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ON A STOCHASTIC LINEAR DYNAMICAL SYSTEM DRIVEN
BY A VOLTERRA PROCESS

TUONG T.M.
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Ho Chi Minh city, Viet Nam

Abstract. The aim of this note is considering a dynamical system expressed by a Langevin equation

driven by a Volterra process. An Ornstein - Uhlenbeck process as the solution of this kind of equation

is described and a problem of state estimation (filtering) for this dynamical system is investigated

as well.
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1. INTRODUCTION

It is known that turbulent flows are characterized by rapid changes of their momentum,
pressure and velocity in space and time. Similar to the case of distribution of log returns
in financial market, that of log of velocity in moments for turbulent flows has been paid
attention from researchers. And one realized that Volterra processes or Moving average
processes are useful for studying this feature. A typical example is the fractional Brownian
motion

BH
t =

∫ t

0
K(t, s)dWs

where K(t, s) =

∫ ∞
−∞

[
(t− s)H−1/2

+ − (−s)H−1/2
+

]
dWs, W is the standard Brownian motion,

H is Hurst index, 0 < H < 1 [10, 13].
Many things have been done for study of Volterra processes in various types and its

applications where driving processes can be some random measure or some stochastic process
such as semimartingale while the kernel K(s, t) is some real deterministic function (refer to
[1, 2, 3, 8] or [5, 6]).

A. Basse and J. Pedersen in [1] have studied semimartingale property of continuous Lévy
driven Volterra processes. And for such Volterra processes, in a most recently works by
G.D.Nunno and al. [8], a kind of semimartingale approximation has been considered with
applications to construction of pathwise fractional Volterra integration.

In this note, first we make some remarks on Volterra process of the form

Yt =

∫ t

0
h(t− s)dLs
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where h(u) is a deterministic kernel and Lt is a Lévy process. In Section 2, a represen-
tation of h(u) is given with an illustrated example. A dynamical system expressed by an
Yt−driven Langevin equation is considered in Section 3. And a state estimation of Ut from
a semimartingale observation is investigated in the last Section 4.

2. A REPRESENTATION OF THE KERNEL h(u)h(u)h(u).

Remark 2.1. Suppose h = h(u), u > 0 is a positive real valued function. Then h(u) can be
represented in the form

h(u) =

∫ +∞

0
e−uxdµ, x > 0,

where µ is some positive measure on (0,+∞) and finite on compact sets.
Indeed, by putting

µ(dx) = dµ = uh(u)dx,

where dx is the Lebesgue measure on (0,+∞) we can see∫ ∞
0

e−uxdµ =

∫ +∞

0
h(u)e−uxd(ux) = h(u).

Example. In a work by G.Di Nunno and al [8] on approximation of Lévy - driven Volterra
processes, the authors consider a very interesting example on Gamma Volterra proess∫ t

0
(t − s)βe−γ(t−s)dLs. For the kernel of this process h(u) = uβe−γu we can put du =

uβ+1e−γudx.
Inspired by an idea of the work [4] we can make the following notice.

Remark 2.2. Consider the Volterra process

Yt =

∫ t

0
h(t− s)dLs.

Since h(u) = h(t− s) =

∫ +∞

0
e−x(t−s)µ(dx) with µ(dx) = uh(u)dx, then by Fubini theorem

we get

Yt =

∫ +∞

0

∫ t

0
e−x(t−s)dLsµ(dx)

or

Yt =

∫ +∞

0
V x
t µ(dx)

where V x
t =

∫ t

0
e−x(t−s)dLs is an Ornstein - Uhlenbeck process driven by the Lévy process

Lt.
So we can see that Yt is a linear functional of a family of O - U processes V x

t .
Then we can think of a spacial approximation of Yt. For example we can write

Yt '
∑
ξi∈(π)

CiV
ξi
t
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where (π) is some finite partition of an interval [a,N ] ⊂ (0,∞) with a > 0 small enough and
N large enough and coefficients Ci depend only on the kernel h.

Consider a partition (π) of [a,N ] consisting ofN subintervals [x0, x1), [x1, x2), . . . , [xN−1, xN ],
x0 = a,XN = N . And choose a point ξk ∈ [xk−1, xk) for each k, k = 1, . . . , N . Then we get
from each t

Yt = lim
N→∞
a→0

lim
max |∆µi|→0

∑
Y ξi
t ∆µi

provided this limit exists, whatever the way a partition (π) is made and the points ξk are
chosen.

3. A STOCHASTIC LINEAR DYNAMICAL SYSTEM

Consider the following dynamical system driven by a Volterra process Yt

dUt = −λUtdt+ σdYt, (1)

where λ and σ are positive constants and the Volterra process Yt =

∫ t

0
h(t−s)dLt is supposed

to be a semimartingale with a Lévy process Lt and a deterministic and derivable function
h : R+ → R.

3.1. Proposition 3.1

The solution of equation (1) is given by

Ut = U0e
−λt + σ

∫ t

0
e−λ(t−s)dYs (2)

and called an Ornstein - Uhlenbeck process driven by the Volterra process Yt.

Proof. It is easy to obtain the formula (2) by the method of variation of constant from the
equation dUt = −λUtdt. �

In some works on Lévy driven Volterra processes and their applications as in [8], one
needs to have an expression for the differential of Yt or Ut.

3.2. Proposition 3.2

We have dYt =

(∫ t

0
h′(t− s)dLt

)
dt+ h(0)dLt and dUt = (−λU + σϕ(t))dt+ σh(0)dt

Proof. Firstly, we observe that for a Volterra process Yt of the form

Yt =

∫ t

0
h(t, s)dLs

where h : R+ × R+ → R we have

dYt =

(∫ t

0
∂th(t, s)dLs

)
dt+ h(t, t)dLs.
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Indeed we have

dYt =

∫ t+dt

0
h(t+ dt, s)dLs −

∫ t

0
h(t, s)dLs

=

(∫ t

0
∂th(t, s)dLs

)
dt+ h(t, t)dLt.

In the case where h(t, s) = h(t− s) we get

dYt =

(∫ t

0
h′(t− s)dLs

)
dt+ h(0)dLt

or

Yt =

∫ t

0

∫ u

0
h′(t− s)dLsdu+ h(0)Lt (*)

Now the equation (1) can be rewritten as

dUt = (−λUt + σϕ(t))dt+ σh(0)dLt, (3)

where ϕ(t) :=

∫ t

0
h′(t− s)dLs. �

3.3. Remark

The relation (*) can be obtained by another way as follows:
In taking the differential of h(t− s)Ls we have

d[h(t− s)Ls] = h(t− s)dLs − h′(t− s)Lsds.

Then ∫ t

0
h(t− s)dLs =

∫ t

0
h′(t− s)Lsds+ h(t− s)Ls

∣∣∣t
0

=

∫ t

0

(
h′(t− s)

∫ s

0
dLs

)
ds+ h(0)Lt

=

∫ t

0

∫ s

0
h′(t− s)dLsds+ h(0)Lt

=

∫ t

0

(∫ u

0
h′(t− s)dLs

)
du+ h(0)Lt.
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4. A PROBLEM OF FILTERING

In this section we consider a problem of filtering (state estimation) for the dynamical
system (1). Suppose that we can not obtain directly state values of the dynamics Ut and we
can estimate them only via some observation process Zt given by

Zt =

∫ t

0
Hsds+ Vt (4)

where Hs = H(Us), E

∫ t

0
H2
sds <∞ and Vt is a Brownian motion independent of Yt.

Suppose also that the Lévy process Lt in Yt =
∫ t

0 h(t − s)dLs is with bounded jumps.
Then the Lévy - Ito decomposition of Lt can be written as

Lt = Bt + Ñt + αt (5)

where Bt is a Brownian motion independent of Ñt =

∫
|x|<1

x (Nt(., dx)− tν(dx)) , Nt(., dx)

is a Poisson process and ν(dx) is a measure on R\{0} such that

∫
min(1, x2)ν(dx) < ∞,

and

α = E

[
X1 −

∫
|x|>1

xN1(., dx)

]
(cf Theorem 42 of [13]). Also, Ñt is a simimartingale.
Now we have

dYt = ϕ(t)dt+ h(0)dLt = ϕ(t)dt+ h(0)d(Bt + Ñt + αt)

= (ϕ(t) + αh(0))dt+ h(0)(dBt + dÑt).

The state process given by
dUt = −λUtdt+ σdYt

can be splitted as Ut = U
(1)
t +U

(2)
t +U

(3)
t that is expressed by the three following equations:

dU
(1)
t = −λU (1)

t dt+ σh(0)dBt, (6)

dU
(2)
t = −λU (2)

t dt+ σh(0)dÑt, (7)

dU
(3)
t

dt
+ λU

(3)
t = σ(ϕ(t) + αh(0)). (8)

We have to find the filtering πt(U) of the state Ut from the observation Zt (4)

πt(U) := E(Ut|FZt ),

where FZt is the σ−algebra generated by all Zs, s ≤ t.
We will find reparately state estimations of U

(1)
t , U

(2)
t and U

(3)
t .
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(i) For U
(1)
t the innovation method can be used. Note that U

(1)
t is an Orstein - Uhlenbeck

that is the solution of the Langevin equation (6)

U
(1)
t = U

(1)
t e−λt + σh(0)

∫ t

0
e−λ(t−s)dBs. (10)

So U
(1)
t is a continuous semimartingale, then an approach by H.Kunita [10] to filtering

formula can be applied. The innovation process It is defined as

It = Zt −
∫ t

0
πs(H)ds (11)

and the state estimation for U
(1)
t is given by

πt(U
(1)) = π0(U (1))− λ

∫ t

0
πs(U

(1))ds+

∫ t

0

[
πs(HU

(1))− πs(H)πs(U
(1))
]
dIs. (12)

(ii) For U
(2)
t the above mentioned method can not be applied since it is a discontinuous

process. We will use a Bayesian approach that led to a generalized Kallianpur - Striebel
formula introduced by P.K. Mandal and V. Mandrekar [11] as follows

πt(U
(2)) = E

(
U

(2)
t |FZt

)
=

∫
U

(2)
t exp(

∫ t
0 HsdZz − 1

2

∫ t
0 H

2
sds)dPU(2)

t∫
exp(

∫ t
0 HsdZs − 1

2

∫ t
0 H

2
sds)dPU(2)

t

(13)

where P
U

(2)
t

is the probability measure on (R,BR) induced from P by U
(2)
t .

(iii) As for U
(3)
t , it is the solution of equation (8)

U
(3)
t = e−λtU

(3)
0 + σ

∫ t

0
e−λ(t−s)(ϕ(s) + αh(0))ds.

It is simply to get that

πt(U
(3)
t ) = E

(
U

(3)
t |FZt

)
= e−λtπt(U

0) + σπt(K) (14)

where

K :=

∫ t

0
e−λ(t−s) (ϕ(s) + αh(0)) ds.

We are now in the position to state the following.

Theorem 1. The filtering πt(U) = E
(
Ut|FZt

)
of the state Ut (1) from the observation Zt

(4) is given by

πt(U) = πt(U
(1)) + πt(U

(2)) + πt(U
(3)) (15)

where πt(U
(1)), πt(U

(2)) and πt(U
(3)) are given by (12), (13) and (14), respectively.
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5. CONCLUSION

In taking part of the process of creating mathematical model that describes the physical
behavior of turbulent flows and the distribution of log - returns in finance, this note intro-
duced some facts of Volterra processes driven by a Levy process and a filtering problem for
a linear dynamical system related to these Volterra processes. Of course, further studies on
this direction are needed.
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