Tap chi Tin hoc va Piéu khién hoc, T. 20, S. 1 (2004), 263-273

A FORMAL SPECIFICATION OF THE CORRECTNESS CRITERIA
FOR CONCURRENT EXECUTIONS OF A TRANSACTION SYSTEM
IN REAL TIME DATABASES

DOAN VAN BAN!, NGUYEN HUU NGU?, HO VAN HUONG?

nstitute of Information Technology
2 Vietnam National University, Hanoi
3 Governmental Cipher Department, Hanot

Abstract. In this paper, we present the correctness criteria for concurrent executions of a transaction
system and a formal specification of the temporal consistency in Real Time Databases using Duration
Calculus (DC). We also give a formal verification of some conditions for maintaining the temporal
consistency of the data.

Tém tAt. Trong bai bdo, chiing toi stt dung logic tinh toin khodng dé dic td hinh thirc cic diéu
kién ding cho thure hién song song ciia hé thong giao téc trong co s& dir lidu thoi gian thue. Sau dé,
diic td va kiém chirng hinh thirc mét s6 diéu kién duy tri nhat quén thai gian cia dir liéu.

1. INTRODUCTION

In the past two decades, the research in RTDBS has received a lot of attention [6,11]. It
consists of two different important areas in computer science: real time systems and database
systems. Similar to conventional real time systems, transactions in RT'DBS are usually as-
sociated with time constraint, e.g., deadline. On the other hand, RTDBS must maintain a
database for useful information, support the manipulation of database, and process trans-
actions [11]. RTDBS are used in a wide range of applications such as avionic and space,
air traffic control systems, robotics, nuclear power plants, integrated manufacturing systems,
programmed stock trading systems, and network management systems.

The main goal of this paper is to formalise some aspects of RT'DBS, in particular the
correctness criteria for concurrent executions of a transaction system using DC. This will
allow us to verify the some conditions for maintaining the temporal consistency of the data
using the proof system of the DC. The results of this paper is a part in our work. We refer
interesting readers to [10] for details.

The paper is organized as follows. In the next section, we give an informal abstract
description of RTDBS . Section 3 introduces a review of DC. Section 4 considers temporal
consistency criteria. Section b presents some sufficient conditions for maintaining temporal
consistency.

2. PRELIMINARIES

We briefly recall in this section the main concepts of RT'DBS, which will justify our formal
model given in later sections. We refer to [6,10,11] for more comprehensive introduction to

RTDBS.

A real time database systems can be viewed as an amalgamation of conventional database
management system and real time system [6]. In RTDB, the transactions not only have to

264 DOAN VAN BAN, NGUYEN HUU NGU, HO VAN HUONG

meet their deadline, but also have to use the data that are valid during their execution.

[Derive Transactions)

'o! s

sor transacti

Plant

e B
Continuous Objects Discrete Objects

e [Actuator)<

Figure 1. Real time database model

User transactions

HJ t t
TM DOS DM

S

In RTDBS the set of data objects are divided into continuous data objects and discrete
data objects. A graphical representation of the real time database model is shown in Figure 1.
A value of continuous data object reflects the status of that object in the real world. Each value
of continuous data objects may become invalid with the passage of time. Discrete data objects
are static in the sense that their value do not become obsolete as time passes. Continuous
data objects can be further divided into base data objects and derived data objects. The value
of a base data object can be obtained directly from a sensor, while the value of the derived
data objects is computed from the values of a set of base data objects.

In RTDB, the transactions have to meet their deadline as well. The deadline of a transac-
tion may be hard deadline, firm deadline or soft deadline depending on its functional require-
ment. After a soft real time transaction misses its deadline, its value might decrease with time.
A firm real time transaction loses its value after its deadline expires. When a hard real-time
transaction misses its deadline, its value becomes negative. It means that a catastrophe might
occur.

In RTDBS, beside the logical consistency as for the traditional databases, the data have
to satisfy the temporal consistency. There are two different representations of data objects:
an external representation (in the real world) and internal representation (in the DB). Two
representations are temporally related with each other which are said to be temporal consis-
tent. There are two types of temporal data consistency: absolute and relative temporal data
consistency. The absolute data consistency says that the internal representation of the data is
rather closed to their external representation at every moment of time. Each value of a data
object is just valid for an interval of time. At any time, for any data object, there is a valid
value of its. The relative temporal consistency says that a value of group of data can be used
together only when they are approximately at the same age.

The absolute temporal consistency requires that transactions read temporally valid (i.e.,
recent enough) data objects and be committed before any of them becomes invalid. On the
other hand, the relative temporal consistency requires that all the data read by a transaction
must be relatively temporally consistent, i.e. having approximately the same age.

Since many users can access data in the database at the same time, we need to ensure

A FORMAL SPECIFICATION OF THE CORRECTNESS CRITERIA 265

that their concurrent execution always preserves the consistency of the DB.

In order to prevent transactions from interfering with each others, the execution of trans-
actions must be controlled by a concurrency control protocol (CCP).

CCPs in RTDBS, apart from the fact that they have to guarantee the serializability and
may have to follow priority policy as usual, they have to ensure the temporal consistency and
that all transactions meet their deadline. Therefore, CCPs in RTDBS should be more com-
plicated than CCPs in the traditional DBS, and more complicated than real-time schedulers.
Some this concurrency control protocols formalised in our works [5,9,10].

In this paper, we will present the correctness criteria for concurrent executions of a trans-
action system and formalise the temporal consistency, we will present it more details.

3. DURATION CALCULUS

The Duration Calculus (DC) represents a logical approach to formal design of real time
systems. DC is proposed by Zhou, Hoare, and Ravn, which is an extension of real arithmetic
and interval temporal logic. We refer to [7] for more comprehensive introduction to Duration
Calculus.

Time in DC is the set R* of non-negative real numbers. For ¢,#' ¢ RT ¢ <t [t,t'] denotes
the time interval from ¢ to ¢'.

We assume a set FE of boolean state variables. F includes the Boolean constants 0 and
1 denoting false and true respectively. State expressions, denoted by P, Q, P;, @1, etc., are
formed by the following rules:

1. Each state variable P € F is a state expression.
2. If P and Q are state expressions, then so are =P, (PAQ), (PVQ), (P = Q), (P < Q).

A state variable P is interpreted as a function I(P): RT™ — {0,1} (a state). I(P)(t) =1
means that state P is present at time instant ¢, and I(P)(¢t) = 0 means that state P is not
present at time instant ¢. We assume that a state has finite variability in a finite time interval.
A state expression is interpreted as a function which is defined by the interpretations for the
state variables and Boolean operators.

For an arbitrary state expression P, its duration is denoted by [P. Given an interpretation
I of state variables and an interval, duration [P is interpreted as the accumulated length
of time within the interval at which P is present. So for an arbitrary interval [¢,t'], the

interpretation I(f P)([t,']) is defined as ftt/l (P)()dt. Therefore, [1 always gives the length
of the intervals and is denoted by ¢. An arithmetic expression built from state durations and
real constants is called a term.

We assuie a set of temporal propositional letter X,Y,.... Each temporal propositional
letter is interpreted by I as truth-valued functions of time intervals.

A primitive duration formula is either a temporal propositional letter or a Boolean expres-
sion formed from terms by using the usual relational operations on the reals, such as equality
= and inequality <. A duration formula is either a primitive formula or an expression formed
from other formulas by using the logical operators =, A, V, =, < the chop .

A duration formula D is satisfied by an interpretation I in an interval [¢,¢"] just when it
evaluates to true for that interpretation over that time interval. This is written as

L [t ¢ D,
where I assigns every state variable a finitely variable function from R* to {0,1}, and [¢/,¢"]
decides the observation window.

Given an interpretation I, the chop-formula D" Dq is true for [¢/,t"] iff there exists a ¢
such that ¢ <t <t and D; and D, are true for [t/,¢] and [¢,t"] respectively.

266 DOAN VAN BAN, NGUYEN HUU NGU, HO VAN HUONG

We give now shorthands for some duration formulas which are often used. For an arbitrary
state variable P, [[P]] stands for (f P = ¢) A (¢ > 0). This means that interval is a non-point
interval and P holds almost everywhere in it. We use [[]| to denote the predicate which is
true only for point intervals.

Modalities ¢, O are defined as: ¢D= true™ D true, DD=-—-D (we use = as a define).
This means that D is true for an interval iff D holds for some its subinterval, and 0D is true
for an interval iff D holds for every its subintervals.

DC with abstract duration domain is a complete calculus, which has a powerful proof
system.

4. CORRECTNESS CRITERIA OF CONCURRENT EXECUTION
OF TRANSACTION SYSTEMS

In this section, we give a specification of the correctness criteria for concurrency control
in RTDBS: serializability, temporal consistency criteria and timing constraints.

4.1. Serializability

As said in Section 2, the serializability is a basic criterion for the concurrency control.
Now we give a characterisation of the serializability in our state model of the databases. The
serializability of an execution of the transaction system says that the relation ‘before’ between
the executions of transactions in this system execution defined by the order of the conflict
operations in the execution is a partial ordering on the (infinite) set of transaction executions
of the system execution. Given an execution of the transaction system. In our model, any
transaction has its own period, and in each period, there is one execution of the transaction.
As said before, we assume that P, < P, < ... < P,. Since in a system execution, each
transaction has the infinite number of repeated executions, and since the relation ‘before’ is
over the set of executions of transactions which is infinite, it is not easy to describe a criterion
for the relation ‘before’ to be acyclic by just a formula since the formula may have to capture
the behaviour of the transaction system in a (potentially) infinite interval.

Fortunately, we do not have to consider the (potentially) infinite intervals. There is a nice
characterisation for the relation ‘before’ of the transaction system to be acyclic which is about
the behaviour of transaction system in an interval with the length (n+ 1) % P, only.

We have theorem as follows:

Theorem 1. An execution of a transaction system modelled as above isserialisable if and only
if in any time interval consisting of exactly (n+1) consecutive periods of T,,, any n executions
of different transactions is serialisable, i.e. the relation ‘before’ on them is acyclic.

A proof this theorem be done in [10]. This theorem enable us to develop a DC formula
to characterise the serialisability of an execution of a transaction system, even the number of
transaction executions is infinite, and the time for the execution is also infinite.

The relation ‘before’ between the executions of different transactions are modelled as
follows. The order between conflict operations on data object x in an interval with the length
less than a(= (n+ 1)P,) is captured by

WR;;(x) = (O([[Ti.written(x)]] A [T .read(x)]]) € < o™ [[T;.read(x)]])
RW;;(x) = (O([[T;.read(x)]) A 7T written(x)) ™€ < o™ [[Tj.written(x)]])
WW;;(x) = (OT.written(x)]] ™€ < o [[1;.written(z)]])

Where, we used some state variables T;.written(z), Ti.read(x), T;.period, Ti.run, Ti.arrived
which be specifed in [10] for our model. With limmited space no detailed specify is included.

A FORMAL SPECIFICATION OF THE CORRECTNESS CRITERIA 267

To express that the relation ‘before’ defined as above does not have a cycle longer than
n, we first find an expression for its transitive closure. This is expresses by the following DC
formula C; defined as:

Cilj = (RW;; VW R vV WWy)
2 ~ ¢l 1 1

"o~ n—1 n—1 n—1
Cij - (Clj v (Cz'r /\er))

Serializability Criterion

A concurrent execution of the set of transactions 7 is serializable iff it satisfies the following
DC formula SERITAL for any interval.

SERIAL=(T,.period (=nx*P,)= [\ =(ChAC})

Lj<n,i#]

4.2. Temporal Consistency Criteria

As presented in Section 2, there are two kinds of data objects. Based on this classification,
we will formalise some criteria for the transactions handling them. The set O of data objects
in a RTDBS consists of:

Continuous data objects are related to external objects continuously changing with
time. The value of a continuous data object can be obtained directly from a sensor (base
object) or computed from the values of a set of base data objects (derived objects). So, the
set of continuous data objects is classified into:

1 . A set of base objects X,
2 . A set of derived objects Y.

Discrete data objects are static in the sense that their values do not become obsolete
as time passes. Let the set of discrete data objects Z.

For each data object y € Y, the set of the data objects used to compute the value of y is
denoted by 2,,%, C X U Z.

Fach transaction 7T; has its own deadline D;, a priority p;, an execution time C;, a period
P;, a data read set RO;, a data write set WO, (note that RO; and WO, may be empty). Our
model of RTDBS is an extension of the Basic model which proposed by Ho Van Huong and
Dang Van Hung. We refer interesting readers to [10] for details.

At each moment of time a continuous data object has a value represented by it’s current
version which is valid for some time interval. Note that at the same moment of time there
may be several versions of the same continuous object in database that are valid.

The state variables to capture the behaviour of continuous data objects are as follows.

Let « be a continuous data object. For each ¢ € N there is a state variable validity,(c)
to reflect the validity of ¢’th version for the value of « and a real state variable valuey(a) to
reflect the value of « at time ¢ is the ¢’th version. validity,(«) holds at time ¢ iff ¢’th version
of a continuous data object o has been created (before time ¢) and is still valid at time ¢. For
simplicity of the presentation, we assume that discrete data only have Oth version (¢ = 0) with
the validity interval [0, +c0).

268 DOAN VAN BAN, NGUYEN HUU NGU, HO VAN HUONG

For all « e {XUY}.

validity, € (X UY) — Time — {0,1}]

validityy,(a)(t) = 1 iff ¢ is in the valid interval of the ¢'th version of «
valueg(ar) € [Time — {0, 1}]

valueg(a)(t) = 1 iff at ¢ value of « is the ¢’th version

There is a positive lower bound &' for the valid interval (depending on the sampling periods),
and each version may have only a single interval of validity. For a version ¢ of the data object
«, there is a predefined number avi (o) which is the maximal length of its validity interval.
Namely, version ¢ of « is valid for avig(a) (> ¢') time units since the time it was created.
Therefore,

[[—validity, ()] [Jvalidity, (o))~ [[validityy (o)) = € > avig() (1)
(Tvalidity, ()] = € < avig(w)) (2)
[validityg (o)) " true = [[validityy ()] V [Jvalidity, (a)]] " [[-validityq (e)]] (3)

Recall that the absolute temporal consistency at a time t of a data object o means that
the value of the internal representation of the data object at time ¢ is closed to its external
representation. More precisely, at time ¢, there is a version ¢ of o which was borned at time
t(a,q that is still valid, i.e. ¢t —t(, g < avig(a). The absolute temporal consistency of the data
in a RTDBS means that all data objects satisfy the absolute temporal consistency at any
time. Since we have assumed that at any time, there should be a version ¢ for a data object
(normally, the version that was created most recently), the absolute temporal consistency is
formalised simply as follows.

Absolute Temporal Consistency Criterion (for any RTDBS)
ACONS(av, q) =0([Jvalueq ()] = [[validityq (o)]])

Relative consistency says that data objects from some data set should be temporally
correlated. Any set R of versions of continuous data objects, i.e. R is a set of pairs (a,q), is
associated with a number called length of relative validity interval denoted by rvi(R). The set
R of the data read by a transaction during an execution must be relatively consistent, which
means that the distance between their creation time is not more than rvi(R).

The relative consistency of a set R of versions is now expressed by the following DC
formula RCONS(R), meaning that R is relatively consistent iff DC formula RCONS(R) is
true for all intervals.

RCONS(R) =

[[validityq (o) A ~walidity, ()])
(ee1,9),(c2,r)ER

- (A [[validity, (@2)]] = (€ < rvi(R))™ [Jvalidity, (c2)]]

Recall that every transactions 7} is associated with a deadline D;.

In our model, in each execution each transaction T; € 7 (in a period) is associated with a
set of versions of continuous data objects which are read by it. A transaction in our real-time
database model can commit only if

1 It meets its deadline, and

2 It reads temporally consistent sets of data, and the data it read are still valid when it
commits.

A FORMAL SPECIFICATION OF THE CORRECTNESS CRITERIA 269

As we have said earlier, for any data object o, at any time ¢, there is a version ¢ for which
valueg(a) is true. Normally, when a transaction reads a at time ¢, it will get the version ¢ for
which valuey (). However, in some scheduler, they may give a different valid version. In order
to be more general, we introduce the step function T;.readv to return the version number read
by T; for a value of data object.

T;.readv € [O — Time — N]
T;.readv(a)(t) = q iff at time ¢ transaction T; has performed a read operation on ¢’th version
most recently of data object ().

A transaction T; can read a set of versions of data objects. Therefore, for each ¢ < n temporal
variables Re; is introduced to express that set of versions of data objects read by T;.

Ray € [Intv — 29%V]

So, a transaction T; can be committed if DC formulas DL;, ATC;, RT'C; is valid:

DL; = < [[T;.period]] = ((O([[T;.arrived]|| = €< D;)) A /Tm“un = Cl)>
[[T;.period]] =
ATC, 2 /\ [[T;.read(c)T|A
' O | T.arrived]] = () ERO;,q#0
[[T;.readv(c) = q]] = [Jvalidity, (o)
RTC; = ¢ (”Ti'peri()dﬂ Mleva) € s g 20 =) = RCONS(Ray)
ST read(a)]] A [[T;.readv(e) = ¢]))

Let CM = A,., DL; A ATC; A RTC:.

Correctness criterion for the execution of transactions in RTDBS: an execution
of set T of transactions is correct iff for any interval it satisfies the formula SERIAL A CM.

T

+1
Write(x CB Write(x d)

tq+2

Figure 2. The worst-case update time for a sensor transaction

270 DOAN VAN BAN, NGUYEN HUU NGU, HO VAN HUONG

5. SOME SUFFICIENT CONDITIONS FOR MAINTAINING TEMPORAL
CONSISTENCY

In this section, we will apply our formal model to specify and verify some conditions for
maintaining the temporal consistency in RI'DBS proposed in [6,11].

To get a deeper result, we will restrict ourselves to some special kinds of transactions.
We classify the transactions in a RTDBS into three classes: Sensor Transactions, Derive
Transactions, User Transactions. Sensor transactions update the based data objects, and
Derive Transactions compute and update the derived objects. The user transactions are
application programs of the users to access the database.

5.1. Sensor Transactions

A transaction of this class maintains the absolute temporal consistency of the database by
writing a sampled value of an external object to the corresponding base object with a regular
interval. It is a write-only transaction. It means that Sensor Transactions are responsible for
maintaining the absolute temporal consistency of base objects. Let P, be the period of sensor
transaction T, for maintaining the absolute temporal consistency of a base data object x, and
D, is the deadline of T,.. To guarantee the absolute temporal consistency of z, its period must
satisfy the following condition in formula:

(Pr + Dy) < avig(x) (4)

Informal justification for this fact is as follows. This is because the worst-case next update
time for a base object written at the beginning of a certain period is the deadline of the next
period.

If the deadline equals the period, a transaction’s period must be less than or equal to half
of the absolute validity interval of the related base object to maintain its absolute temporal
consistency.

How to specify and verify this formally?

We have to verify that for a based object z, for all version ¢ (each ¢ corresponds to the
execution of T}, in the gth period), ACONS(z, q) is satisfied by all intervals, where:

ACONS(z,q) = O([Jvalueq (x)]] = [Jvalidity, (o)]])
The behaviour of the valueq(x) is captured by: for all ¢ # ¢':

[fvalueq (x)]] = [[~valuey (x)T]
[valueq ()] [[-valueq (x)]] = [Jvalueq ()] [[valueqir ()] true

The behavior of T, is captured by the formula:
T,.period = (Jg(([Jvalueq—1 ()| A€ < Do) [Jvalueg (2)]]) A €= Py)

From these we can derive that

T,.period ™ T,.period = Jq(((([[-valueq ()] A€ < Dy) ™ [Joalueq (x)])) Al = Py)
T((MTvalueq ()] A< Dy)™ [[valueq (2)]]) Al = Py)

This entails

Tp.period” T,.period = (g(([[-valueq ()]~ ([Jvalueq ()] A€ < Po+ Do) [[-walueg(x)]]))

A FORMAL SPECIFICATION OF THE CORRECTNESS CRITERIA 271

From this, together with neighbourhood logics (to extend any interval satisfying [Jvalue, (x)T]
into an interval that satisfies T,..period T, .period), the absolute temporal consistency of x can
be derived easily.

5.2. Derive Transactions

Transactions of this class read some data objects, compute new values of derived objects,
and write them to the database. They are update transactions. As any other transaction
in the system, they have to satisfy the temporal consistency ATC; and RT'C;. For any data
object y € Y, there is a derive transaction T, with the read set RO, being 3.

In the literature ([6]), the following conditions for a Derive Transaction’s period in order to
maintain temporal consistency of derived objects have been derived. Let Ru; denote temporal
variable to express the set of versions of data objects in ¥, used to compute a new value of
derive data objects read by 7,. P,, P, and D,, D, are period and deadline of T, and T,
(transaction T, is writing to a based data object w in 37).

Ru; € [Intv — 2214 XN]

We assume that if D, = D,, then the priority of T} is higher than that of 7,,. Assume that the
system has a single processor. The condition for maintaing the absolute temporal consistency
for y and for T}, to satisfy the three criteria in the previous section is formulated as:

(Pu+ Dy) < avig(u),Vu € ¥y N X (5)
(Py + Dy) < avig(y),Vy € Y (6)
D, <D, (7)
[[1.period]] =
(u,q) € Ru;,q 20 — ([[Ty.read(w)]] A [[Ty.readv(u) = ¢) (8)

= (P, + Dy < rvi(Ruw;))

With the cases in Figure 3, we can justify the above conditions informally as follows:

Write(uY) q+1

\ \
t
T q+1 T tq 12
13] Read(ucs Read(u 31
Casel Casell

Figure 3. Maintaining Temporal Consistency

Case I: T, read u after the current instance of T, updates u (i.e., writes u?). In this case, the
value u? will be valid at least until the time ¢,.1 + D, because of inequation (P, +D,,) < avig(u)
and because the completion of T, comes before that time (since D, < D,,). Thus, the value u?
read by T, will be valid until T, completes.

Case II: T, read u before the current instance of 7, updates u (i.e., writes w9*1). In this
case, the value u? read by T}, will be valid at least until the time ¢4, + D, from inequation

272 DOAN VAN BAN, NGUYEN HUU NGU, HO VAN HUONG

P, + D, < avig(u). Furthermore, T, should complete before that time (i.e., the deadline of
T,), since the priority of Ty is higher than the priority of 7, from inequation D, < D,,. Thus,
the value u? read by 7, will be valid until the completion of 7,. Also, since the maximum
temporal distance between the data object y and any data object in ¥, is mazvyes, (Py +Dy).
Y., satisfies its relative temporal consistency requirement, as long as P, + D, < rvi(Ru;) for all
win 3, NXUY).

This can be verified formally in our model will be done and omitted here.

5.3. User Transactions

A sufficient condition for a user transaction to satisfy the criteria in the previous section
for user transaction 7} is as follows.

Let Rv; denotes temporal variables to express that set of versions of data objects read by

user transaction T;. Transaction T, is responsible for updating data objects v in the read set
V of T;. Let P,, D, be period and deadline of T,,.

Ru; € [Intv — 27V

We assume that if D,, = D;, then the priority of T; is be higher than that of Tw. The conditions
to maintain the above temporal consistency requirements by a user transaction are formalised
by the following DC formulas.

(Py+ Dy) < avig(v),Yv e VN(XUY) (9)
D; <D, (10)
[[1;.period]] =
(v,q9) € Ru;,q £0 = < ([[7T;.read(v)]| A [[T;.readv(v) = q]) (11)

= (P,+ D, — R; < rvi(Rv;))

We refer the readers to [6] for the justification of the correcness of this condition. The
formal verification of this fact will be done and omitted here.

6. CONCLUSION

In this paper, we have presented the correctness criteria for concurrent executions of
a transaction system and a formal specification of the temporal consistency in Real Time
Databases using Duration Calculus. We also give a formal verification of some conditions for
maintaining the temporal consistency of the data. These frameworks can be used in the future
for specifying many other issues of RT'DBS.

Acknowledgements. The authors would like to thank Dr. Dang Van Hung for his kind
help.

REFERENCES

[1] Doan Van Ban, Ho Van Huong, Duration Calculus and Application, Proccedings of Hanot
University of Sciences, National Universily of Vietnam, Nov, 2000.
[2] Doan Van Ban, Ho Van Huong, A Formal Specification of the Read/Write Priority Ceil-

ing Protocol in Real Time Databases, Proccedings of National Information Technology,
Haiphong, June, 2001.

3]

A FORMAL SPECIFICATION OF THE CORRECTNESS CRITERIA 273

Doan Van Ban, Ho Van Huong, Serializability of Two Phase Locking Concurrency Control
Protocol in Real Time Database, Journal of Computer Science and Cybernetics 17 (3)
(2001).

Doan Van Ban, Nguyen Huu Ngu, Ho Van Huong, Concurrency control protocol in Real
Time Databases, Proccedings of Institute of Information Technology, Nov, 2001.

Doan Van Ban, Nguyen Huu Ngu, Ho Van Huong, Formalising Priority Ceiling Protocol
with Dynamic Adjustment of Serialization Order in Real Time Databases, Journal of
Science 19 (1) (2003) (National University, Hanoi).

Azer Bestavros, Kwei-Jay Lin and Sang Hyuk Son. Real-Time Dalabase Systems: Issues
and Applications. Kluwer Academic Publishers, 1997.

M.R. Hansen, Zhou Chaochen, Duration Calculus: Logical Foundations. Formal Aspects
of Computing 9 (1997) 283-330.

Dang Van Hung, Real-time Systems Development with Duration Calculus: an Overview,

UNU/IIST Report No. 255, UNU/TIST, P.O. Box 3058, Macau, June, 2002.

Ho Van Huong, A Formal Specification of The Abort-Oriented Concurrency Control for
Real Time Database in Duration Calculus Journal of Computer Science and Cybernetics
16 (1) (2003).

Ho Van Huong, Dang Van Hung, Modelling Real-Time Database Systems in Duration
Calculus, UNU/IIST Report No.260 , UNU/TIST, P.O. Box 3058, Macau, August, 2002.

Kam-Yiu Lam, Tei-Wei Kuo, Real-Time Database Systems: Architecture and Techniques.
Kluwer Academic Publishers, 2001.

Ekaterina Pavlova, Dang Van Hung, A Formal Specification of the Concurrency Control
in Real Time Database, UNU/IIST Report No. 152, UNU/IIST, P.O. Box 3058, Macau,
January, 1999.

Received on October 6 - 2002

