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RECOGNIZING DOMINATING CYCLES IS NP-HARD

VU DINH HOA, DO NHU AN

Abstract. We use w(G) to denote the number of components in a given graph (G. Chvétal [12] defines a
graph G to be I-tough if w(G — S) < |S| for every subset S of the vertex set V with w(G — S) > 1. Given
a graph G, a cycle (' is called a hamiltonian cycle if C' containes all vertices of G. A cycle C is said to be
dominating if and only if G — C has no edge.

The problem of deciding the existence of a hamiltonian cycle in a given graph is known to be an N P-
complete one, hence it is mostly investigated in special claseses, for example in 1-tough graph, or specially
investigated for studying of dominated cycles.

In the following we show that the problem of deciding the existence of a dominating cycle in a given
graph is NP-complete.

Tém tdt. Véiky hiéu w(G) 14 8 thanh phan lién thong ciia mot d6 thi G cho truée. Chvatal[12] dinh nghia
G 13 mot d6 thi 1- tough néu w(G — S) < |S| cho moi tap con S cia tap dinh V cia G véi w(G — S) > 1.
Cho truée mot d6 thi G, mot chu trinh C' duge goi 1a chu trinh Hamilton néu C' di qua tét ¢ cdc dinh cia
(G. Mot chu trinh C' duogc goi 1a chu trinh Dominating khi va chi khi G — C' khéng con canh nao ca.

Van dé xéc dinh xem su ton tai ctia chu trinh Halmiton trong mét dé thi cho trude duoc biét 1a mot
van dé NP - day dd, va do dé vAn dé nay thudmg duoc xem xét trong céc 1ép d6 thi dic biét, ching han
trong cdc d6 thi 1 - tough, hofic dugc chuyén sang xem xét cdc db thi Dominating.

Trong phin sau day, ching ta chi ra rang vdn dé xdc dinh xem mot d6 thi cho trude ¢é chu trinh
Dominating hay khong ciing van con la bai todn NP - day di.

1. INTRODUCTION

We begin with some definitions and convenient notation. We refer to [11] for undefined termi-
nology and notation. All graphs here are finite and undirected graphs without loops and multiple
edges.

The vertex set of a graph G is V() and the edge set of G is F(G). We use w(G) to denote
the number of components of G, and a(G) denotes the cardinality of a maximum set of independent
vertices. If v € V(&) then Ng(v) is the set of all vertices in V(&) adjacent to v and dg(v) = |Ng(v)|
is the degree of v in G. The minimum degree and the maximum degree of G are denoted by §(G) and
A(G), respectively. A vertex v of a graph G with n vertices is called a total vertex if d(v) = n — 1.
Herein x(G) denotes respectively the vertex connectivity of a graph G. We let n = V(@) throughout
the paper. Following Chvdtal [12] we define a graph G to be I-tough if w(G —S) < |S| for every subset
S of V with w(G —8) > 1. For k < a we denote by o}, the minimum value of the degree sum of any k
pairwise nonadjacent vertices and by NC(G) the minimum cardinality of the neighborhood union of
any k such vertices. For k > a we set o, = k(n—a(GF)) and NCy = n—a(G). Instead of o3 and NC}
we use the more common notation §(G) and NC'. If no ambiguity can arise, we some time write d(v)
instead of dg(v) and « instead of a(G), etc. Let S be a nonempty subset of V(G). The subgraph of
(G the vertex set of which is S and whose edge set is the set of all edges in G joining two different
vertices of S is called the subgraph of G induced by S and denoted by G[S]. Furthermore, we use
some specific notation and terminology that does not occur in [11]. For two given graphs G; and Gy
with vertex sets V(G;) (i = 1,2) and edge sets E(G;) (i = 1,2), we write G; C G2 if V(G1) C V(G2)
and E(G1) C E(Gs). If V(G1) N V(G3) = @, then we say that G; and Gy are disjoint. We write
G1 UG U... UG to denote the union of s > 2 pairwise disjoint graphs G, ... , Gs. If Gy, G, ...,
(G5 are isomorphic to a graph G, then we write sG instead of G; UGy U ... UG5, We denote by K,
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the complete graph on n vertices and by G the complement of a graph G. If G; is the complete K.,
we will write K, ., . r, instead of Gy UGoU ... UG,

Given a graph, we can represent it by an obvious pictorial “map” in which its vertices are
represented by points and its edges by lines. Given such a map, several questions can be asked: “Is
it possible to make a tour such that every road is traversed exactly once?”, “Is it possible to design a
tour that passes through every village exactly once and starts and ends in the same village?”, “What
is the longest tour in which no village is visited more than once?”, etc.

rwgure I

A tour that uses only vertices and edges of a graph G, such that every edge of G is traversed
exactly once, and that returns in its initial vertex is called an Fuler tour (Figure 1). A tour, again
using only vertices and edges of GG, such that every vertex is visited at most once and also returning
in its initial vertex is called a cycle in G. Missing the last condition, it will be called a path. The
length ¢(C) of a longest cycle C in a graph G, called the circumference of G, is denoted by c(G).
A hamaltonzan cycle of G is a cycle passing all vertices of G, and G is said to be hamiltonian if it
contains such a cycle. Hamiltonian graphs are named after William Rowan Hamilton, although they
were studied earlier by Kirkman. In 1856, Hamilton invented a mathematical game, the “icosian
game”, consisting of a dodecahedron each of whose twenty vertices was labeled with the name of a
city. The object of the game was to travel along the edges of the dodecahedron, visiting each city
exactly once and returning to the initial point (Figure 2).

Frgure 2

In fact, the beginning of both graph theory in general and of the theory of cycles in graphs, are
marked by problems arising from these kinds of questions concerning the possiblities to make certain
tours on a map. The problem whether a given graph contains an Euler tour was already solved by L.
Euler, where an easy necessary and sufficient condition is given. In contrast, the question whether a
given graph contains a hamiltonian cycle seems to be much harder to answer. Up to now, no easily
verifiable conditions being both necessary and sufficient are known.

Given a graph G, a cycle C is said to be dominating if and only if G —C has no edge (see Figure 3
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for an example). The question “How difficult is it to recognize a dominating cycle in a given graph?”
has remained an interesting open problem for some time in [4] and [10] ... Our purpose here is to
show that the problem to decide the existence of a dominating cycle in a given graph is N P-complete.
To prove this we will reduce the problem of deciding the existence of a dominating cycle in a given
graph to the problem of deciding the existence of a hamiltonian cycle in graphs.

Figure 3

C. St. J. A. Nash-Williams [1] has proved the following result:

Theorem 1. If G s a 2-connected graph of minimum degree 6(G) at least r > 3 on at most 3r — 2
vertices, then any longest cycle of G is dominating. Moreover, if 6(G) > o(@), then G is hamiltonian.

Nash-Williams’ result stands at the very beginning of a discussion of dominating cycles. Let
w(G — S) denote the number of components of the graph G[V(G) — S]|. A graph G is I-tough if
|S| > w(G — S) for any subset S of the vertex set V(G) of G with w(G — §) > 1. Jung and Bigalke [6]
strengthened Nash-Williams’ result by studying 1-tough graphs G' with 6(G)) > max {%,a(G) — 1}.
Let 01(G) denote the minimum of degree sums of any k pairwise nonadjacent vertices if k¥ < a(G),
and o4 (G) = k(n — a(@)) if k > a(G). Instead of 01(G) we use the more common notation §(G).
Bauer, Broersma, Veldman & Schmeichel [4] established lower bounds for the circumference of 1-tough
graphs G with o3 > n, and proved that every longest cycle in G is a dominating cycle.

2. RESULTS

We begin by considering the following problem.

DOMINATING CYCLE
Instance: An undirected graph G.
Question. Does there exist a dominating cycle C in G?

To prove that the problem of deciding the existence of a dominating cycle in a given graph is an
N P-complete one, we will reduce the following problem, which is known to be NP-complete [9].

HAMILTONIAN CYCLE
Instance: An undirected graph G.
Question. Does there exist a hamiltonian cycle C in G?

Our first goal is to establish

Theorem 2. DOMINATING CYCLE is NP-complele.

Proof. Clearly DOMINATING CYCLE € NP, and we prove only that DOMINATING CYCLE is
NP-hard. Let G be a graph with vertex ser {v1, ..., v,}. Construct G’ from G as follows. Add to G a
set A = {wy,...,wy} of independent vertices, and join v; with w; by an edge for i = 1,2, ..., n (Figure
4). To complete the proof, it suffices to show that G contains a hamiltonian cycle if and only if G’
contains a dominating cycle.

Clearly, every hamiltonian cycle C' in G is a dominating cycle in G'. Otherwise, we will prove
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that every dominating cycle C' in G’ is a hamiltonian cycle in G. Suppose that C is a dominating
cycle in G’ and that C avoids a vertex v;, in G, then the graph G — C contains the edge (v;,,w;,),
which contradicts the hypothese that C is a dominating cycle in G'. This contradiction shows that
every dominating cycle in G’ is a hamiltonian cycle in G. Thus, G contains a hamiltonian cycle if G/
contains a dominating cycle.

Figure 4

For what follows we will present the proof for the complexity of the problem to recognize not-1-
tough graphs.
NOT-1-TOUGH

Instance: An undirected graph G.
Question: Does there exist a subset X of V(@) such that w(G — X) >| X |7

With the same proof idea we will reduce the problem of recognizing 1-tough graphs to the
independent set problem, which is known to be NP-complete [9].

INDEPENDENT MAJORITY
Instance: An undirected graph G.
Question: Does G contain an independent set I with | I |>| V(G) |7

The complexity of the general so called t-TOUGHNESS problem was solved in [5]. For unknown
readers we present the proof for the following theorem:

Theorem 3. NOT-1-TOUGH s NP-complete.

Proof. Tt is easily to see that NOT-1-TOUGH &€ NP, and it suffices to prove that NOT-1-TOUGH
is NP-hard. Let G be a graph with vertex ser {vy,...,v,}. Construct G’ from G as follows. Add to
G aset A= {wi,...,wy,} of independent vertices, and join v; with w; by an edge for ¢ = 1,2, ..., n.
Then add another set B of [%(n — 1)] vertices which induces a complete graph, and join each vertex
of B to every vertex of V(G)U A. To complete the proof, we show that G contains an independent
set I with | I |> $n if and only if G' is not 1-tough.

Suppose first that G contains an independent set 7 € V(G) with | I |> in. Define X’ C V(G')
by X' = (V(G) — I) U B. Note that | X' |[< (n— in) + [3(n— 1)] < n. But it is easy to verify that
w(G —X')=n>| X' |, and G’ is not 1-tough.

Conversely, suppose G’ is not 1-tough. Then there exists X' C V(G') with w(G' — X') > 1
such that w(G' — X') >| X' |. Clearly B C X', or else w(G@ — X') = 1. We may also assume that
X' N A =0, since otherwise we have w(G' — (X' — A)) > w(G' — X') >| X' |>] X' — A |, and we could
use X' — A instead of X'. Let X = X' N V(@) so that | X |=| X | +[5(n — 1)]. It is easily checked
that w(G' — X') =| X | +w(G — X). From w(G' — X') >| X' | we obtain w(G — X) > [(n—1)], and
so G — X contains at least %n components. Choosing one vertex in each component of G — X yields
a set of at least %n independent vertices in G. [
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