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Abstract. During the past few years, semi-supervised clustering has emerged as a new interesting
direction in machine learning research. In a semi-supervised clustering algorithm, the clustering
results can be significantly improved by using side information, which is available or collected from
users. There are two main kinds of side information that can be learned in semi-supervised clustering
algorithms including class labels(seeds) or pairwise constraints. In this paper, we propose a semi-
supervised graph based clustering algorithm that tries to use seeds and constraints in the clustering
process, called MCSSGC. Moreover, we also introduce a simple but efficient active learning method
to collect the constraints that can boost the performance of MCSSGC, named KMMFFQS. These
obtained results show that the proposed algorithm can significantly improve the clustering process
compared to some recent algorithms.
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1. INTRODUCTION

Clustering is the task of partitioning a set of objects into clusters such that objects in
the same cluster are similar to each other while objects in different clusters are dissimi-
lar. Clustering is useful in a wide variety of applications, including image segmentation,
data/text/web mining, and social science, to mention just a few. The process aims to dis-
cover the natural structure of the data, relationships between data and last but not least
outliers detection. Over the last decades, the clustering topic has been widely studied with
many clustering algorithms proposed in literature to work with different problem domains
and scenarios [1]. These include partition-based, density-based, graph-based, distance-based,
and probability-based algorithms. Detailed surveys can be found in [1, 2, 3]. Among these
researches, graph based clustering has grown more and more popular with many proposals
in recent years [4, 5].

In general, clustering is usually performed when there is no variable outcome or nothing
known about the relationship between observations in the data set. For this reason, clustering
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is traditionally seen as part of unsupervised learning. However, during the past few years,
semi-supervised clustering has emerged as a new interesting direction in machine learning
research. By using side information, which is available or queried from users, the clustering
results can be improved [6]. It is also worth noting that a traditional clustering algorithm,
e.g. K-Means, Fuzzy C-Means, DBSCAN, etc., does not works well for data sets with
different shapes and sizes or with the presence of background noise. The semi-supervised
clustering algorithms, on the other hand, can efficiently tackle with these kinds of data sets
[7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18].

As mentioned in [19], side information is data that is neither from the input space nor
from the output space of the function, but includes useful information to learn it. Side
information is applied in many machine learning models such as Support Vector Machine
[20], feature selection [21], Deep learning, etc. [19]. Given a data set X = {x1,z2,...,2n},
we review some concepts of side information in the context of semi-supervised clustering
algorithms as follows:

e Must-link: A Must-link constraint specifies that two instances should be in the same
cluster.

e Cannot-link: A Cannot-link constraint specifies that two instances should not be in
the same cluster.

e Seed: A set S € X is called the seed set if for all z; € S, the user provides the label C
of the cluster to which it belongs. Generally, we assume that for each cluster C of X,
there is at least one seed-point x; € S.

Figure 1 illustrates the spectrum of different prior knowledge types that can be integrated
in the process of classifying data. In the past two decades, many semi-supervised clustering
have been proposed. It can be mentioned here the semi-supervised K-means [7, 8, 9, 10, 13],
semi-supervised Fuzzy clustering [22, 23, 24, 25], semi-supervised spectral clustering [11,
12, 17], semi-supervised density based clustering [26, 27, 28|, semi-supervised hierarchical
clustering [29, 30], and semi-supervised graph based clustering [31, 32]. Although there
are a lot of researches for semi-supervised clustering, however the problem of integrating
both types of side information in the same algorithm is an interesting question [2]. Our
previous work in 2019 [33] is probably one of the first work that integrated both kinds of
side information in a density-based clustering.

In this work, we propose a semi-supervised graph based clustering algorithm that can
efficiently integrate constraints and seeds in the same clustering process. The contributions
of our paper are detailed as follows:

o We develop a proper way that tries to combine the use of seeds in a graph partitioning
process and the use of Must-link and Cannot-Link constraints in the clustering process
in a unified graph-based model. We named our proposed semi-supervised graph-based
clustering algorithm as MCSSGC. The preliminary work of this paper is presented
in [35].

e We introduce a new active learning method to collect constraints that can further
improve the performance of MCSSGC. The short version is introduced in [36].



GRAPH BASED CLUSTERING WITH CONSTRAINTS 73

+ O+ F . . . . . "
- *oEw . * . . *
i setes Ty -\ AN el .
+ - - - -
FF T+ PR T % %, 2 B R -t s e
+F 4 # ok LI . L l..'l"j--' . - . .
0k = + . - ‘\ ' ’,- . ..-‘
* i vt ’ *
-

" 3 ees e

(a) (b} (c) (d)

Figure 1: Spectrum of four kinds of machine learning including supervised (a), labelled (b), con-
strained (c), and unsupervised (d). Dots are denoted for points without any labels; circles, asterisks

and crosses are denoted for points with labels. In (c), solid and dashed lines are expressed for Must-
and Cannot-link constraints respectively [34].

e We carefully conducted experiments on UCI and real data set to show the effectiveness
of the proposed algorithm and method.

The rest of this paper is organized as follows. Section 2 introduces the related work
about semi-supervised clustering algorithms. Section 3 proposes our new semi-supervised
clustering algorithm embedding both kinds of side information (MCSSGC) and an active
learning method to collect constraints for the MCSSGC. Section 4 reports the experiment
results. Finally, Section 5 concludes our paper and proposes some future research directions.

2. RELATED WORK

Semi-supervised clustering has attracted a lot of attention in the past two decades. Ta-
ble 2. summarizes the method name, types of the constraints in current semi-supervised
clustering algorithms. In the following sections, we present these methods in details.

Enforcing methods

In this method, user constraints will be integrated as support hints in the clustering
process. For example, they can be used in the conditional of assigning points to clusters,
in initializing centers at the first step of K-Means, or in voting clustering algorithms, etc.
In [37], the COP-KMeans is presented, this is one of the newest constraint based cluster-
ing algorithm. In the COP-KMeans, constraints are integrated in the clustering assignment
loop. The clusters detected must satisfy all the provided user constraints. This algorithm
has opened a direction for various researches to follow. In [7], the authors introduced a
constraint based clustering algorithm using some labeled data points, named Seed K-Means.
The seeds are used to initialize k centers for K-Means at the first step. In [38], the constraint
graph based clustering is proposed. The constraints in this case are used to help the process
of constructing k-NN graph. In [39], the Constraint Based Selection algorithm (CBS) is pre-
sented. In the research, the authors used constraints in the voting process. Three principle
algorithms including K-Means, DBSCAN and spectral clustering are used to produce clus-
ters. After that, they select the best solution from a set of clusters that satisfies the largest
number of given constraints. In [32], the seed graph based clustering is proposed. Using a
k-NN graph to present the data set, the seeds are used in the partitioning process to form the
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Table 1: Main semi-supervised clustering algorithms in literature (not exhausted works)

1D Work #Side inf. used #Method

1 COP-KMeans (2001) ML, CL Enforcing constraints
2 SKM (2002) seeds Enforcing seeds

3 CCL (2002) ML, CL Metric learning

4 MPCK-Means (2004) ML, CL Metric learning

5 HCC (2004) ML, CL Enforcing constraints
6 CVQE (2004) ML, CL Penalty based

7 LCVQE (2006) ML, CL Penalty based

8 MDCA (2006) ML, CL Metric learning

9 AFCC (2008) ML, CL Metric learning
10 HISSCLU (2008) seeds Enforcing seeds

11 CDBSCAN (2009) ML, CL Enforcing constraints
12 SSDBSCAN (2009) seeds Enforcing seeds
13 MCLA (2009) ML, CL Enforcing constraints
14 | SS-Kernel-kmeans (2009) ML, CL Enforcing constraints
15 KML (2010) ML, CL Metric learning
16 CECM (2012) ML, CL Metric learning
17 2SAT (2010) ML, CL, MD, MS SAT based method
18 CGC (2011) ML, CL Enforcing constraints
19 SECM (2014) seeds Enforcing seeds
20 CBS (2017) ML, CL Enforcing constraints
21 CPCC (2017) ML, CL CP based method
22 ILP-HC (2017) ML, CL ILP based method
23 CVQE+ (2018) ML, CL Penalty based

24 SSGC (2018) seeds Enforcing seeds
25 MCSSDBS (2019) ML, CL, seeds Enforcing seeds+constraints

connected components (principle clusters), i.e. each connected component contains at most
one kind of seeds. The use of seeds brings benefits in finding the best solution of partitioning
a graph into clusters. In [28], the constraint DBSCAN (C-DBSCAN) is introduced. The key
idea of C-DBSCAN includes some steps as follows. Firstly, partitioning the data space into
denser subspaces with the help of a KD-Tree. Secondly, from such the denser subspaces, we
build a set of initial local clusters, which are groups of points within the leaf nodes of the
KD-tree, split them finely such that they satisfy those Cannot-Link constraints associated
with their contents. Then, density-connected local clusters are merged and enforced using
Must-Link constraints. Finally, the adjacent neighborhoods in a bottom-up fashion are also
merged and enforced the remaining Cannot-Link constraints. By these steps, the constraints
are enforced in the clustering processes. And hence, the clustering results will be improved.
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In [33], this is the first semi-supervised density-based clustering that tries to integrate seeds
and constraints in the clustering process, named MCSSDBS. MCSSDBS uses a fully weighted
graph to present data w.r.t users constraints. The process of detecting clusters is equivalent
to the process of finding the Minimum Spanning Tree for each part of clusters. To find a
part of a cluster, it starts at a seed point p; and detect the MST until there is a seed point p,
having a different label from p, assume that these points of MST are {p1,pa,..pn}. At that
point, we have to detect the edge (p;, pi+1) to separate the MST. We can use the constraints
set (if existing a Cannot-Link constraints in the MST), an active learning process to get label
from users for the pair (p;, pi+1) or using the largest value (p;, pi+1) of the MST. Finally, we
will obtain a part of cluster that includes the points {p1, pe,..p;}. The process of clustering
will stop when all seeds have been examined.

Penalty based methods

The idea of these methods is that the clustering results may violate some user constraints.
In [10], the CVQE (constrained vector quantization error) has been developed. Based on
the objective function of K-Means algorithm, a new differentiable error function called the
constrained vector quantization error is developed. In the error function, if a must-link
constraint is violated, the cost then is measured by the distance between the cluster centroids
containing the two instances. Similarly, in case a cannot-link constraint is violated, the cost
is the distance between the cluster centroid that both instances are in and the nearest cluster
centroid to one of the instances. Some improved version of the CVQE can be noted here
such as LCVQE [13] and CVQE+ [40].

In [8], another version of constraints K-Means algorithm is presented. Similarly to CVQE,
the objective function in that work is designed to integrate a set of constraints in the clus-
tering process. It minimize the sum of the distance between every data points to the cluster
centroids. The cost of constraint violations and the assignment process will satisfy as many
must-links and cannot-links as possible. In [24], a constraint Fuzzy C-Means has been intro-
duced, named AFCC. The constraints are embedded in the membership matrix using in an
objective function. In AFCC, for a must-link constraints, the penalty corresponding to the
presence of two such points in different clusters is weighted by the corresponding membership
values; for a cannot-link constraint, the penalty corresponding to the presence of two such
points in a same cluster is weighted by their membership values. In [41], the Constraints Ev-
idential C-Means (CECM) has been proposed. In CECM, the objective function integrates
a penalty term using the given constraints. The conducted experiments on UCI datasets
showed the efficient of that proposed algorithm.

Metric and hybrid based methods

Given a set of constraints, in metric learning method, constraints are used to train
a metric such that after training phase, must-link (similar) instances are close together
and cannot-link (different) instances are far apart. Some distances have been used such as
Jensen-Shannon divergence trained using gradient descent [42], Euclidean distance modified
by a shortest-path algorithm [30], Mahalanobis distances trained using convex optimiza-
tion (MCO) [43, 44], distance metric learning based on Discriminative Component Analysis
(MDCA) [45] and a kernel-based metric learning (KML) method that provides a non-linear
transformation for semi-supervised clustering [46].

Declarative methods
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In these methods, the clustering model can be transformed in an optimization framework
using integer linear programming (ILP), SAT, constraint programming or mathematical
programming, etc. These approaches can present the different types of user constraints and
the search of an exact solution that is a global optimum and satisfies all the user constraints.

In [47], a general and declarative framework based on constraint programming for con-
strained clustering has been developed, we refer the algorithm as CPCC for short. The
framework allows to model different problems of constrained clustering, by integrating sev-
eral optimization criteria (diameter, split, within-cluster sum of dissimilarities - WCSD,
within-cluster sum of squares - WCSS) and various types of user constraints.

In [48], a ILP based method for constraint hierarchical clustering has been proposed,
named ILP-HC. In the work, they formalize hierarchical clustering as an integer linear pro-
gramming problem with a natural objective function and the dendrogram properties enforced
as linear constraints. Formulating the problem as an ILP allows the use of high quality
solvers (free and commercial) such as CPLEX and Gurobi (used in all our experiments) to
find solutions and automatically take advantage of multi-core architectures.

In [49], a two-cluster problem has been introduced. By transforming instance level con-
straints (must-link,cannot-link) and cluster-level constraints (maximum-diameter (DS), min-
imum separation (MS)) to 2SAT problem, they produce an efficient algorithm for clustering
task. The obtained results outperform some other constraint based clustering algorithms.

Discussions

From the previous works above, it can be said that semi-supervised clustering is one of
the most attractive research directions in the data mining and machine learning task in the
past two decades. These works have been effective in integrating side information to detect
clusters that the users expect.

3. ACTIVE SEMI-SUPERVISED GRAPH BASED CLUSTERING WITH
BACKGROUND KNOWLEDGE

3.1. Graph-based Clustering

Given a data set X = {x1,z2,...,2,}, the idea of using graph for clustering problem is
as follows [50, 4]. Firstly, a weighted undirected graph will be used for presenting the data
set X where each vertex represents a point of data, and has at most k edges to its nearest
neighbors. An edge is constructed between two points x; and z;, if and only if they have
each other in their set of k-nearest neighbors. The weight of two vertices x; and x;, called
w(x;, z;), is defined as the number of common nearest neighbors that two vertices share, as
in the equation (1)

w(zi, zj) =| NN(z:) N NN(z;) | (1)

where NN (.) is the k-nearest neighbors set for a specified point.

From the graph defined above, in [50], authors find clusters by partitioning the graph
in clusters with a threshold #. The limitation of this algorithm is that it is not easy to
find the threshold #. In [32], a semi-supervised graph based clustering by seeding has been
proposed, named SSGC. The SSGC method uses a set of seeds that overcomes the limit in
finding parameters for the partitioning step into sub-clusters. Moreover, the algorithm uses
only one parameter k that is the number of nearest neighbors. The SSGC has shown its
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effectiveness compared to the another semi-supervised density based clustering (SSDBSCAN)
[27]. In the following section, we will try to extend the SSGC (Semi-supervised Clustering
using Seeds) to work with both seeds and constraints in the same clustering process.

3.2. Semi-supervised graph-based clustering with background knowledge

In this subsection, we propose a new semi-supervised graph-based clustering that tries
to integrate both constraints and seeds in the process of clustering. We name our algorithm
MCSSGC (Semi-Supervised Graph based Clustering with Must-link and Cannot-link con-
straints). This is probably the second algorithm that can use both kinds of side information
after our previous work [33]. The MCSSGC algorithm is presented in Algorithm 1 and is
explained as follows:

e Firstly, we use constraints in the construction of k nearest neighbors (k — NN) graph.
In general, the weight w(x;, ;) of the edge between two vertices x; and x; is calculated
as the equation (1). If a Cannot-link constraint exists between z; and x; then we will
not calculate the weight between z; and ;. Must-link constraints are also used in
finding nearest neighbors for each data point.

e Secondly, by using a parameter 6 initialized by zero, this step aims to partition a graph
into some connected components by using threshold 6 in a loop: all edges which have
weight less than 6 will be removed to form connected components at each step. The
loop will stop when the following cut condition is satisfied: each connected component
has at most one kind of seeds.

e Thirdly, we need to further divide connected components that contains cannot-link
constraints (violation of cannot-link constraints). For each connected component con-
taining cannot-links, we repeat the removing process of edges that are equal to the value
of « initialized by the current value of 6 until the violation of cannot-link constraints
is false - there are no cannot-link constraints existing in the connected components.
This is the new point in the version of MCSSGC in the paper.

e Finally, the extracted connected components form the principal clusters. In order to
construct the final clusters, we use constraints to push sub-clusters or isolated points
in clusters.

We also note that the MCSSGC needs only one parameter k - the number of nearest neigh-
bors. The @ (initialized by 0) (also «) is identified automatically in these loops as mentioned
above.

Complexity analysis of the proposed method

As mentioned in [4], the complexity of the construction of the k — NN graph is O(n?) or
O(nxlogn) (applied for low dimension data and an optimized structure is used, e.g. R-Tree).
Using Best First Search for finding connected components, the complexity of connected
components extraction (step 3-6) is O(0 x k x n) where k is the number of neighbors; the
complexity of the steps from 7 to 14 is O((amax — 0) X k x n). In fact, « << n and 6 << n,
so the complexity of the algorithm MCSSGC is O(n?) or O(n x logn) (if the dimension of
data is low).
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Algorithm 1 MCSSGC Algorithm
Input: Data set X', number of neighbors k, a set of seeds S, a set of constraints C
Output: A partitioning of X
Process:
1: Integrate the constraints set C in the construction of k¥ — NN graph
2:60=0
3: repeat
4:  Extract connected components with threshold 6
5 0=60+1
6
7
8
9

. until the cut condition is satisfied
: for all connected components containing at least one Cannot-links do
a=0, ap.x =«

repeat
10: Delete any edge that its weight is equal to « (applied for connected components
containing at least one CL)
11: a=a+1

12:  until violation of cannot-links = false

13:  Qax = max{max, @}

14: end for

15: Use constraints in propagation process of label to form principal clusters
16: Use constraints set C to construct final clusters

3.3. Active learning for MCSSGC

As mentioned in Section 2, the constraints or seeds must be labeled by users before their
use in semi-supervised clustering algorithms. In some applications, getting label is time
consuming so the question here is how we can minimize the effort required from the user, by
only soliciting her (him) for the most useful constraints/seeds. There are some active learning
algorithms in literature that we can note here such as min-max method [8, 51] applied for
constrained K-Means, the border based method applied for semi-supervised fuzzy C-Means
[24], the method based on Ability Separate between Clusters measure, we refer as the ASC
method [52], the method based on density of data [53], the IPCM method applied for Fuzzy
C-Means algorithms. Among these methods, the ASC method has efficiently shown for all
constraint-based clustering algorithms.

In this section we propose a simple but efficient method to collect the constraints that
can boost the performance of the MCSSGC algorithm. Our method bases on the Min-Max
Farthest First Query Selection (MMFFQS) method [54] and the K-Means algorithm, so we
call the KMMFFQS algorithm.

The idea of the Min-Max Approach (MMA) presented is to build a set of points Y from
a dataset X such that the points in Y are far from each other and ensures a good coverage
of the dataset. The main principles of MMA are described hereafter.

First a starting point y; is randomly chosen from the dataset X. Then, all the other
points in Y are chosen among the points of X that maximize their minimal distance from
the points already in Y. Thus, when ¢ points already belong to Y, the process that selects
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the point y41 from X can be formalized as shown

Ye+1 = argmax (ryrgg d(w,y)> (2)
where d(.,.) denotes the distance defined in the space of the objects.

The underlying idea of the MMA in the context of active learning, is to select the point
that is the farthest from the points that have already been used to formulate a query to
the user. In other words, at each iteration, this method selects the point that exhibits the
largest label according to the previous answers of the user.

Based on the min-max method, in [8, 51|, the authors proposed an active learning method
to collect constraints, however, the constraints collected by these methods were only adapted
for semi-supervised partitioning algorithms such as K-Means, and Fuzzy C-Means. There-
fore, in our new algorithm, we try to develop an algorithm that can collect pairwise con-
straints and independent from the shape of clusters. In the KMMFFQS, we chose a skeleton
points as follows: using K-Means algorithm to divide the given data set in to U partitions
(U is chosen large enough), in each partition, we chose a point nearest the center of the
partition; from that we have U points forming a skeleton. From the skeleton, we apply the
min-max method to chose points for generating the candidate constraint queries.

Algorithm 2 KMMFFQS Algorithm
Input: Data set X', U
Output: A set of collected constraints
Process:
1: Using K-Means to divide X in to U partitions
2: Constructing the skeleton
3: Applying the Min-Max method to collect constraints from users

Figure 2 shows some examples of the KMMFFQS algorithm for collecting constraints.

4. EXPERIMENT RESULTS

4.1. Datasets

We use some well-known data sets from the Machine Learning Repository [55], and
a document data set to evaluate our algorithm. The characteristics of these data sets are
presented in Table 2. Notice that these data sets have been chosen because they have already
been used in semi-supervised clustering articles [6, 3, 27, 1].

4.2. Evaluation method

We use the rand index (RI) measure [56] to evaluate the clustering results. It is one of
the most widely measures used for clustering evaluation. It measures the agreement between
the true partition (P;) of a data set and a generated partition (P) by a clustering algorithm.
Given a data set X = x1,x9,...,x,, and two partitions P, and P, as mentioned above, let
a the total number of pairs of points located in the same cluster in P; and P> and let b be
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Figure 2: An example of constraints collected by the KMMFFQS for the t4.8k.dat and artl.dat data
sets: (left) solid lines are expressed candidate queries; (right) solid and dashed lines are expressed for
Must- and Cannot-link constraints respectively.

Table 2: Details of the data sets used in experiments

the total number of pairs of points such that the two points are placed in different clusters

ID Data #Objects | #Attributes | #Clusters
1 Ecoli 336 7 8
2 Iris 150 4 3
3 Protein 115 20 6
4 Soybean 47 35 4
) Zoo 101 16 7
6 | Haberman 306 3 2
7 Yeast 1484 8 10
8 D1 4000 30 10

in both partitions. The RI is calculated as follows

RI(Py, P,) =

2(a+10)
n(n—1)

The value of RI is in the interval [0, 1], in our experiments, we calculate the RI in percentage.
A higher RI value indicates a better performance of the clustering algorithm.

4.3. Comparative results

To show the effectiveness of our proposed algorithm, we compare MCSSGC with MCSS-
DBS and SSGC. These algorithms are the recent works in semi-supervised clustering topic.
The seeds for all semi-supervised methods are randomly generated for each experiment. Sim-
ilarly, the Must-link (ML) and Cannot link (CL) sets are also randomly chosen from the data
sets. The results are averaged over 20 runs.
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The quality of clustering

Figure 3 shows the RI varying with the number of constraints obtained by these algo-
rithms. A glance at the graphs reveals in most cases the MCSSGC obtained comparable
and better results with MCSSDBS - the semi-supervised clustering using both seeds and
constraints. When comparing with SSGC, MCSSGC significantly improves the results, indi-
cating the benefit of using both seeds and constraints to build the clusters in the proposed
algorithm. Notice that all the results in the experiments are calculated on the unlabeled data
set, not including the data points (seeds) for which labels were provided to the clustering
algorithm.

For more details, the improvement of MCSSGC is pronounced more in Ecoli, Soybean
and Haberman data sets, that gives them three biggest improvements over MCSSDBS and
SSGC. Especially for Haberman, the performance of MCSSGC significantly improves (about
10%) compared with MCSSDBS and SSGC.

Another observation can be noted is the result on Ecoli. Ecoli is a 7-dimensional data
set consisting of 336 objects belonging to 8 clusters and these clusters are highly overlap.
Moreover, this is also an unbalanced data set. The details of Ecoli cluster distribution is
shown in Table 3. The performance obtained 94.1% when using 90 seeds and 500 constraints.

Similarly, the Yeast dataset is another challenging dataset for classification/clustering
tasks since it is a highly unbalance data set, and the size of clusters are very different, as
shown in Table 4. However, our new algorithm can produce good results as the MCSSDBS
does. The use of constraints in this case has also been proved to be useful. They can
significantly help the partitioning process to obtain the principal clusters (small clusters).

In the Haberman dataset, which is unbalanced and has highly overlapped clusters -
Figure 2, if we only use seeds, it is very difficult to boost the performance of clustering
process, however, the result obtained by MCSSGC is significantly boosted by further using
constraints. This can be explained by the fact that when dealing with overlapping clusters,
the use of constraints will efficiently help the algorithm separate points between clusters.

Table 3: Ecoli class distribution

#Class #Objects
cp(cytoplasm) 143
im(inner membrane without signal sequence) 7
pp(perisplasm) 52
imU (inner membrane, uncleavable signal sequence) 35
om(outer membrane) 20
omL(outer membrane lipoprotein) 5
imL(inner membrane lipoprotein) 2
imS(inner membrane, cleavable signal sequence 2

Contribution of Must-Link and Cannot-Link Constraints in MCSSGC

To answer the question which Must-Link or Cannot-Link constraints are more beneficial
in MCSSGC clustering process, we test the MCSSGC using only must-link constraints to
compare with the MCSSGC results obtained using both Must- and Cannot-link constraints.
These results are illustrated in Figure 5.
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Figure 3: Comparison results between MCSSGC (the version in Algorithm 1), MCSSDBS,
and SSGC.



GRAPH BASED CLUSTERING WITH CONSTRAINTS 83

60
40

20 (¢}

100

Figure 4: Haberman data set visualization

Experimental results in these figures depict that MCSSGC with only Must-Link con-
straints outperforms in all experiments. Remarkably, the performance on Protein data set
reached 86.5% clustering accuracy, an improvement of nearly 6% compared to MCSSGC
(ML+CL); for the difficult clustering data set like Ecoli, the accuracy is 97%. Moreover, we
can see that the more number of must-link constraints we have, the more benefits of accuracy
we obtain. These results have shown the important contribution of must-link constraints in
MCSSGC, especially, when the clusters are overlap, e.g. in Haberman, the use of Must-link
can significantly help the algorithm to separate those clusters.

4.4. KMMFFQS experiments

This section presents the results of clustering obtained by using constraints generated
by the KMMFFQS, the ASC method, and the Random methods. The Rand Index plotted
against the constraints for 8 data sets is shown in the Figure 2. As it can be observed, the
constraints collected by the KMMFFQS are generally more beneficial for MCSSGC than
those provided by the ASC approach and Random method. It can be explained by the fact
that (1) when we partition a data set to a large number of clusters, the process of collecting
constraints does not depend on the shape of clusters and (2) by using the min-max method,
we can always find the good candidate to get label from users/experts. One more advantage
of the KMMFFQS compared with the ASC method is that the KMMFFQS needs only one
parameter U that is the number of partitions for K-Means at first step and this value can be
easily chosen. In this experiments, the value of U is chosen in the interval of [\/n — 3,/n]
[57].
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Table 5: Comparison results between MCSSGC + Must-Link constraints only and MCSSGC
+ Must-Link and Cannot-link constraints combined.
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Figure 6: Clustering results by MCSSGC using constraints generated by the KMMFFQS,
ASC, and Random methods.
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Table 4: Yeast class distribution

#Class #0Objects
CYT (cytosolic or cytoskeletal) 463
NUC (nuclear) 429
MIT (mitochondrial) 244
ME3 (membrane protein, no N-terminal signal) 163
ME2 (membrane protein, uncleaved signal) 51
ME1 (membrane protein, cleaved signal) 44
EXC (extracellular) 37
VAC (vacuolar) 30
POX (peroxisomal) 20
ERL (endoplasmic reticulum lumen) 5

5. CONCLUSIONS

This paper proposed a new semi-supervised graph-based clustering algorithm, named
MCSSGC that efficiently integrates both kinds of side information including seeds and con-
straints. To boost the performance of MCSSGC, we introduce a simple but efficient active
learning method for collecting the constraints. Experiments carried out on varied kinds of
data sets demonstrated that the proposed method significantly outperforms recent semi-
supervised clustering algorithms in literature such as MCSSDBC and SSGC. In the experi-
ments, the benefit of using both seeds and constraints to detect clusters in some challenging
data sets, e.g. Ecoli and Yeast was shown. Besides, studying the effect of Must-Link and
Cannot-Link constraints claimed the contribution of Must-Link in the new proposed algo-
rithm. In future works, we continue to study other models of semi-supervised clustering as
well as its applications. Finally, the study of relationship between semi-supervised clustering

and semi-supervised classification is a good research direction [58].
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