let d P N, d ¥ 2, α P p0, 1s. Then there is ε0 � ε0pd, αq P p0, 1{2s such

that for every ε P p0, ε0q and for every f P Ůα,d
8 we can explicitly construct an adaptive deep

ReLU neural network Φεpfq so that

}f � Φεpfq}8 ¤ ε.

Moreover, we have

W pΦεpfqq ¤ Cαd
2

�
Kd

2

pd� 1q!

 2

α
�2

ε�
1
α

�
logp2ε�1q log logp2ε�1q�p1� 1

α
qpd�1q

(21)

and
LpΦεpfqq ¤ C 1

αε
� 1

dα plogp2ε�1qq d�1�α
dα plog logp2ε�1qq pα�1qpd�1q

dα , (22)

where

K2 :� 4p2α�3Bq 1
2α�2 pα�1 logp2α�1qq1{2

and positive constants Cα, C
1
α depend on α only.

Let us explain the idea of the proof. Let f P Ůα,d
8 and ε P p0, ε0q (ε0 will be specified

latter) be given. Using the writing

f � Rnpfq � pf �Rnpfqq,

we explicitly construct deep ReLU neural networks to approximate with accuracy ε{2 the
terms Rnpfq and f �Rnpfq and evaluate the dimension-dependent computation complexity

COMPUTATION COMPLEXITY OF DEEP RELU NEURAL NETWORKS 305

separately, and then take their sum to get an approximation with accuracy ε to f and its
dimension-dependent computation complexity. For approximation of the first term Rnpfq,
we take the deep ReLU neural network Φε{2pRnpfqq which has been constructed in Lemma
10.

Thus, our main task is to explicitly construct a desired deep ReLU neural network
Φε{2

�
f�Rnpfq

�
for approximation of the second term f�Rnpfq. Our strategy is to represent

the difference f �Rnpfq in a special form and then approximate terms in this representation
by deep ReLU networks. To this end, we need some auxiliary preparation.

For univariate functions f P C̊pIq, let the operator Tk, k P N0, be defined by

Tkpfq :� f �Rk�1pfq
with the operator Rk defined as in (5) and the convention R�1 :� 0. From this defini-
tion we have T0 is the identity operator. Notice that for f P Ůα,1

8 , it holds the inequality
}Tkpfq}Hα

8pIq ¤ 2.

For a multivariate function f P C̊pIdq, the tensor product operator Tk, k � pk1, . . . , kdq P
Nd
0, is defined by

Tkpfq :�
d¹

j�1

Tkj pfq,

where the univariate operator Tkj is applied to the univariate function f by considering f as
a function of variable xj with the other variables held fixed.

For n P N, it has been shown in [4] that f � Rnpfq can be represented in the following
special form

f �Rnpfq �
d�1̧

j�0

¸
|kj |1¤n

Fkj
, (23)

where Fk0 :� Tpn�1qe1 and

Fkj
:� Tpn�1�|kj |1qej�1

�
qkj

pfq�, j � 1, . . . , d� 1,

or equivalently,

Fkj
�

j¹
i�1

�
Tpki�1qej � Tkiej

�
Tpn�1�|kj |1qej�1pfq, j � 1, . . . , d� 1. (24)

We shall explicitly construct deep ReLU neural networks Φε1pFkj
q to approximate each term

Fkj
in the sum in (23). Due to (24) this is reduced to construct deep ReLU networks that

approximate Tkpfq, k P Nd
0. Put

Ik,s :�
d¡

j�1

Ikj ,sj �
d¡

j�1

r2�kjsj , 2
�kj psj � 1qs, k P Nd

0, s P Zpkq,

and
Tk,spfqpxq :� 2α|k|1�d

�
TkpfqχIk,s

��
2�kpx� sq�.

Since supp
�
TkpfqχIk,s

� � Ik,s and }TkpfqχIk,s}Hα
8pIdq ¤ 2d, we have that

supp
�
Tk,spfq

� � Id, Tk,spfq P Ůα,d
8 .

306 DINH DŨNG, VAN KIEN NGUYEN, MAI XUAN THAO

Take the function SmpTk,spfqq defined as in (12) for Tk,spfq P Ůα,d
8 . By Lemma 6 it holds

the estimate ��Tk,spfq � SmpTk,spfqq
��
8
¤ Bd2�αm

�
m� d

d� 1

.

Define
Sk,mpfqpxq :� 2�α|k|1�d

¸
sPZpkq

Sm

�
Tk,spfq

��
2kx� s

�
. (25)

We then get��Tkpfq � Sk,mpfq
��
8
�

�����
¸

sPZpkq

�
TkpfqχIk,sp�q � 2�α|k|1�dSm

�
Tk,spfq

��
2k � �s��

�����
8

� 2�α|k|1�d

�����
¸

sPZpkq

�
Tk,spfq � Sm

�
Tk,spfq

���
2k � �s�

�����
8

.

Since support of Tk,spfq � Sm

�
Tk,spfq

�
is contained in Id, we finally obtain

��Tkpfq � Sk,mpfq
��
8
¤ p2Bqd�2m2|k|1

��α
�
m� d

d� 1

. (26)

Considering Sk,mpfq as an intermediate approximation of Tkpfq, we shall construct deep
ReLU networks approximating Sk,mpfq. Since Sk,mpfq is a sum of functions in Sα,dpmq,
we shall construct a deep ReLU neural network ΦεpSq for approximating S P Sα,dpmq with
accuracy ε and estimate its size.

Lemma 12. Let d P N, d ¥ 2, m P N, α P p0, 1s, and ε P p0, 1q. Then for every S P Sα,dpmq,
we can explicitly construct a deep ReLU neural network ΦεpSq so that suppΦεpSq � Id and

}S � ΦεpSq}8 ¤ ε. (27)

Moreover, there is a positive constant C such that

W pΦεpSqq ¤ Cd log d2m
�
m� d� 1

d� 1

logpdBdε�1q (28)

and
LpΦεpSqq ¤ C2m log d logpdBdε�1q, (29)

where B is given in Lemma 5.

Proof. By Lemma 6, for every function S P Sα,dpmq, there is a function f P Ůα,d
8 such that

Spxq � Smpfqpxq �
¸

|k̄1|1¤m

2�αp|k̄1|1�d�1q
¸

s̄1PZpk̄1q

φk̄1,s̄1
px̄1qSk̄1,s̄1

px1q,

where Sk̄1,s̄1
:� SKk̄1,s̄1

pfq P Sαpm�|k̄1|1q. Since Sk̄1,s̄1
is a piecewise linear continuous func-

tion, see (10) and (9), according to [7, Theorem 3.1] we can explicitly construct a deep ReLU
neural network Φ

�
Sk̄1,s̄1

�
with one-dimensional input so that Φ

�
Sk̄1,s̄1

�px1q � Sk̄1,s̄1
px1q,

x1 P I, and
W

�
Φ
�
Sk̄1,s̄1

�� ¤ C2m�|k̄1|1 , L
�
Φ
�
Sk̄1,s̄1

�� ¤ C2m�|k̄1|1 . (30)

COMPUTATION COMPLEXITY OF DEEP RELU NEURAL NETWORKS 307

Each univariate function φkj ,sj in the tensor product φk̄1,s̄1
� bd

j�2φkj ,sj can be expressed
as an output of a neural network Φpφkj ,sj q with one-dimensional input, deep 3 and 8 weights.
Adding layers (with one node in each layer) putting forward xj to each network Φpφkj ,sj q
such that it has the length L

�
Φ
�
Sk̄1,s̄1

��
. We still denote these new networks by Φpφkj ,sj q.

Then we obtain
W pΦpφkj ,sj qq ¤ C2m�|k̄1|1 .

We approximate the d-univariate function φk̄1,s̄1
px̄1qSk̄1,s̄1

px1q by the output of the network
Φk̄1,s̄1

with d-dimensional input which is explicitly constructed as a concatenation of the

networks Φ
�
Sk̄1,s̄1

�
, Φpφkj ,sj q, j � 2, . . . , d, with product network ΦP in Lemma 8. With

δ � εB1�d in Lemma 8 we have��φk̄1,s̄1
Sk̄1,s̄1

� Φk̄1,s̄1

��
8
¤ εB1�d. (31)

Since |φk̄1,s̄1
px̄1q| ¤ 1 for x̄1 P Id�1 and |Sk̄1,s̄1

px1q| ¤ 4 for x1 P I by (11), from Lemmata
3, 8 and (30) we derive that

W pΦk̄1,s̄1
q ¤ C

�
ḑ

j�2

W
�
Φpφkj ,sj q

��W
�
ΦpSk̄1,s̄1

q��W pΦP q
�

¤ Cd
�
2m�|k̄1|1 � logpdBdε�1q�,

(32)

and
LpΦk̄1,s̄1

q ¤ L
�
Φ
�
Sk̄1,s̄1

��� LpΦP q ¤ C
�
2m�|k̄1|1 � log d logpdBdε�1q�. (33)

Moreover supppΦk̄1,s̄1
q � supppφk̄1,s̄1

Sk̄1,s̄1
q by Lemma 8.

Let the network Φk̄1
with output

Φk̄1
pxq �

¸
s̄1PZpk̄1q

Φk̄1,s̄1
pxq

be explicitly constructed as a combination of the networks

Φk̄1,s̄1

(
s̄1PZpk̄1q

by the special

construction. Then by Lemma 2, (32) and (33) we obtain that

LpΦk̄1
q ¤

¸
s̄1PZpk̄1q

LpΦk̄1,s̄1
q ¤ C2|k̄1|1

�
2m�|k̄1|1 � log d logpdBdε�1q�

¤ C2m log d logpdBdε�1q
(34)

and
W pΦk̄1

q ¤
¸

s̄1PZpk̄1q

W pΦk̄1,s̄1
q � pd� 1qLpΦk̄1

q

¤ Cd2|k̄1|1
�
2m�|k̄1|1 � logpdBdε�1q�� Cpd log dq2m logpdBdε�1q

¤ Cpd log dq2m logpdBdε�1q.

(35)

Since x P Id, we can construct a standard network with the same output as Φk̄1
and the

estimates (34) and (35) hold, see (3) and (4). We still denote this network by Φk̄1
. Now we

define the network ΦεpSq as a parallelization of the networks pΦk̄1
q|k̄1|1¤m with output

ΦεpSqpxq �
¸

|k̄1|1¤m

2�αp|k̄1|1�d�1qΦk̄1
pxq.

308 DINH DŨNG, VAN KIEN NGUYEN, MAI XUAN THAO

Since supp
�
Φk̄1,s̄1

� � supppφk̄1,s̄1
Sk̄1,s̄1

q and for a given k̄1, supppφk̄1,s̄1
Sk̄1,s̄1

q and
supppφk̄1,s̄11

Sk̄1,s̄11
q are disjoint if s̄11 � s̄1, it holds by (31) and (19) that

}S � ΦεpSq}8 ¤
�����

¸
|k̄1|1¤m

¸
s̄1PZpk̄1q

2�αp|k̄1|1�d�1q|φk̄1,s̄1
Sk̄1,s̄1

� Φk̄1,s̄1
|
�����
8

�
¸

|k̄1|1¤m

2�αp|k̄1|1�d�1q max
s̄1PZpk̄1q

��φk̄1,s̄1
Sk̄1,s̄1

� Φk̄1,s̄1

��
8

¤
¸

|k̄1|1¤m

2�αp|k̄1|1�d�1qεB1�d

� εp1� 2�αqd�1
m̧

ℓ�0

2�ℓα

�
ℓ� d� 2

d� 2

¤ ε.

By Lemma 1 and (34), (35) we obtain

W pΦεpSqq ¤ 3
��tk̄1 : |k̄1|1 ¤ mu�� max

|k̄1|1¤m
W pΦk̄1

q ¤ Cpd log dq2m
�
m� d� 1

d� 1

logpdBdε�1q,

and

LpΦεpSqq ¤ max
|k̄1|1¤m

LpΦk̄1
q ¤ Cplog dq2m logpdBdε�1q.

Finally, the inclusion suppΦεpSq � Id follows from Lemmata 8 and 9. ■

The following result is a generalization of [7, Lemma 5.1] to d-dimensional case.

Lemma 13. Let k P N, Λ � Zpkq and j P t1, . . . , du. Let Φ be a deep ReLU network with
input dimension d such that suppΦ � Id. Denote

fpxq :�
¸
sPΛ

Φpx1, . . . , 2kxj � s, . . . , xdq, x P Id.

Then we can explicitly construct a deep ReLU network ΦΛ with output fpxq and

W pΦΛq ¤ Cpd|Λ| �W pΦqq, LpΦΛq ¤ 5� LpΦq. (36)

Proof. Without loss of generality we assume that j � 1.

SetH2k�1ptq :� σpt�2�ksq{p1�2�ksq,H2kptq :� 0 andHs :� φ�k,s�1 for s P Zpkqzt2k�1u,
where φ�k,s�1 is defined as in (6). Let

Zipkq :� ts P Zpkq : s � 3r � i, r P N0u, i � 0, 1, 2.

To make the proof simple, we divide it into several cases of Λ and Φp�q.
Case 1. The case Λ � Zipkq for some i P t0, 1, 2u and Φpxq ¥ 0 for all x P Id. We will show
that

fpxq � σ

�
Φ

� ¸
sPΛ

Hspx1q, x̄1

� Φ

�
1�

¸
sPΛ

Hs�1px1q, x̄1

�
, (37)

COMPUTATION COMPLEXITY OF DEEP RELU NEURAL NETWORKS 309

for all x P Id. Indeed, if x1 R YsPΛr2�ks, 2�kps�3qs we have°sPΛHs�1px1q �
°

sPΛHspx1q �
0. Since suppΦp�q � Id we get

fpxq � 0 � σ
�
Φ
�
0, x̄1

�� Φ
�
1, x̄1

��
.

If x1 P r2�ks0, 2
�kps0 � 1qs for some s0 P Λ we have

°
sPΛHs�1px1q � 0 and

°
sPΛHspx1q �

2kx1 � s0. Since Φpxq ¥ 0 and suppΦp�q � Id we obtain

fpxq � Φ
�
2kx1 � s0, x̄1

� � σ
�
Φ
�
2kx1 � s0, x̄1

�� Φ
�
1, x̄1

��
.

If x1 P r2�kps0 � 2q, 2�kps0 � 3qs for some s0 P Λ we have
°

sPΛHspx1q � 0. Again from
Φpxq ¥ 0 and suppΦp�q � Id we get

fpxq � 0 � σ

�
Φ
�
0, x̄1

�� Φ

�
1�

¸
sPΛ

Hs�1px1q, x̄1

.

If x1 P r2�kps0 � 1q, 2�kps0 � 2qs, s0 P Λ, it is easy to see that
°

sPΛHspx1q � 1 �°
sPΛHs�1px1q. Hence, the equality (37) holds. We have

Hspx1q � σ
�
1� σ

�
2kx1 � s� 1

�� σ
�
s� 1� 2kx1

��
for s P Zpkqzt2k � 1u and H2k�1px1q � 1

1�2�ks
σpx1 � 2�ksq.

Denote the neural networks on the right side by ΦpHsq. Then the functions
°

sPΛHspx1q
and 1 �°

sPΛHs�1px1q can be realized exactly by two networks Φ1 and Φ2 constructed by
parallelization of ΦHs . By Lemma 1, the length of Φ1 and Φ2 is 3 and their sizes are bounded
C|Λ|. Since Φ1px1q ¥ 0 and Φ2px1q ¥ 0 when x1 P I, we can write

fpxq � σ
�
Φ
�
σpΦ1px1qq, σpσpσpx̄1qqq

�� Φ
�
σpΦ2px1qq, σpσpσpx̄1qqq

��
.

Therefore, the network ΦΛ is a concatenation of Φ1, Φ2, σpσpσpx̄1qqq, and Φ. It is clear that
we have the estimate

W pΦΛq ¤ Cpd|Λ| �W pΦqq, LpΦΛq ¤ 4� LpΦq.

Case 2. The case Λ � Zipkq for some i P t0, 1, 2u and Φpxq changing sign when x P Id. In
this case, we write Φpxq � σ

�
Φpxq�� σ

�� Φpxq�. Hence
fpxq :�

¸
sPΛ

σ
�
Φp2kx1 � s, x̄1q

�� ¸
sPΛ

σ
�� Φp2kx1 � s, x̄1q

�
, x P Id.

Applying the construction in Case 1 for each sum on the right side with Φ replaced by
IdpσpΦp�qqq and Idpσp�Φp�qqq respectively we obtain two neural networks Φ�

Λ and Φ�
Λ . Here

Id is the identity operator. Concatenating these two network by parallelization, see Lemma
1, we obtain ΦΛ. Note that

W
�
IdpσpΦp�qqq� �W

�
Idpσp�Φp�qqq� �W pΦq � 1

and
L
�
IdpσpΦp�qqq� � L

�
Idpσp�Φp�qqq� � LpΦq � 1.

310 DINH DŨNG, VAN KIEN NGUYEN, MAI XUAN THAO

Therefore, the estimates (36) still hold true.

Case 3. General case. We rewrite f in the form:

fpxq �
¸

j�0,1,2

¸
sPΛXZjpkq

Φp2kx1 � s, x̄1q.

To construct the network ΦΛ, we first construct the network ΦΛj , j � 0, 1, 2, by using the
procedure in Case 2 to have that

ΦΛj pxq �
¸

sPΛXZjpkq

Φp2kx1 � s, x̄1q.

Then by parallelizing pΦΛj qj�0,1,2 we obtain the network ΦΛ. From Lemma 1 we prove (36).

■

Lemma 14. Let d,m P N, d ¥ 2, k P Nd, α P p0, 1s and ε P p0, 1q. Assume that ΦεpSq is the
neural network constructed in Lemma 12 to approximate S P Sα,dpmq with accuracy ε and

computation complexity as in (27) and (28), (29). Then for every f P Ůα,d
8 we can explicitly

construct a deep ReLU neural network Φε

�
Sk,mpfq

�
so that

��Φε

�
Sk,mpfq

�� Sk,mpfq
��
8
¤ 2�α|k|1�dε . (38)

Moreover,

W pΦε

�
Sk,mpfq

�q ¤ Cd

�
2|k|1 � log d2|k|1�|k|8Ndpmq2m

�
m� d� 1

d� 1

logpdBdε�1q

, (39)

and
L
�
Φε

�
Sk,mpfq

�� ¤ C log dNdpmq2m logpdBdε�1q, (40)

where Ndpmq is given in Lemma 6 and B is given in Lemma 5.

Proof. We can assume without loss of generality that k1 � |k|8. By the definition (25), for

f P Ůα,d
8 we have that

Sk,mpfqpxq :� 2�α|k|1�d
¸

s̄1PZpk̄1q

¸
s1PZpk1q

Sm

�
Tk,spfq

��
2kx� s

�
.

We number the elements of the set Sα,dpmq from 1 to Ndpmq as S1, . . . , SNdpmq. For s̄1 P
Zpk̄1q and η � 1, . . . , Ndpmq, we define

Ληps̄1q :�

s1 P Zpk1q : Sm

�
Tk,spfq

� � Sη P Sα,dpmq(.
Hence, we can write

Sk,mpfqpxq � 2�α|k|1�d
¸

s̄1PZpk̄1q

Ndpmq¸
η�1

¸
s1PΛηps̄1q

Sη

�
2kx� s

�
.

To approximate Sk,mpfq we use the output

Φε

�
Sk,mpfq

�pxq :� 2�α|k|1�d
¸

s̄1PZpk̄1q

Ndpmq¸
η�1

¸
s1PΛηps̄1q

ΦεpSηqp2kx� s
�

(41)

COMPUTATION COMPLEXITY OF DEEP RELU NEURAL NETWORKS 311

of a deep ReLU neural network Φε

�
Sk,mpfq

�
. Let us first show explicitly how to construct

such a network Φε

�
Sk,mpfq

�
and then estimate its size and depth. Denote by ΦSη ,s̄1 the

network constructed by adding a layer of d nodes before the input layer of ΦεpSηq. Compu-
tations at nodes in the first layer of ΦSη ,s̄1 are σpx1q and σp2kjxj � sjq, j � 2, . . . , d. Then
by (28) and (29) we have

W pΦSη ,s̄1q ¤ 2pd� 1q � 1�W pΦεpSηqq ¤ CW pΦεpSηqq
and LpΦSη ,s̄1q ¤ 1� LpΦεpSηqq .
Since suppΦεpSηq � Id, we have ΦSη ,s̄1pxq � ΦεpSηq

�
x1, 2

k̄1x̄1 � s̄1
�
. Hence we can write

Φε

�
Sk,mpfq

�pxq � 2d�α|k|1
¸

s̄1PZpk̄1q

Ndpmq¸
η�1

¸
s1PΛηps̄1q

ΦSη ,s̄1

�
2k1x1 � s1, x̄1

�
.

Applying Lemma 13 to the function
°

s1PΛηps̄1q
ΦSη ,s̄1

�
2k1x1� s1, x̄1

�
, we can explicitly con-

struct a network ΦΛηps̄1q with the output

ΦΛηps̄1qpxq �
¸

s1PΛηps̄1q

ΦSη ,s̄1

�
2k1x1 � s1, x̄1

�
,

so that its size and depth satisfy

W
�
ΦΛηps̄1q

� ¤ C
�
d|Ληps̄1q| �W pΦSη ,s̄1q

� ¤ C
�
d|Ληps̄1q| �W pΦεpSηqq

�
and LpΦΛηps̄1qq ¤ CLpΦSη ,s̄1q ¤ CLpΦεpSηqq.

Let Φs̄1 be the special network combining pΦΛηps̄1qqη�1,...,Ndpmq with output

Φs̄1pxq �
Ndpmq¸
η�1

ΦΛηps̄1qpxq.

By Lemmata 2 and 12 its length is bounded as

LpΦs̄1q ¤
Ndpmq¸
η�1

L
�
ΦΛηps̄1q

� ¤ C

Ndpmq¸
η�1

LpΦεpSηqq ¤ C log dNdpmq2m logpdBdε�1q

and its size

W pΦs̄1q ¤
Ndpmq¸
η�1

W
�
ΦΛηps̄1q

�� pd� 1qLpΦs̄1q

¤
Ndpmq¸
η�1

C
�
d|Ληps̄1q| �W pΦεpSηqq

	
� pd� 1qLpΦs̄1q

¤ C

�
Ndpmq¸
η�1

d|Ληps̄1q| � pd log dqNdpmq2m logpdBdε�1q
�
m� d� 1

d� 1

�

¤ Cd

�
2k1 � plog dqNdpmq2m

�
m� d� 1

d� 1

logpdBdε�1q

.

312 DINH DŨNG, VAN KIEN NGUYEN, MAI XUAN THAO

Since x P Id, the network Φs̄1 can be transformed to a standard ReLU neural network with
the same output and estimation for depth and size (by adjusting the constants), see (3) and
(4). We still denote this new network by Φs̄1 .

The network Φε

�
Sk,mpfq

�
is a parallelization of

�
Φs̄1

�
s̄1Pk̄1

which has output (41) and
by Lemma 1

W
�
Φε

�
Sk,mpfq

�� ¤ 2 � 2|k̄1|1 max
s̄1Pk̄1

W pΦs̄1q

¤ Cd2|k̄1|1

�
2k1 � log dNdpmq2m

�
m� d� 1

d� 1

logpdBdε�1q

and

L
�
Φε

�
Sk,mpfq

�� ¤ max
s̄1PZpk̄1q

LpΦs̄1q ¤ C log dNdpmq2m logpdBdε�1q.

Thus, (39) and (40) have been proven. Next, we prove the estimate of the approximation
error (38). Notice that by the assumptions of the lemma and Lemma 12 suppS � Id
and suppΦεpSq � Id for all S P Sα,dpmq, and it holds the estimate (27). Moreover, for
different pairs ps, ηq and ps1, η1q, the supports of the functions pΦεpSηq � Sηq

�
2k � �s� and

pΦεpSη1q � Sη1q
�
2k � �s1� are disjoint. Hence, by (27) we obtain

��Φε

�
Sk,mpfq

�� Sk,mpfq
��
8
� 2d�α|k|1

�����
¸

s̄1PZpk̄1q

Ndpmq¸
η�1

¸
s1PΛηps̄1q

pΦεpSηq � Sηq
�
2k � �s�

�����
8

� 2d�α|k|1 max
s̄1PZpk̄1q

max
1¤η¤Ndpmq

max
s1PΛηps̄1q

��pΦεpSηq � Sηq
�
2k � �s���

8

¤ 2d�α|k|1ε

which proves (38). ■

We are now in position to prove Theorem 11.

Proof. For convenience, we divide the proof into several steps.

Step 1. Let us recall our plan of the proof. To approximate f P Ůα,d
8 , we will construct

a deep ReLU neural network with an output of the form

Φεpfq � Φε{2

�
Rnpfq

� � Φε{2

�
f �Rnpfq

�
, (42)

where Φε{2

�
Rnpfq

�
and Φε{2

�
f � Rnpfq

�
are deep ReLU neural networks approximating

Rnpfq and f �Rnpfq with accuracy ε{2, respectively. Then we have

}f � Φεpfq}8 ¤ ��Rnpfq � Φε{2

�
Rnpfq

���
8
� ���f �Rnpfq

�� Φε{2

�
f �Rnpfq

���
8
¤ ε.

(43)

For approximation of the first term Rnpfq, we take the deep ReLU neural network
Φε{2

�
Rnpfq

�
which has been constructed in Lemma 10. In the following we construct a

deep ReLU neural network Φε{2

�
f �Rnpfq

�
for approximating f�Rnpfq with accuracy ε{2.

As noticed above, since the difference f � Rnpfq is represented as in (23), we shall
explicitly construct deep ReLU neural networks Φε1pFkj

q to approximate each term Fkj
with

accuracy ε1 in the sum in (23), where the value of ε1 will be chosen latter. For ease of

COMPUTATION COMPLEXITY OF DEEP RELU NEURAL NETWORKS 313

notation we consider the case supppkjq � j with 1 ¤ j ¤ d� 1. The other cases are carried
out similarly with a slight modification. From (24) we have

Fkj
�

j¹
i�1

�
Tpki�1qej � Tkiej

�
Tpn�1�|kj |1qej�1pfq

�
¸

ePt0,1uj

p�1q|e|1Tkj�eTpn�1�|kj |1qej�1pfq �
¸

ℓPΛpkjq

cℓTℓpfq ,

where

Λpkjq :�
!
ℓ P Nd

0, supppℓq � t1, . . . , j � 1u, ℓj � kj � e, ℓj�1 � n� 1� |kj |1, e P t0, 1uj
)

and cℓ is either 1 or �1. It is easy to see that |Λpkjq| ¤ 2j for all kj and if ℓ P Λpkjq then
n� 1� d ¤ |ℓ|1 ¤ n� 1.

We approximate Fkj
by the output

Φε1
�
Fkj

�pxq :� ¸
ℓPΛpkjq

cℓΦε1pSℓ,mpfqq,

where the networks Φε1pSℓ,mpfqq are constructed as in Lemma 14. The network Φε1
�
Fkj

�
is

a parallelization of Φε1pSℓ,mpfqq, ℓ P Λpkjq.
We define Φε{2

�
f �Rnpfq

�
as a deep ReLU neural network with the output

Φε{2

�
f �Rnpfq

�
:�

d�1̧

j�0

¸
|kj |1¤n

Φε1
�
Fkj

�pxq (44)

which is a parallelization of Φε1
�
Fkj

�
, |kj |1 ¤ n, j � 0, . . . , d� 1. It approximates f �Rnpfq

with accuracy ε{2 by an appropriate choice of ε1.

We put

ε1 � Bd2�αm

�
m� d

d� 1

with m will be chosen later such that ε1 P p0, 1q. We have from (26) and Lemma 14

��Fkj
� Φε1pFkj

q��
8
¤

¸
ℓPΛpkjq

���Tℓpfq � Sℓ,mpfq
��
8
� ��Φε1

�
Sℓ,mpfq

�� Sℓ,mpfq
��
8

	

¤
¸

ℓPΛpkjq

�
p2Bqd�2m2|ℓ|1

��α
�
m� d

d� 1

� 2�α|ℓ|1�dε1

¤
¸

ℓPΛpkjq

�
p2Bqd�2m2n�1�d

��α
�
m� d

d� 1

� 2�αpn�1�dq�dε1

¤ 2j�1�αp2α�1Bqd�2m2n
��α

�
m� d

d� 1

.

314 DINH DŨNG, VAN KIEN NGUYEN, MAI XUAN THAO

This leads to

���f �Rnpfq
�� Φε{2

�
f �Rnpfq

���
8
¤

d�1̧

j�0

¸
|kj |1¤n

��Φε1
�
Fkj

�� Fkj

��
8

¤
d�1̧

j�0

¸
|kj |1¤n

2j�1�αp2α�1Bqd�2m2n
��α

�
m� d

d� 1

¤
d�1̧

j�0

2j
�
n� j

j

21�αp2α�1Bqd�2m2n

��α
�
m� d

d� 1

¤ 21�αp2α�2Bqd�2m2n
��α

�
m� d

d� 1

�
n� d� 1

d� 1

.

We denote the last term by An,m. In the next step, our task is to choose n,m (and therefore,
ε1) depending on ε such that An,m ¤ ε{2. Then we define the deep ReLU neural network
Φεpfq as a parallelization of the networks Φε{2

�
Rnpfq

�
and Φε{2pf �Rnpfqq with the output

(42). From this (43) follows. The size and depth of Φεpfq are estimated explicitly in d and ε
from the estimation of sizes and depths of Φε{2

�
Rnpfq

�
and Φε1pFkj

q by the choice of m,n.

Step 2. The choices of ε0 and n, m. Define m0 ¥ d as the smallest integer such that
Bd2�αm0

�
m0�d
d�1

� 1. Denote n0 P N from which the function

hpnq :� Kd,α2
�αnnd�1�αplog nqpα�1qpd�1q, (45)

where
Kd,α :� 2p2α�2Bqdp4d log 3qα

�
2d�1

pd� 1q!

α�2

(46)

is decreasing and hpn� 1q ¤ 2�αn{2 for all n ¥ n0. We put n1 � tp8d log 3q2m0
�
m0�d�1

d�1

�
u� 1

and define ε0 � minthpn0q, hpn1q, 1{2u. For ε P p0, ε0q we choose n P N, n ¥ maxtn0, n1u,
such that hpnq ¤ ε{2 hpn� 1q and then m such that

plog dq32m�1pm�d�1
d�1 q2m

�
m� d� 1

d� 1

m ¤ 2

n
d plog dq32m�2pm�d

d�1 q2m�1

�
m� d

d� 1

pm�1q. (47)

These choices imply

32
m�1pm�d�1

d�1 q ¤ 2
n
d 32

m�3pm�d
d�1 q

and
2m�1

�
m� d� 1

d� 1

log 3 n

d
 p8 log 3q2m

�
m� d

d� 1

and m ¤ log n. (48)

Since n ¥ p8d log 3q2m0
�
m0�d
d�1

�
we get m ¥ m0 ¥ d and

An,m ¤ 21�αp2α�2Bqd2�nα

�
dn�1p8 log 3q

�
m� d

d� 1

�α�m� d

d� 1

�
n� d� 1

d� 1

¤ 2p2α�2Bqdp4d log 3qα
�

2d�1

pd� 1q!

α�2

2�αnnd�1�αmpα�1qpd�1q

� hpnq ¤ ε

2
.

Step 3. Estimating the size and depth of Φε1pSℓ,mpfqq. From n� 1�d ¤ |ℓ|1 ¤ n� 1 we have

COMPUTATION COMPLEXITY OF DEEP RELU NEURAL NETWORKS 315

|ℓ|1 � |ℓ|8 ¤ n� 1� n� 1� d

d
¤ n� n

d
� 2

which by (39) leads to

W
�
Φε1pSℓ,mpfqq

� ¤ Cd

�
2n � plog dq2n�n

d
�m

�
m� d� 1

d� 1

logpdBdε1

�1qNdpmq

.

Note that by the choice of ε1 we get

logpdBdε1
�1q ¤ log

�
d2αm

�
m� d

d� 1

�1

¤ αm.

It yields from (47)

plog dq2m
�
m� d� 1

d� 1

mNdpmq ¤ 32

m�1pm�d�1
d�1 q2m

�
m� d� 1

d� 1

m ¤ 2

n
d .

Consequently
W

�
Φε1pSℓ,mpfqq

� ¤ Cαd2
n. (49)

Similarly, we have

L
�
Φε1pSℓ,mpfqq

� ¤ C log dNdpmq2m logpdBdε1
�1q ¤ Cαplog dq32

m�1pm�d�1
d�1 q2mm ¤ Cα2

n
d .

Step 4. Estimation of the size and depth of Φεpfq. We recall that Φε{2pf � Rnpfqq is the
network obtained by parallelization of Φε1pSℓ,mpfqq with ℓ in the multi-set

Λ �
ℓ P Λpkjq, j � 0, . . . , d� 1, |kj |1 ¤ n

(
and has the output equal to the double sum on the right side of (44). We have

|Λ| ¤
d�1̧

j�0

¸
|kj |1¤n

2j �
d�1̧

j�0

2j
�
n� j

j

¤ 2d

�
n� d� 1

d� 1

.

The network Φεpfq is a parallelization of Φε{2pRnpfqq and Φε{2pf � Rnpfqq. Therefore, by
Lemma 1 and the construction of Φε{2pRnpfqq and Φε{2pf �Rnpfqq we obtain

W pΦεpfqq ¤ Cmax

W pΦε{2pRnpfqqq,W pΦε{2pf �Rnpfqq

(
¤ Cmax

"
W pΦε{2pRnpfqqq , 2d

�
n� d� 1

d� 1

max
ℓPΛ

W pΦε1pSℓ,mpfqqq
*
.

From Lemma 10 and (49) we deduce that

W pΦεpfqq ¤ Cαmax

"
d2n logpdBd2ε�1q

�
n� d� 1

d� 1

, d2d2n

�
n� d� 1

d� 1

*
.

Since hpnq ¤ ε{2, from (45) by simple calculation we get

logpdBdε�1q ¤ Cαpd� nq ¤ Cαdn

which implies
W pΦεpfqq ¤ Cαd2

d2nnd 2d�1

pd� 1q! .

From ε{2 ¤ hpn� 1q ¤ 2�αn{2 we deduce n ¤ 2α�1 logp2ε�1q and by (45)

2n ¤ Cα

�
Kd,α2ε

�1nd�1�αplog nqpα�1qpd�1q
	 1

α
. (50)

316 DINH DŨNG, VAN KIEN NGUYEN, MAI XUAN THAO

Consequently

W pΦεpfqq ¤ Cαd2
d 2d�1

pd� 1q!
�
Kd,αε

�1pn log nqpα�1qpd�1q
	 1

α

¤ Cαd2
d 2d�1

pd� 1q!pKd,αq
1
α ε�

1
α

�
log

�
2α�1 logp2ε�1q�2α�1 logp2ε�1q

	p1� 1
α
qpd�1q

.

We use the inequalities with p :� p1� 1
αqpd� 1q ¥ 1, ε P p0, 1{2q�

log
�
2α�1 logp2ε�1q��p � �

logp2α�1q � log logp2ε�1q�p
¤ �

2 log
�
2α�1q� log logp2ε�1q��p (51)

to obtain

W pΦεpfqq ¤ Cαd2
d 2d�1

pd� 1q!pKd,αq
1
α ε�

1
α

�
4α�1 logp2α�1q log logp2ε�1q� logp2ε�1q

	p1� 1
α
qpd�1q

.

Replacing Kd,α by the right-hand side of (46), we prove (21).
Now we estimate the depth of Φεpfq. By applying Lemmata 2, 10 and by the construction

of Φε{2pf �Rnpfqq we have that

LpΦεpfqq � Cmax

L
�
Φε{2

�
Rnpfq

��
, L

�
Φε{2pf �Rnpfqq

�(
¤ Cmax

log d logpdBdpε{2q�1q,max

ℓPΛ
L
�
Φε1pSℓ,mpfqq

�(
¤ Cαmax

log d logpdBdε�1q, 2n

d

(
¤ Cαmax

 pd log dqn, 2n
d

(
.

By (47) and (48) it is easily seen that 2
n
d dominates pd log dqn. From (50), the inequality

n ¤ 2α�1 logp2ε�1q, and (51) we get

2
n
d ¤ Cα

�
Kd,αε

�1nd�1�αplog nqpα�1qpd�1q
	1{pdαq

¤ Cα

�
Kd,αε

�1p2α�1 logp2ε�1qqd�1�αplogp2α�1 logp2ε�1qqqpα�1qpd�1q
	1{pdαq

¤ Cα

�
Kd,αε

�1p2α�1 logp2ε�1qqd�1�αp2 logp2α�1q log logp2ε�1qqqpα�1qpd�1q
	1{pdαq

.

In view of (46), we find that�
Kd,αp2α�1qd�1�αp2 logp2α�1qqpα�1qpd�1q

	1{pdαq

is bounded by a constant depending only on α. Consequently

LpΦεpfqq ¤ Cαε
� 1

dα plogp2ε�1qq d�1�α
dα plog logp2ε�1qq pα�1qpd�1q

dα

which proves (22). ■

6. AN APPLICATION TO NUMERICAL SOLVING PDES

In this section, we apply the results on approximation by deep ReLU neural networks in
Sections 4 and 5 to numerical approximation to the solution of elliptic PDEs. Before going

COMPUTATION COMPLEXITY OF DEEP RELU NEURAL NETWORKS 317

into detail, let us analyze the differences between approximation by deep ReLU neural net-
works and finite element methods. It is well-known that every deep ReLU neural network in
Rd represents a continuous piecewise linear function defined on a number of polyhedral sub-
domains and conversely every continuous piecewise linear function in Rd can be represented
by a deep ReLU. This shows that there exists some deep ReLU neural network which is at
least as good as adaptive finite element for solutions of PDEs. However, the approximation
to solutions of PDEs in high dimensions by finite element methods is burdened the curse
of dimensionality. For some PDEs, it has been shown that deep neural networks are capa-
ble of representing solutions without incurring the curse of dimensionality, see, for instance,
[15, 20, 21]. For further discussion about relationship between deep ReLU neural networks
and finite element methods in numerical solving PDEs, we refer the reader to [17, 28, 30].

Consider a modeled diffusion elliptic equation

�divpapxq∇upxqq � fpxq in Id, u|BId � 0,

with a function f and a diffusion coefficient a having sufficient regularity. Denote by V :�
W̊ 1

2 pIdq the energy space. If a satisfies the ellipticity assumption

0 amin ¤ apxq ¤ amax 8, @x P Id,
by the well-known Lax-Milgram lemma, there exists a unique solution u P V in weak form
which satisfies the variational equation»

Id
apxq∇upxq �∇vpxq dx �

»
Id
fpxqvpxq dx , @v P V.

We want to approximate the solution u by deep ReLU neural networks. The approxima-
tion error is measured in the norm of L8pIdq. Assume for the modeled case that a and f
have Hölder-Nikol’skii mixed smoothness 1, i.e., a, f P H1

8pIdq. Then, the solution u has at
least mixed derivatives Bαu with α P Nd

0, maxj�1,...,d αj ¤ 1, belonging to L2pIdq [12], and
therefore, by embedding for function spaces of mixed smoothness, see [32, Theorem 2.4.1],

u belongs to H̊
1{2
8 pIdq. For simplicity we assume that u P Ů

1{2
8 .

For the nonadaptive approximation, according to Theorem 7, for any ε ¡ 0 sufficient
small one can explicitly construct a deep neural network architecture Aε independent of f
and a, and a deep ReLU neural network Φεpuq having the architecture Aε such that

}u� Φεpuq}8 ¤ ε,

W pAεq ¤ Cd

�
Kd

1

pd� 1q!

3

ε�2 logp2ε�1q3pd�1q�1,

and
LpAεq ¤ C log d logp2ε�1q,

where K1 :� 8p?2� 1q3{2.
For the adaptive approximation, according to Theorem 11, for any ε ¡ 0 sufficient small

one can explicitly construct an adaptive deep ReLU neural network Φεpuq so that

}u� Φεpuq}8 ¤ ε,

W pΦεpuqq ¤ Cd2
�

Kd
2

pd� 1q!

6

ε�2
�
logp2ε�1q log logp2ε�1q�3pd�1q

,

and
LpΦεpuqq ¤ C 1ε�

2
d plogp2ε�1qq 2d�3

d plog logp2ε�1qq 3pd�1q
d ,

where K2 :� 16pp2�?
2qq1{3.

318 DINH DŨNG, VAN KIEN NGUYEN, MAI XUAN THAO

7. CONCLUSIONS

We have presented both nonadaptive and adaptive methods for explicit construction of
deep ReLU neural network Φεpfq having an output that approximates functions f in the
Hölder-Nikol’skii spaces with an arbitrary prescribed accuracy ε in the L8-norm. Nonadap-
tivity means that the architecture of approximating deep ReLU neural networks is the same
for all functions in Ůα,d

8 . For nonadaptive approximation, by using truncation of Faber series
as a intermediate approximation, we have established a dimension-dependent estimate for
the computation complexity characterized by the size W pΦεpfqq estimated by

W pΦεpfqq ¤ Cαd

�
Kd

1

pd� 1q!

 1

α
�1

ε�
1
α logp2ε�1qpd�1qp 1

α
�1q�1,

where K1 � B1{pα�1q4α�1 with B � p2α � 1q�1.

Concerning adaptive method, for any f P Ůα,d
8 , we explicitly construct a deep ReLU

neural network Φεpfq of adaptive architecture having the output that approximates f in the
L8pIdq-norm with a prescribed accuracy ε and having the size estimated by

W pΦεpfqq ¤ Cαd
2

�
Kd

2

pd� 1q!

 2

α
�2

ε�
1
α

�
logp2ε�1q log logp2ε�1q�p1� 1

α
qpd�1q

,

where K2 � 4p2α�3Bq 1
2α�2 pα�1 logp2α�1qq1{2.

Construction of deep ReLU neural networks in the adaptive method is more involved but
improves logp2ε�1q in the computation complexity of the approximating deep ReLU neural
networks compared to the nonadaptive one.

Our theory is illustrated by an application to numerical approximation to the solution
of elliptic PDEs.

ACKNOWLEDGMENT

This research is funded by Vietnam National Foundation for Science and Technology
Development (NAFOSTED) under Grant number 102.01-2020.03. A part of this work was
done when Dinh Dũng and Van Kien Nguyen were working at the Vietnam Institute for Ad-
vanced Study in Mathematics (VIASM). They would like to thank the VIASM for providing
a fruitful research environment and working condition.

REFERENCES

[1] M. Ali and A. Nouy, “Approximation of smoothness classes by deep ReLU networks,”
arXiv:2007.15645, 2020.

[2] D. Dũng, “B-spline quasi-interpolant representations and sampling recovery of functions with
mixed smoothness,” J. Complexity, vol. 27, pp. 541–567, 2011.

[3] D. Dũng and V. K. Nguyen, “Deep ReLU neural networks in high-dimensional approximation,”
Neural Netw., vol. 142, pp. 619–635, 2021.

[4] ——, “High-dimensional nonlinear approximation by parametric manifolds in Hölder-Nikol’skii
spaces of mixed smoothness,” arXiv:2102.04370, 2021.

COMPUTATION COMPLEXITY OF DEEP RELU NEURAL NETWORKS 319

[5] D. Dũng, V. N. Temlyakov, and T. Ullrich, Hyperbolic Cross Approximation. Advanced Courses
in Mathematics - CRM Barcelona, Birkhäuser/Springer, 2018.

[6] D. Dũng and M. X. Thao, “Dimension-dependent error estimates for sampling recovery on
Smolyak grids based on B-spline quasi-interpolation,” J. Approx. Theory, vol. 250, pp. 185–205,
2020.

[7] I. Daubechies, R. DeVore, S. Foucart, B. Hanin, and G. Petrova, “Nonlinear approximation and
(Deep) ReLU networks,” arXiv:1905.02199, 2019.

[8] W. E and Q. Wang, “Exponential convergence of the deep neural network approximation for
analytic functions,” Sci. China Math., vol. 61, pp. 1733–1740, 2018.

[9] M. Geist, P. Petersen, M. Raslan, R. Schneider, and G. Kutyniok, “Numerical solution of the
parametric diffusion equation by deep neural networks,” arXiv:2004.12131, 2020.

[10] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” In Proceedings of
the Fourteenth International Conference on Artificial Intelligence and Statistics, Ft. Lauderdale,
FL, USA, pp. 315–323, 2011.

[11] R. Gribonval, Kutyniok, M. Nielsen, and F. Voigtlaender, “Approximation spaces of deep neural
networks,” arXiv:1905.01208, 2019.

[12] M. Griebel and S. Knapek, “Optimized general sparse grid approximation spaces for operator
equations,” Math. Comp., vol. 78, pp. 2223–2257, 2009.

[13] A. Griewank, F. Y. Kuo, H. Leövey, and I. H. Sloan, “High dimensional integration of kinks and
jumps – smoothing by preintegration,” J. Comput. Appl. Math., vol. 344, pp. 259–274, 2018.

[14] P. Grohs, D. Perekrestenko, D. Elbrachter, and H. Bolcskei, “Deep neural network approximation
theory,” arXiv: 1901.02220, 2019.

[15] P. Grohs, A. Jentzen, and D. Salimova, “Deep neural network approximations for Monte Carlo
algorithms,” arXiv:1908.10828, 2019.

[16] I. Gühring, G. Kutyniok, and P. Petersen, “Error bounds for approximations with deep ReLU
neural networks in W s,p norms,” Anal. Appl. (Singap.), vol. 18, pp. 803–859, 2020.

[17] J. He, L. Li, J. Xu, and C. Zheng, “Relu deep neural networks and linear finite elements,” J.
Comput. Math, vol. 38, pp. 502–529, 2020.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification,” 2015 IEEE International Conference on Computer Vision,
pp. 1026–1034, 2015.

[19] D. Hebb, The Organization of Behavior: A Neuropsychological Theory. Wiley, 1949.

[20] M. Hutzenthaler, A. Jentzen, T. Kruse, and T. A. Nguyen, “A proof that rectified deep neural
networks overcome the curse of dimensionality in the numerical approximation of semilinear heat
equations,” arXiv:1901.10854, 2019.

[21] A. Jentzen, D. Salimova, and T. Welti, “A proof that deep artificial neural networks overcome
the curse of dimensionality in the numerical approximation of Kolmogorov partial differential
equations with constant diffusion and nonlinear drift coefficients,” arXiv:1809.07321, 2018.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional
neural networks,” NeurIPS, pp. 1106–1114, 2012.

320 DINH DŨNG, VAN KIEN NGUYEN, MAI XUAN THAO

[23] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–444, 2015.

[24] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural network acous-
tic models,” Proceedings of the 30 th International Conference on Machine Learning, Atlanta,
Georgia, USA, pp. 315–323, 2014.

[25] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,”
Bull. Math. Biophys., vol. 5, pp. 115–133, 1943.

[26] H. N. Mhaskar, “Neural networks for optimal approximation of smooth and analytic functions,”
Neural Comput., vol. 8, pp. 164–177, 1996.

[27] H. Montanelli and Q. Du, “New error bounds for deep ReLU networks using sparse grids,” SIAM
J. Math. Data Sci., vol. 1, pp. 78–92, 2019.

[28] J. A. A. Opschoor, P. C. Petersen, and C. Schwab, “Deep ReLU networks and high-order finite
element methods,” Anal. Appl. (Singap.), vol. 18, pp. 715–770, 2020.

[29] P. Petersen and F. Voigtlaender, “Optimal approximation of piecewise smooth functions using
deep ReLU neural networks,” Neural Netw., vol. 108, pp. 296–330, 2018.

[30] P. C. Petersen, “Neural network theory,” Preprint, 2020.

[31] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and organization
in the brain,” Psychol. Rev., vol. 65, pp. 386–408, 1958.

[32] H. Schmeisser and H. Triebel, Topics in Fourier Analysis and Function Spaces. Chichester;
New York : Wiley, 1987.

[33] C. Schwab and J. Zech, “Deep learning in high dimension: Neural network expression rates for
generalized polynomial chaos expansions in UQ,” Anal. Appl. (Singap.), vol. 17, pp. 19–55, 2019.

[34] T. Suzuki, “Adaptivity of deep ReLU network for learning in Besov and mixed smooth Besov
spaces: optimal rate and curse of dimensionality,” International Conference on Learning Repre-
sentations, 2019.

[35] L. Tóth, “Phone recognition with deep sparse rectifier neural networks,” 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing, pp. 6985–6989, 2013.

[36] H. Triebel, Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration. European
Math. Soc. Publishing House, Zürich, 2010.

[37] ——, Hybrid Function Spaces, Heat and Navier-Stokes Equations. European Mathematical
Society, 2015.

[38] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, and M. Norouzi, “Google’s neural machine translation
system: Bridging the gap between human and machine translation,” arXiv: 1609.08144, 2016.

[39] D. Yarotsky, “Error bounds for approximations with deep ReLU networks,” Neural Netw., vol. 94,
pp. 103–114, 2017.

[40] ——, “Quantified advantage of discontinuous weight selection in approximations with deep neu-
ral networks,” arXiv: 1705.01365, 2017.

[41] H. Yserentant, Regularity and Approximability of Electronic Wave Functions. Lecture Notes in
Mathematics, Springer, 2010.

Received on March 2, 2021
Accepted on August 15, 2021

	INTRODUCTION
	DEEP RELU NEURAL NETWORKS
	APPROXIMATION BY SETS OF FINITE CARDINALITY
	DEEP RELU NEURAL NETWORK APPROXIMATION A NONADAPTIVE METHOD
	DEEP RELU NEURAL NETWORK APPROXIMATION - AN ADAPTIVE METHOD
	AN APPLICATION TO NUMERICAL SOLVING PDES
	CONCLUSIONS

