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FUZZINESS MEASURE, QUANTIFIED SEMANTIC MAPPING AND
INTERPOLATIVE METHOD OF APPROXIMATE REASONING
IN MEDICAL EXPERT SYSTEMS

NGUYEN CAT HO, TRAN THAI SON,
TRAN DINH KHANG, AND LE XUAN VIET

Abstract. In the paper we shall present the applicability of hedge algebras to approximate reasoning meth-
ods. On this algebraic of viewpoint, every linguistic domain of each linguistic variable can be considered
as a hedge algebra. By this we can define sensibly notions of fuzziness degree of hedges, fuzziness measure
of linguistic terms and, therefrom, introduce a method for quantifying linguistic domains. The quantifica-
tion of hedge algebras was introduced and investigated firstly in [16] and then developed step by step in
[12,13,19,20] and it is called quantified semantic mappings of hedge algebras. Here we shall present a gen-
eral method for constructing flexibly quantified semantics mappings of any hedge algebras by giving fuzziness
parameters and certain new ones 6, a and (3. In general this quantification leads to a construction of inter-
polative reasoning methods. Then, as an application, we construct a prototype expert system in medicine

based on the new reasoning method. Experiment results seem to be appropriate to doctor diagnosis.

Tém tit. Trong bai bdo nay ching téi trinh bay vé khid ning tng dung cia dai s6 gia tir vao nghién citu
phuong phép lap ludn xdp xi. Trén quan diém dai s&, méi mién ngén ngit cla moét bién ngén ngit cb thé
xem nhir 1& mét dai s& véi cAu tride thit tu tu nhién biéu thi ngit nghia cia ngén ngit. Nhe vay nhiéu khéi
niém tinh té nhur dé do tinh m& cda gia ti, cla cdc tir ngén ngit ¢6 thé dinh nghia ré rang va mang nhiéu
tinh truc cdm. Trén co s& d6 ching t6i ¢é thé dua ra mét phuong phap dinh luwong hod ngit nghia mién
ngon ngit. Viée dinh luong ngtt nghia dai s§ gia tt duge dé cap va nghién ctu lan dau tién trong [16], sau
dé dugc phét trién tirng budc trong céc céng trinh [12,13,19,20] va hinh thanh khéi niém énh xa ngit nghia
dinh luong. Trong bai bdo nay chiing t6i con xdc lap céng thite téng quéit hon, ¢é tinh mém déo, tic 1a cb
nhiéu tham s8 tu do hon, dé tinh 4nh xa ngit nghia dinh luong cta bat ky dai s8 gia tit ndo ¢é hai phan ti
sinh. Nh& cdc 4nh xa ngit nghia nhu vay, mot phuong phap lap luan xdp xi noi suy dé dang duoc xay dung
dé gidi céc bai todn lap luin m& da diéu kién, nhiéu bién. PE chitng té tinh kha dung cta phitong phép méi
ching t6i xay dung mét hé chuyén gia y t€ thit nghiém vé bénh viém gan siéu vi tring va ddnh gid hiéu qua
clia phuong phédp méi qua thit nghiém chan dodn trén vai s§ liéu trong hd so bénh 4n thue té.

1. INTRODUCTION

In [17,18] we have introduced an algebraic approach to structure of linguistic domains of linguistic
variables and in turn developed the theory of these algebras. In [16] a notion of metrics in these
algebras is introduced and examined. Following this idea, based on the quantification of semantics of
linguistic terms and hence it is called quantified semantic mapping, it is developed step by step (see
[12, 13,19, 20]) in such a way that it can easily be defined by introduced notion of fuzziness degree of
hedges and fuzziness measure of linguistic terms. In the paper we shall present a general method for
constructing quantified semantics mappings of any linguistic domains and give a general formula to
define these mappings.

So, for an arbitrary linguistic domain Dom(X) we can construct a quantified semantic mapping
which is a one-to-one from Dom(X) into [0, 1]. In [12] we showed that these mappings transform
a fuzzy multiple conditional reasoning problem to a traditional interpolative problem. It makes the
approximate reasoning problem more intuitive, in our opinion.

In order to prove practically the applicability of hedge algebras we shall construct an approximate
reasoning algorithm for a medical expert system and use expert knowledge and data in the field of
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viral hepatitis to make experiments. The results show that the new method of approximate reasoning
seems to be applicable.

2. HEDGE ALGEBRAS: AN OVERVIEW

In this section we shall describe generally what is a hedge algebra of a linguistic variable. In
fuzzy control ones use verbal descriptions (i.e. linguistic terms) to model a dependence of one physical
variable on other ones. Given a linguistic variable X, denote by Dom(X) a set of linguistic terms
of X called a domain of X. For example, if X is rotation speed of a motor then Dom(X) = {fast,
very fast, more fast, little possibly fast, little fast, possibly fast, little slow, slow, possibly slow, very
slow, more slow, very more slow,...} U{0, W, 1} is a domain of X. It can be considered as an algebra
AX = (Dom(X),C, H, <), where C is the set of generators which are the primary terms fast and slow,
and the elements W, 0 and 1 interpreted as the neutral, the least and greatest elements in Dom(X);
H = {very, little, possibly, more,...} is the set of hedges, which can be regarded as one-argument
operations; the relation < on Dom(X) is called a semantic ordering relation, because it is defined by
the meaning of linguistic terms. The result of applying a hedge h € H to an element x € Dom(X)
is denoted by hz. For each x € Dom(X), we denote by H(x) the set of all elements v € Dom(X)
which are generated algebraically from z by using hedges in H. That is v can be expressed in the
form v = h,,...h iz, where hy, ..., h, € H.

In fuzzy control, this semantic ordering relation should be linear. In such case, we can intuitively
order the linguistic terms which explicitly occur in the above example in a natural way. Indeed,
restricting ourselves to linear hedge algebras, we can determine an ordering structure of hedge alge-
bras, based on the following observations (a formal presentation of hedge algebras can be found in,
for example, [13, 17, 18)):

1) Fach linguistic term has an intuitively semantic tendency which can be recognised by an ordering
relatzon. Two primary terms of each linguistic variable have reverse semantic tendencies: true has a
tendency of “going up” and it is called positive tendency, but false has a tendency of “going down”
called negative one. These tendencies can be characterized by the ordering relationships very true >
true and very false < false. For the linguistic variable AGE, old is positive and young is negative.
From an observation of natural languages, we can find that the positivity and negativity are also
identified by the inequality {rue > false. For example, for the variable HIGH of people, tall is
positive and short is negateve since tall > short.

2) Further, each hedge has an intuitive semantic tendency, which can be expressed also by an ordering
relation. It can be observed that the one hedges increase the semantic tendency of the primary terms
(called positive hedges) but the others decrease the semantic tendency of the primary terms (called
negative hedges). For example, the inequalities very old > old and very young < young mean that very
increases the semantic tendency of both terms “old” and “young” and so we say that very is positive.
But, lLittle decreases this semantic tendency and hence we say that it is negative. As a consequence,
we find that two hedges h and k& may have reverse tendencies and they are said to be converse, that is
the one of which increases but the other decreases the semantic tendency of the primary terms. Also,
two hedges may be compatible, that is they both either increase or decrease such semantic tendency.
In the case of compatibility it may happen that one hedge is stronger than another, that is the one
changes the terms more strongly than another. For example, litle and possibly are compatible and
little > possibly, since we observe that little false > posstbly false > false or little true < possibly true
< true. But, it is obvious that lkttle and very are incompatible, i.e. they are converse.

3) Moreover, as we can observe, each hedge will have an effect of increasing or decreasing semantic
tendency w.r.t. any other ones. If k increases the semantic tendency of a hedge h, we say that k is
positive w.r.t. h; and, conversely, if k& decreases the semantic tendency of h, we say that k is negative
w.r.t. h. For example, since the semantic tendency of little is expressed in the inequality little true
< true, it follows from the inequalities very Little true < lLittle true < possibly lLittle true, that very is
positive but posstbly is negative w.r.t. little. Here, we find again another aspect of the universality
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of language characteristics discussed by Zadeh: the positivity or negativity of a hedge w.r.t. another
one does not depend on the terms they apply to. That is if very is positive w.r.t. little then for any
term x we have: (if z < little  then little x < very little z) or (if x > little x then little x > very little
x). Similarly, we observe that very is negative w.r.t. possibly and approzimately, but positive w.r.t.
more and very. While little is positive w.r.t. posstbly, approximately and [ittle, it is negative w.r.t.
very and more.

4) An important semantic property of hedges is the so called heredity of hedges, which stems from the
fact that each hedge modifies only a little but still preserves the essential meaning of each linguistic
term. That is, changing the meaning of a term, it preserves the own essential meaning of this term.
This means that for any hedge h, hx inherits the meaning of x. We observe that this property can
be formulated also in term of semantic ordering relation: if the meaning of hx and kx is expressed
by hx < kx , then W' hz < K'kz, (i.e. k' and k' inherit, respectively, the meaning of hx and kz and
hence they preserve the semantic ordering relationship between hx and kx) and hence it implies that
H(hz) < H(kx). For example, it can be seen intuitively that from little. true < poss.true it follows
that poss.little.true < little. poss.true, or more generally that H(little.true) < H{(poss.true).

5) For any term x, if hz # x then kx # =, for any hedge k. This property says that if the meaning of
a term x may be still changed properly by a hedge h then it is also changed properly by any other
hedge k. On algebraic point of view, it means that if Az = z for a certain k (i.e. = is a fixed point of
k) then kx = z, for all k € H.

According to these observations, we can order any domains of physical linguistic variable linearly.
For example, we can order the domain of the variable SPEED of a motor considered above as follows:
very slow < more slow < slow < poss slow < little slow < little fast < little possibly fast < possibly
fast < fast < more fast < very fast and so on.

Mathematically, we have the following theorems:

Theorem 2.1. (see Theorem 4 in [17]) Let the sets H and H' of AX = (Dom(X),C,H,<) be

linearly ordered. Then the following statements hold.:

(i) For every u € Dom(X), H(u) ts a linearly ordered set;

(i1) IfDom(X) is generated from C by means of hedges and C s linearly ordered, then so 1s Dom(X).
Moreover, if u < v and u and v are independent, 1.e. w & H(v) andv & H(u), then H(u) < H(v).
More generally, as it is proved in [18], each domain of a linguistic variable can be axiomatised

and, then, it is called a hedge algebra AX = (Dom(X),C, H, <), where H is a partially ordered set

of hedges, and moreover we have the following theorem for reference in sequel:

Theorem 2.2. (see [17]) Let AX = (X, C, H,<) be a hedge algebra. Then, the following statements

hold.

(i) The operations in H are compatible.

(ii) If x € X is a fized point of an operation h in H, 1.e. hx = x, then it is also a fized point of the
other ones.

(iii) If * = hy...hqu, then there exists an index ¢ such that the suffiz h;...hiu of x is a canonical
representation of x w.r.t. w (thatisx = hih;_1..hu and hih; 1. .hiw % hy 1. hiu) and hjx =z,
for all 7 > 1.

(iv) If h £ k and hx = kx then x is a fized point.

(v) For any h,k € H, if x < hx (z > hx) then x << hx (x >> hx) and of ha < kx, h # k, then
he << kz.
It is shown in [18] that each hedge algebra is a complete lattice with a unit element 1 and a zero

element 0 and, as proved in [17], if H is a chain then AX is a linearly ordered set.
For convenience in the sequel, we recall here the criteria for comparing any two elements in

Dom(X):

Theorem 2.3. (see [18]) Let x = hy,...hqu and y = ky,... k1w be two arbitrary canonical representations
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of ® and y w.r.t. u, respectively. Then there exists an index j < min{m,n} + 1 such that hy = kj,
Jor all j' < j (here as a convention it is understood that if j = min{m,n} + 1, then either h; = I for
j=ntl1<mork;=1Iforj=m+1<n)and

(1) x =y ¢ff m =n and hjx; = kjz;;

(2 x <y ’Lﬁ hjxj < k‘jxj,'

)
(3) @ and y are incomparable iff hjx; and k;x; are incomparable.

3. FUZZINESS MEASURE OF LINGUISTIC TERMS

Fuzziness degree is a concept which is not easy to determine intuitively and hence it is very
difficult to define in framework of the fuzzy sets theory. In this section we shall shown that hedge
algebras can be used as a basis for defining a fuzziness degree of terms in a reasonable and obvious
way.

First of all, let us consider the following observation. It can be argued that the more specific
a term is, the less fuzziness degree it is. For example, the fuzziness degree of the terms ‘more or
less true’ (denoted by M Ltrue for short), ‘possibly true’ is less than that of the term ‘true’. Let
the meaning of linguistic terms be represented by fuzzy sets. One notion of fuzziness degree is the
so-called fuzziness index which is defined by the relative distance between the fuzzy set representing
this term and its nearest crisp set (see [1]). It seems to be appropriate to our intuition because the
fuzziness index of crisp set is equal to zero. However, if we represent the term ‘true’by the fuzzy set
ttrue(t) =t on the unit interval [0, 1], and ‘M Ltrue’ by parrnerue(t) = t* with o = 2/3 < 1, then the
fuzziness index of ‘true’ equals to 1/4, but the fuzziness index of ‘M Lirue’ equals to

4 — /2 1
f>_
10 4

which is obviously not appropriate to our requirement above.

Therefore, it will be more convenient to find out firstly some general intuitive properties of
fuzziness degree of linguistic terms. These properties will form an important basic for establishing a
suitable definition of fuzziness degree.

Let us denote by fus(7) the fuzziness degree of a term 7 in a domain Dom(X) of a linguistic
variable X, that is assumed to take values in [0,1]. Tt can be argued that fus(7) is necessary to be
satisfied the following intuitive properties:

(1) fus(r) = 0, for any non-vague value 7.

(2) If his a hedge and 7 is a vague value, then k7 is more specific than 7 and hence we should have
fus(h7) < fus(r).

(3) The following property may be more difficult to be recognised. Let us take into consideration
two vague terms ‘true’ and ‘ false’ which are the generators of a hedge algebra. Because these
concepts are contradictory, i.e. they are reverse and complementary, we can adopt the following
condition:

fus(true) + fus(false) < 1.

We find that if fus(true) + fus(false) < 1, then there must be still a vague term 7 different from
and complementary to the values ‘true’ and ‘false’ so that fus(true) + fus(false) + fus(r) = 1.
It is not the case in any natural languages, and therefore we should have fus(true) + fus(false)

= 1. Therefore, if ¢ and ¢ are the only primary terms of Dom(X), then we always have
fus(ct) + fus(c ) =1.

(4) Now consider a system of hedges H = { Very, More, Possibly, Little} and a set of vague values
Hftrue] = {Very true, More true, Possibly true, Little true}, whose elements are more specific
than the term ‘¢rue’ which the hedges apply to. By point (2) the fuzziness degree of ‘true’ is
greater than the one of every term in Hftrue/. But, how does the fuzziness of ‘true’ take shape in
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our mind? We may imagine intuitively that the fuzziness of ‘true’ are formed by the meaning of
all terms which still express an aspect of the meaning of ‘true’. Therefore, all “what” form the
fuzziness of every term in the set Hftrue/, that are obtained by modifying the term ‘true’; will
also contribute to form the fuzziness of ‘true’. Moreover, since each hedge h has its own meaning
which is different from the other ones k in H, we can argue that “what” which participates in
forming the fuzziness of one term x in H(h true) can not participate in forming another term y
in H(k true). So, analogously as independent events in the probabilistic theory, we can adopt
the following condition:

fus(Very.true) + fus(More.true) + fus(Poss.true) + fus(Littletrue) < fus(true),

and if H is the set of all hedges under consideration then, similarly as the argument in point (3)
above, we should have

fus(Verytrue) + fus(Moretrue) + fus(Possiblytrue) + fus(Littletrue) = fus(true).
In general case, for any term 7, we have
fus(Very 7) + fus(More 7) + fus(Possibly 7) + fus(Little 7) = fus(7).

In Figure 1 we give an example of fuzziness measure on Dom(T RUTH).

Now, we shall show that based on hedge algebras it will be easy to define fuzziness measure on
linguistic domains of a linguistic variable.

Let us consider a linguistic domain Dom(X) which is considered as a hedge algebra AX =

(Dom(X),C, H, <).

Definition 3.1. Let us consider a hedge al- Poss. True
gebra of a linguistic X, AX = (Dom(X), C, H, <). True More
A function ¢ : Dom(X) — [0, 1] is said to be 1/2 LittleTrue True VeryTrue 1

a fuzziness measure on Dom(X) provided that I | I } !
there exists a probability P on Dom(X) such

H Tr
that P is defined on all sets of the form H(r), < Sus(H(VeryTrue))
for every term 7 in Dom(X), and P(H(7)) =0 fus(H(LittleTrue)) ~ fus(H(MoreTrue))
when and only when 7 € {0, W, 1} and (1) =

<
P(H(7)). Sus(H(PossTrue))

So, the “size” of set H(7) describes fuzzi-
ness degree of the term 7 and hence the measure
of the set H(7) will expresses the fuzziness mea- fus(H(True))
sure of 7.

We can point out that ¢ satisfies all intu-
itive properties presented above:

Property (1) is evident by the definition of ¢. Property (2) is derived from the fact that H (k1) C
H (7). Since H(c')UH(c YU {0, W, 1} = Dom(X), Property (3) follows. Analogously, Property (4)
follows from the equalities U{H (h7): h € H} = H(7) and H(hT) N H(K'7) =0, for any h # I/.

For convenience, we list here again some properties of fuzziness measure:

Property (pl): ¢(0) = o(W) = (1) = 0.

Property (p2): ¢(h7) < ¢(7), for any term 7 and any hedge h € H.

Property (p3): <p(c+) +¢(c ) =1, where ¢ and ¢ are the only primary terms of Dom(X).
Property (p4): {> {¢(h7): h € H} = ©(7), for any term 7 in Dom(X).
We can rewrite Property (p4) as follows:

S {e(hr)/o(r) - he HY =1,

i.e. this sum is invariant when term 7 runs in the whole domain Dom(X). It may also be appropriate
to our intuition to assume that the ratio ¢(h7)/@(7) is also constant when 7 runs in the whole domain
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Dom(X). This ratio characterises the fuzziness degree of each hedge h € H.
From now on we always assume that fuzziness measure ¢ satisfies the following property:
Property (p5): The ratio ¢ (h7)/p(7) does not depend on term 7 and hence it is called, for
uniformity, the fuzziness measure of i and denoted by p(h).

Theorem 3.1. Fuzziness measure on Dom(X) 1s uniquely determined by the parameters <,0(c+)7 wlc )
and p(h), h € H, which satisfy the equalities <p(c+) +ple )=1, S {uh): he H} =1, and o(7) 1is
defined recursively by p(hx') = u(h)p(z'), for any term x = ha!, h € H.

4. QUANTIFYING LINGUSTIC DOMAINS OF A LINGUSTIC VARIABLE

A most important characteristic of linguistic terms is qualitative. It is a human powerful manner
for formulating experts knowledge. However, in computational approach to human reasoning, espe-
cially in fuzzy control we need quantitative characteristic. Therefore, it arises a natural requirement
to quantify fuzzy data or, in general, linguistic terms.

In our approach, we do not use fuzzy sets to interpret the meaning of vague concepts, but just
these concepts as being elements in the structure of a hedge algebra, i.e. in Dom(X). In this case
in order to quantify linguistic terms, we establish a suitable mapping from Dom(X) into the unit
interval [0,1]. By its meaning we call it quantified semantic mapping,.

On account of the above examination, we have a reasonable way to construct quantified semantic
mappings on a given linguistic domain.

Let us consider a hedge algebra AX =(Dom(X),C, H, <), where H = H UH ", and suppose that
H ={h_1,h_o,...,h_g}, where h_y < h_o < .. < h_g4 and H' = {h1, ..., hp}, where hy < ... < hy,
and hg = 1.

First, we need a notation.

Definition 4.1. (Sign function). Function Sign: X — {—1,0, 1} is a mapping defined recursively as
follows, where the hedges h and h’ are arbitrary:
a) Sign(c ) = —1, and Sign(hc ) = + Sign(c ), if he <c (e if his positive w.r.t. ¢ ;)
Sign(h ) =-Sign(c ), if he <c (ie. if his negative w.r.t. c ;)
Sign(c') = 41, and Sign(he') = +Sign(c'), if he” < ¢ (i.e. if h is positive w.r.t. c+;)
Sign(hc') = -Sign(c'), if he” < ¢ (i.e. if h isnegative w.rt. ¢ ;)
b) Sign(h'hz) = - Sign(hz) if k' is negative w.r.t. h and h'hx # hzx,
c) Sign(h'hx) = Sign(hx) if k' is positive w.r.t. h and h'h # hz.
d) Sign(h'hz) = 0 if ' hx = hax.
Proposition 4.1. For any hedge h and element z, if Sign(hx) = +1 then hx > x , and if Sign(hz) =
—1 then hx < x

Definition 4.2. Let the parameters ¢(c' ), ¢(c ) and p(h), h € H be given such that (¢’ )+p(c ) =
1, > {u(h): h € H} = 1. A quantified semantic mapping v on Dom(X) is defined as follows:
a) V(W) =0=gp(c ), vie)=0—-aplc), vic')=0+ap)
J
b) v(hjx) =v(x)+ Sign(hjx){ > plhix) — w(hj:Jc)(p(hjac)}7 for 1 <j <p,and
i=1

J
v(hje) =v(x) + Sign(hjx){ > p(hiz) — w(hj:Jc)(p(hjac)}7 for —q <7 < -1,
i=—1
that we can write in one formula as follows:
J
ohse) = vyt Sign(hse){ |3 p(hua) = wlhyaliolhyo) s for g € [l
i=Sign(j
where [—g¢ A p| denotes the set of all 7 such that —g < j < p and j # 0, ¢(x) is defined as in
Theorem 3.1 and: 1
w(hjz) = 5[1 + Sign(hjx)Sign(hy,, hjx)(8 — )| € {a, B}
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Proposition 4.2.

(i) Forallz € X,0<v(z)<1.
(ii) For allz,y € X,z <y implies v(z) < v(y).
To illustrate our method of constructing quantified semantic mapping we give an example.
Now we give some examples of computing some values of the quantified semantic mapping v.
+ For x =c¢ = Small, from Definition 4.1 we have v(small) = 0 —afm(small) = 0.5—0.5x0.5 =
0.25.

+ For = VerySmall, we have j = p = 2, Sign(heSmall) = —1, Sign(hoh;Small) =
Sign(hohySmall) = —1 and w(h,Small) = L[1+ (=1)(=1)(3 — a)] = 0.5 and
v(VerySmall) = v(Small) + (—1){fm(hy Small) + fm(haSmall) — 0.5 fm(heSmall)} =
v(Small) + (—1){u(hl) fm(Small) +0.5u(hse) frm(Small)} =
0.25 - {0.10 x 0.5+ 0.5 X 0.40 x 0.5} = 0.10.

+ For z = LittleVerySmall, we have j = —qg = —2, Sign(h_oVerySmall) = +1,
Sign(hoh_osVerySmall) = +1 and w(h_sVerySmall) = 0.5. Hence, v(h_sVerySmall) =
v(VerySmall) + (+1){fm(h_1 VerySmall) + fm(h_oVerySmall) — 0.5 fm(h_oVerySmall)} =
v(VerySmall) + {p(Possibly)u(Very) x fm(small) + 0.5u(Little) u(very) fm(small)} =
0.104+ {0.10 x 0.40 x 0.5+ 0.5 x 0.40 x 0.40 X 0.5} = 0.104 0.06 = 0.16.

The other values of the quantified semantic mapping v are computed in a similar way and the
results are given in Table 1.
For 6 = 0.6, p(Less) = 0.35, u(Possible) = 0.25, u(More) = 0.15 and p(Very) = 0.25, the

values of the mapping v are given in Table 2.

Table 1. p(Little) = 0.40, p(possible) = 0.10, u(more) = 0.10, u(very) =0.40, 6 = 0.5

Very Very Small 0.040000 Very Less Large 0.540000
More Very Small 0.090000 More Less Large 0.590000
Very Small 0.100000 Less Large 0.600000
Possible Very Small 0.110000 Possible Less Large 0.610000
Less Very Small 0.160000 Less Less Large 0.659999
Very More Small 0.210000 Less Possible Large 0.710000
More More Small 0.222500 Possible Possible Large 0.722500
More Small 0.225000 Possible Large 0.725000
Possible More Small 0.227500 More Possible Large 0.727499
Less More Small 0.240000 Very Possible Large 0.740000
Small 0.250000 Large 0.750000
Very Possible Small 0.260000 Less More Large 0.760000
More Possible Small 0.272500 Possible More Large 0.772500
Possible Small 0.275000 More Large 0.775000
Possible Possible Small 0.277500 More More Large 0.777500
Less Possible Small 0.290000 Very More Large 0.790000
Less Less Small 0.340000 Less Very Large 0.840000
Possible Less Small 0.390000 Possible Very Large 0.890000
Less Small 0.400000 Very Large 0.900000
More Less Small 0.410000 More Very Large 0.910000
Very Less Small 0.460000 Very Very Large 0.960000
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Table 2. 6 = 0.6, pu(Less) = 0.35, u(possible) = 0.25, p(more) = 0.15, p(very) = 0.25

Very Very Small 0.015 Very Less Large 0.613999
More Very Small 0.0465 More Less Large 0.6434
Very Small 0.06 Less Large 0.655999
Possible Very Small 0.075 Possible Less Large 0.669999
Less Very Small 0.129 Less Less Large 0.720399
Very More Small 0.159 Less Possible Large 0.753999
More More Small 0.1779 Possible Possible Large 0.789999
More Small 0.186 Possible Large 0.799999
Possible More Small 0.195 More Possible Large 0.808999
Less More Small 0.2274 Very Possible Large 0.83
Small 0.24 Large 0.34
Very Possible Small 0.255 Less More Large 0.8484
More Possible Small 0.2865 Possible More Large 0.87
Possible Small 0.3 More Large 0.876
Possible Possible Small 0.315 More More Large 0.8814
Less Possible Small 0.369 Very More Large 0.894
Less Less Small 0.4194 Less Very Large 0.913999
Possible Less Small 0.495 Possible Very Large 0.95
Less Small 0.516 Very Large 0.96
More Less Small 0.5349 More Very Large 0.969
Very Less Small 0.579 Very Very Large 0.99

5. INTERPOLATIVE REASONING METHOD

In fuzzy control, we often deal with multiple conditional fuzzy reasoning problems, the physical
variables of which are normally modelled by linguistic variables with real domains usually being
linearly ordered sets. So, hedge algebras as models of physical variable must be linearly ordered
sets as well. This suggests us in this section to deal with a new interpolation reasoning method to
solve multiple conditional fuzzy reasoning problem, based on quantified semantic mappings examined
above.

Consider a fuzzy model:

If X; = A;; and ... and X,,, = Ay, then Y = B;

If Xy = A5, and ... and X,,, = As,, then Y = B, (5.1)

It X; =A,; and ... and X,,, = A,,,, then Y = B,
where A;; and B;, ¢ = 1,2,...,n and j = 1,2,...,m are verbal descriptions of physical variables X
and Y, respectively.

Using fuzzy sets-based methods in fuzzy multiple conditional reasoning, we should carry out the
following main steps:

1) To determine an appropriate reasoning method: One may choose a method based on composi-
tion rule (called also generalised Modus Ponens (see [4,5,9,10,25]) or fuzzy interpolation reasoning
methods (see [6,7,24, 26, 27, 28]). Note that their efficiency depends on a number of factors such as
implication operators, composition operators, aggregation operators, and so on.
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2) To determine fuzzy sets, i.e. membership functions: these functions should suitably represent the
meaning of linguistic terms occurring in the fuzzy model and in fuzzy input data, based on experts
experiences and/or practical experiments.

3) To transform (in fuzzy control) the outputs of the method, which in general are also fuzzy sets,
into real values by a defuzzification method.

It can be seen, in authors’ opinion, that using these methods ones lose intuition and meet
with many difficulties to recognise their behavior, since the results depend on several factors, whose
influences on the chosen method can not be evaluated.

Here we introduce a more intuitive approach, which bases on interpolation reasoning methods.
The idea is simply as follows: to solve a multiple conditional fuzzy reasoning problem with fuzzy model
given by equation (5.1), we interpret each if-then statement as defining a point and, therefore, this
model defines a fuzzy curve Cf in the Cartesian product Dom(X;)X...X Dom(X,,)x Dom(Y’), where
Dom(X;) and Dom(Y") are linguistic domains considered as hedge algebras of X; and Y, respectively.
Then, the fuzzy reasoning problem “For a given fuzzy model (5.1) and an input A = (A1, As, ..., 4,,,)
find an output B corresponding to A” may be understood as an interpolation problem for the fuzzy

curve C'y in Dom(X;)X...x Dom(X,,) X Dom(Y).

The main steps of our method are simply as follows:

1) To construct quantified semantic mappings vx, and vy, which map the hedge algebras of X; and
Y into the unit interval [0, 1], respectively. As examined above, these mappings are determined by
the fuzziness measure of primary terms and of linguistic hedges, which can be considered as users
parameters to adapt specific applications.
2) Under mappings vy, and vy, linguistic values will be transformed into real values in [0, 1]
and, hence, we can establish a transformation which transforms the fuzzy curve Cy in Dom(X;) X
...xDom(X,,)x Dom(Y) into a real curve C, 41 in [0,dq] X [0,ds] X ... X [0, d,,] % [0, b], where [0, d;]
and [0, b] are the domains of the basic variables of X; and Y, respectively.
3) To transform the real curve C, 41 in step 2) into a real curve C, 4 in [0, a] x [0,b] by using an
aggregation operator o (see [21, 22]) as follows:
+ The value a of |0, a] is calculated by a = a(d;,ds, ..., dy).
+ For each index i, a;; = vx,(Ag) for j = 1,2,...,m, we determine a point (as, b;) of Cy 5 by the
following equations:
a; — a(aih a2, .y Ctim> and bl == I/y(Bi).
Use the classical linear interpolative method to compute the output corresponding to an in-
put data ap = a(vx, (A1), vx,(4o2), ..., vx,, (Aom)), for the given input terms X; = Agi, Xo =
Ao, -y Xon = Aom.-

6. AN APPLICATION OF THE NEW METHOD IN CONSTRUCTION OF
A REASONING ALGORITHM IN MEDICINE

To illustrate the applicability of the new method we constructed an experiment system for
diagnosing viral hepatitis. We collected about 200 archives of viral hepatitis patients in Army Central
Hospital at Hanoi and discussed with a few high experienced experts in this medicine area to build
up a knowledge base consisting about 70 rules which are formulated in terms of linguistic values.
Normally, as it can be observed, each rule has a truth degree which is expressed also by linguistic
term of TRUTH.

An example of this rule is the following:

IF “yellow colour skin symptom” is “obvious”

AND “temperature” is “high”
AND “gall status” is “achy”
THEN “gall blocked symptom” is “possible”;
WITH Truth belief degree := 7, where 7 € T - the set of all linguistic terms of TRUTH such as

“true” and all values t € [0, 1].
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In social phenomena, we are most often dealing with sentences containing vague concepts asso-
ciated with a truth degree 7 € 7 and called linguistically fuzzy assertions (L.F-assertion, for short).
So, we shall formalise such an assertion by a pair < F, 7 >, where F' is a linguistically fuzzy sentence
(LF-sentence, for short), and 7 € 7.

For LF-sentences we can define roughly as follows. Firstly, by elementary LF-sentences we mean
those which could be called LF-predicates. Examples of such sentences are the following: ‘Robert
is very old’, ‘The gas gauge of z reads normal’, ‘Part X of the engine e depends on part Y strongly
and ‘The motor m turns well. Because we want deal with vague concepts, they can be separated
from the remaining terms and therefore LF-predicates will be divided into two parts. The first one is
those that build the main meaning of such sentences. It consists of all terms excepts vague concepts
occurring in the sentences. They can be considered as ordinary predicates and called the substance
part. Examples for it are ‘(the age of) Robert is’ in the first sentence above, ‘The gas gauge of 2z
reads’ in the second, ‘Part X of the engine e depends on part Y’ in the third and ‘The motor turns’
in the forth.

The second part of LF-predicate consists of the remaining terms which are vague concepts. It is
called the value part. In the above sentences they are ‘very old’, ‘normal’, ‘strongly’and ‘well’, respec-
tively. It can be seen that the substance part determines the possible vague terms which are regarded
as its values. Therefore, the substance part plays a role which is very similar to that of linguistic
variable. Hence, an LF-predicate can be denoted by a pair (p,u), where p is a (classical) predicate
of n arguments and u is a vague concept. With this notation, the above examples can be written by
(AGE(Robert), very—old), (READ.GAS—GAUGE(z), normally), (DEPEN D(partx (€), partx (€)),
strongly) and (TURN.MOTOR(m),well), respectively, where Robert is individual constant, z,
partx (e), partx (e) and m are individual variables.

Secondly, composed LF-sentences are formed recursively from elementary ones by means of logical
connectives such as ‘and’, ‘or’, “f-then’ and ‘not’, which are denoted correspondingly by A, V, —,
and — and called conjunction, disjunction, implication and negation, respectively. An example for
composed LF-sentences is ‘if a person zis old then he or she can not run gquickly’ and this sentence
can be expressed by (AGE(z,old) — =(RUN (z), quickly).

By F we denote the set of all LF-sentences.

In the paper we consider a set R of assertions of the form (F — P, 7), called a LF-rule. The
problem of reasoning is that how can we deduce certain conclusions from a given knowledge R and
a set ‘H of input data?

Next we shall build a reasoning mechanism to answer the following question: Given a set C of
conclusions of the form (Q, 7), whether C can be deduced from R and H?

Our reasoning algorithm consists of the following main procedures:

Let a set R of LF-rules, a set H of assertions and a set of possible conclusions C be given.

1) Variable names

+ MIDCONS: This variable is used to denote the set consisting of all facts in 'H and the concluded
facts which can be deduced from R and H up to a certain point of running time of the reasoning
algorithm.

+ RULE: It is used to denote the set of rules in R which are still unused by the reasoning algorithm
up to a point of its running time.

+ SAT: Denote the set of rules in R which are applicable to the data in MIDCONS.

+ MODEL: Denote a set of compatible rules in R which forms a fuzzy model for a multiple con-
ditional fuzzy reasoning method, where we mean that two rules are compatible if their linguistic
variables in the if-part and in the then-part are respectively the same.

+ INPUT: Denote an input data for the fuzzy model defined in MODEL. It will be an input of the
procedure prITPLREAS described below.

+ CHOUT: Contains a rule which is chosen from SAT w.r.t. a criterion given below.
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+ TRACE: It is used to display the way of reaching the result. It contains a list of sequent rules in
‘R which are used by the reasoning algorithm.

+ ITPLREAS: Contains an output result in the form of LF-sentence produced by a linguistic inter-
polation reasoning procedure prITPLREAS presented below.

2) Procedures

a) Rough Sieve Procedure:

prSIEV E(RULE, MIDCONS)

The procedure fulfills a function that eliminates those rules in RULFE which are certainly not
applicable to data in MIDCONS. Here applicability to MIDCONS is understood as follows: a rule »
is said to be applicable to MIDCONS if all linguistic variables which occur in » must also occur in
MIDCONS. The results are put in SAT'.

b) Procedures prC HOOSE(SAT, criteria) :

It chooses a rule in SAT which satisfies a designed criterion for the sequential step of reasoning.
Below we shall introduce a decision criterion, denoted by criteria, based on combining some heuristic
indications for choosing a better LF-rule in each step of reasoning. The output is put in CHOUT.

c) Procedure prMODEL(SAT, CHOUT) :

Firstly, two rules are said to be compatible if they have the same linguistic variables in if-part as
well as in then-part. This procedure establish a fuzzy model in a form of (5.1) by taking all rules in
S AT which are compatible with the rule in CHOUT. The outputs are put in MODEL.

d) Procedure prINTPUT(MODEL, MIDCONS) :

The procedure produces an input data from data in MIDCONS for the linguistic interpolation
reasoning procedure priTPLREAS presented in the next. It takes linguistic data with greatest value
whose linguistic variables occurring in if-part of the sentences in MODFEL. The largest values guarantee
that results of the next procedure is of high linguistic belief degree. The output will be put in INPUT.

e) Procedure prITPLREAS(MODEL, v, a, INPUT):

Here for each linguistic variable X we denote, as above, by vx a quantified semantic mapping of
X. Put v = {vy,vx, : X; is a linguistic variable occurring in the if-part of the rules in the fuzzy model
given in MODEL and Y is the unique variable in the then-part} and « is an aggregation operator.
Suppose v, a are given. So, this procedure has the following functions:

+ For each input data given in INPUT it computes the corresponding value b of vy by using inter-
polative reasoning method presented in Section 5.

+ Let k£ be the greatest length of the terms which occur in the then-parts of the fuzzy model given
in MODEL. For each has been computed value b of the linguistic variable Y, it determines a term
7y in Dom(Y") of the length not greater than k + 2 such that |b — vy (7y)| is smallest.

+ Put the result in a form of LF-sentence (Py-(y, 7v)) in ITPLREAS, where Py (y, 7y) is the predicate
of Y and y is an individual variable.

3) Linguistic reasoning algorithm LR-ALGORITHM

LR-ALGORITHM
Input: R, H,C,v,« ;
{
RULE =R,
MIDCONS .="H,
TRACE := ¢; (the empty trace)
SAT := prSIEVE(RULE, MIDCONS);
If (C € MIDCONS) then exit(“Success”);
While (SAT # 0) do

CHOUT := prCHOOSE(SAT, criteria);
MODEL :— pr MODEL(SAT, CHOUT);
INPUT := prINPUT(MODEL, MIDCONS);
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ITPLREAS :=prITPLREAS(MODFEL,v,a, INPUT)

MIDCONS :=MIDCONSUTLPREAS,

TRACFE :=TRACE"CHOUT; (Here " is the concatenation)

RULE := RULE\ MODEL; (Eliminate the rules which are in MODFEL)
SAT := prSIEVE(RULE, MIDCONS);

If (CUMIDCONS) then exit(“Success”);

}

Exit(“Unsuccess” );
}
4) Heuristic criteria for prCHOOSE

Now we introduce heuristic criteria for choosing a rule which is “better” than the other ones at
each step of reasoning.

(H1) CriterionH1 : A rule » € SAT of the form “If X; = A; and X3 = A5 and... and X,,, = 4,,

then Y = B” will be of high choosing possibility if the difference between their quantified semantic

values and the corresponding ones of LF-sentences Ag1, Ag2, ..., Aom in MIDCONS is small.

Put

Rhi(r) =1 — max{|vx,(A2) — vx, (Ao2)| : 2 =1,2,...,m}.

(H2) CriterionH2 : A rule r € SAT will be of high choosing possibility if its quantified truth

degree t(r) = v(truth degree of r) is high. So, we put

ho(r) =t(r),r € SAT.

(H3) CriterionH3 : The possibility of a rule r generating a new linguistic variable:

ha(r) = {

1 if r generates a new linguistic variable;
0 if not.

(H4) CriterionH4 : The possibility of a rule r generating more applicable rules: Suppose at the
moment k£ we have a set of rules in RULFE, a set of data in MIDCONS and a set of applicable
rules in SAT, i.e. SAT := prSIEVE(RULE, MIDCONS). Denote by Conc(r) the then-part of
the rule r.
Put SAT(r) := prSIEVE(RULE, MIDCONS U {Conc(r)}). So,

hy(r) = |Card(SAT(r)) - Card(SAT)| / Card(RULE)
(H5) CriterionH5 : This criterion expresses the fact that for the rule » under consideration at
moment k, if we use r, it is possible that the reasoning algorithm does not stop.

() — 1 if the condition (*) is true;
A 0 if not.

Condition (*): “The linguistic variable of Conc(r) occurs in C or in the if-part of one of the rules in

RULE”. Then, the decision criterion for prCHOOSE(SAT, Criterion) is as follows: The rule r
in SAT will be chosen if h(r) is the is greatest among the rules in SAT, where h(r) indicates the
possibility degree the procedure can reach certain conclusions and is defined as follows:

W) = 23 wii(r)

7. EXPERIMENT RESULTS

We have constructed an expert system based on our reasoning algorithm presented above. With
the co-operation with some high experienced medical experts in this field we established about 70 rules
and collected more than 200 patient archives for our experiments. The parameters for the experiments
is the following:

+ The sets of hedges:
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H = little (or less), relatively (or rather or more — or — less)}, where little > relatively,

H = {many (or much), very}, where much < very; and their fuzziness degrees are as follows:
6 = 0.628; p(little) = 0.5024, p(relatively) = 0.1256, p(much) = 0.0744, p(very) = 0.2976.

+ The weights for computing the heuristic criteria h(r) are:
w1 = 0.92, wy = 0.85, wg = 0.5, wy = 0.6, ws = 1.0.

+ The aggregation operator « for aggregating the component values vx, (Ag1), ¥ X2(A402), ..., v X (Aom)
is the average, i.e.

a(vx, (Ao1), vx, (Aoz), - vx,.(Aom)) = v, (Aiz))/m.

J
We give here the results of the reasoning algorithm for the real data of five hepatitis patients of
Army Central Hospital at Hanoi, which were chosen without prior definitive intention. The data of
these patients are given in Table 3.

Table 3
Symptons Patient A Patient B | Patient C | Patient D | Patient E
Age 37 8 33 16 45
Body_status ill Rather_ill Very Il Il
Rather ill
Period_ 10 days --- --- 10 days 10 days
Temperature
Temperature_ Little hot Little_hot Very Little hot Little hot
degree littlte hot
Sore_throat ---(no Positive - - - - -
message)
Nose sympton | - - - --- running --- ---
Head_paint Aching --- --- Aching Aching
Body_paint Tire Tire Tire Tire Tire
Skin_colour Very_yellow Yellow Yellow Yellow Yellow
Eye_mucous_ Yellow Yellow Yellow Yellow Yellow
membrane
Fond_of_eating | Satiated Satiated Satiated Satiated Satiated
Eat_fat Afraid Afraid Afraid Afraid Afraid
Sick_feelling Positive Positive Positive --- ---
HbsAg_test Very_positive | Negative Positive Positive Positive
SGOT _test Much Much Much Increasing | Much
increasing increasing | increasing increasing
SGPT _test Much Much Much Much Much
increasing increasing | increasing increasing increasing
Bilirubin_test Much Increasing | Increasing Increasing | Increasing
increasing

Results of the diagnosis of the reasoning algorithm (Here Vi - He means riral hepatitis).
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Table 4
Patient | Diagnosed disease | Number of Truth linguistic Values of
inference steps | value mapping v
5330 Vi-He 8 Less rather much true | 0.87617
2826 Vi-He 9 Very little much true 0.86315
8236 Vi-He 11 Little little much true | 0.87292
1905 Vi-He 11 true 0.86161
105 Vi-He 11 Very little much true 0.86315

8. CONCLUSIONS

We have shown the applicability of hedge algebras in building a reasoning mechanism of a medicine
expert system - a very sophisticated problem in general. The method seems to be rather simple and
because the main idea of the interpolative method of reasoning based upon quantified semantics of
terms is very closed to our intuition in reality, it is also much more suggestive. Although the practical
validity of the method depends on the size of the experiment, the results of the algorithm which are
much agreeable to the conclusions of the doctors in five chosen cases for experiment show that the
method is applicable. Note that these cases are chosen randomly from 40 patients archives provided
by the Army Central Hospital so that they have rather enough data for firing our established rules.

To improve the results, we are intending to deal with the following questions:

1) To expand the knowledge base (a set of rules) enough for making experiments: We have collected
only about 70 rules. The difficulty is that the doctors are very difficult to formulate their knowledge
in term of rules in general. Therefore, the collected rules may be not very appropriate to the
considered application and we find that in order to gather additional knowledge in term of rules
we need much more efforts.

2) To study more deeply those factors, which impact the efficiency of the reasoning method. In the
paper we have not examined the influence of such factors yet. The factors may be:

+ Choose more suitable fuzziness measure of hedges and linguistic terms;

+ Choose a suitable quantified semantics mapping of linguistic domains Dom(X;). The above exam-
ination we have assumed that all linguistic variables have the same quantified semantics mapping.
In general they may be different each from the other ones.

+ Choose suitable aggregation operators: We have assumed that the aggregation operator is the
simple average.

And so on.

Inspire of existing these not-yet-improved questions, it still shows that the method has many

advantages:

+ The method is simple, unified and of much more intuitiveness.

+ Using quantified semantics mappings it is easy (with a simple algorithm) to solve the problem of
linguistic approximation.

+ With several parameters of obvious suggestiveness it is also flexible to adapt specific applications.
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