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DIFFERENCE SCHEMES FOR WEAK SOLUTIONS
OF MIXED PROBLEM FOR A CLASS
OF HYPERBOLIC DIFFERENTIAL EQUATIONS, |
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Abstract. It is known that many applied problems are reduced to mixed problems of hyperbolic
differential equations with nonregular data. The approximate methods for these problems are studied
by some authors. For example, in [1-3] are considered the cases of data belonging to the Sobolev
spaces W (). In [4] the convergence rate of approximate solution for the mixed problem is obtained
by the method based on norm estimates in the Sobolevic spaces H™°(). In this paper we propose a
method to extend the ideas introduced in [5, 7] for investigating the approximate solutions of mixed
problem for the hyperbolic differential equations with variable coefficients in the space H"™ () (see
sec. 2). In section 3 it is first time this approximate problem is considered in the space of generalized

functions D'(2) D W,E*m) Q).
Tém tat. Nhidu bai todn (g dung durroc duwra vé dang bai todn clia phurong trinh hyperbolic véi dit
liéu khong tron. Trong [1-+-4] da xét cac bai todn véi dir liéu thude cac khong gian Sobolev W) (Q2).
Con trong bai bdo nay, chiing téi tién hanh nghién ctru nghiém xap xi cdc bai todn cé dir liéu khong
tron do cao, cu thé 1a thude cée khong gian Schwartz D'(€2) D W)"(Q).

1. INTRODUTION

Consider the initial and boundary value problem for the following class of hyperbolic
differential equations:

2

% - ; %(’f(@%) — fla, 1), (x,t) €9, W
u(x7t)|t:0 = (@), g—? o ¥(x), = € G, 2)
u =0, (:)cﬂf) cT, (3>

where the coefficients k;(z) € CY(G), ki(x) > C >0, i = 1,2, C is a constant, G is a bounded
region in B2, Q=G x (0,T)={(z,t): 2 € G,0<t < T < o0}, ' =0G x (0, 7).

Suppose that the data f(z,t), @(z) are not continuously differentiable in the classical sense.
In these cases the generalized solutions (GS) are considered. Below, at first, we consider GS
u of the problem (1)—(3) in the Sobolev spaces H™(€2) with the corresponding test functions

v defined in the spaces (Ci‘m(ﬂ)7 m being the nonnegative integers.
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By [8] the GS u(z,t) of the problem (1)—(3) satisfies the condition (3) and the following
integral equality (v is extended by zero onto Q= = R(¢) x R%(x) \ Q):

[<@@wJ}<wu

:/w@wo+wg@n@xwmw—/wg@>

Q

Gi

ov(()
aCS ¢3=0

dg, (4)

where U(C) = u(Ch C27 C3>7 (p(&?) = 90(3317 x2>7 U<x7t> = U(x17x27t3>7 U(C) - U(Ch C27 C3>

2. DIFFERENCE SCHEME FOR GS

2.1. Construction of difference scheme

For simplicity of presentation, let € be the unit cube:
Q={(z,t) = (w1, 22,13) : 0 < @1, 29, t3 < 1}. Let us introduce in € a grid &:

W= {(96179627153) DXy = Ty, = Jihi, t3 = g3hs; 5i = 0,1, Ny,

1 1
hi= o= 1,205 = 0,1, M, hy = - 1,
Nt J3 5T M

where N; and M are positive integers. For the steplengths h;, j = 1,2,3, assume that C; <
hy o

ho S <Oy, O3 < o S < C, uniformly as hy, ha, hs — 0, here C,,,, m = 1, 4, being positive constants.
2 3

Denote the set of interior and boundary gridpoints of Q by w and ~ respectively, v = w\ w.

To obtain a net problem we introduce an auxiliary cubic grid covered the cube € and
containing three families of planes which are parallel to the coordinate planes x; Oy, 2013,
t30x; with steplength distances hy, ho, hs respectively. In Q denote by w* this grid consisting
of the parallelepipeds with centres at the gridpoint (z,t) of the grid w. The cell of w* at the
gridpoint (z,t) is denoted by e:

e — {C - (C17C27C3) : |Cl — acl| < O5hl7 = 1727 |C3 — t3| < 0.5 hg}
Now, as in [5] (see Sec. 1, Chap. 3) one may take the test function v in (4) by the form

(x t) _ { (hl hg hg)il for (a?ﬂf) ce,

0 for (z,t) € Q\ e 5)

Then, by (4), the GS w of the problem (1)—(3) satisfies the following integral equality:

1 1
i | {acg Zzacz e acj}dg o | VO e ©

Let us set

u(yh cey Com "'7y’n>dCOc7
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u(Eke) = u(ika)(y) =w(yt, ooy Yo T KRy ooy Yn)s

o ultle) —y o u— ulte)
Uy =y () = g, =g, () =
where 1 <a<n, £=0,51;..., ye R", here n=3.

Then, from (6) we have the following net problem for the GS w(z, t) of the problem (1)—(3):

8w 2 ou \ 0%
Pu=5,5,8—% — S35 ; | ki— =R Sy, (x,1 ,
U 199 33@}? ; 303 < ag@) y J+ 5, (x,t) cw )

u:07 (x7t> €,

where R = 5152537 S = 5152 .

To obtain the difference schemes of the operator P°u (7), one may approximate the mean
integral operator S;, j = 1,2, 3, by the quadrature formula of average rectangles and the partial
derivatives by difference quotients as in [7]. For instance, one has

ou (=0-51)
5355 | ki—
3 < 18961)

t3+0.5h3 1‘2+0.5h2
== k‘l (331 — 0.5h17 Zg)a—u(xl — 0.5h17 Z2, Zg)dZQng
hghg 8961
t370.5h3 1‘270.5}7,2

—0.5
~ /{/‘E Ol)u;

IR

Then, one has the following difference scheme of the problem (1)—(3)
2

P}fy - yfgts - Z (kz(io‘m)yfz)w - q(xh x27t3>7 (x7t> € w, (8)
i=1 ’

y(w,t) =0, (z,1) €7,
where ¢ = Rf + Si.
The difference schemes of the form (8) are investigated by many authors (see, e.g., [6]).
The scheme (8) may be written in the form:

2
Piy = $1S:8,, — > (K 0ys ) = qlan,aats), (@0) ew, o)
i=1 ‘

y(x,t) =0, (x,t) €,

2.2. Estimation of the convergence rate

Consider now the convergence of the approximate solution y to the GS u of the form
(4),(5) of the problem (1)—(3). For this purpose we estimate the method error z = y — u of
the scheme (9). From (9) one has

Ly

= 51583y, —4 =P, (x,t) € w.

2

Z I{/_E*O‘GZ)%
).
Hence, by (7) and (9),

Lz=p— Lu=-Y(xz,t), (x,1) € w,

2(x,t) =0, (2,1) €,
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where
(70 01) 2
_ (—0.5;) 4 ou o%u
v ; (k! uw>x - ; SS <k ax) 515555 <8—C§ yzsts>
Thus,
2 ( : 2
- k 0 . ) - (2 + A ’ 7t € w,
() =30, e 0 < (10
z(x,t) =0, (x,t) €7,
where
—0.5; ou (=0:5:) 821/,
T = kz( )uiz = SgSg,i <kla_xl> 5 )\0 == SQSQSg a—cg - yzs . (11)

Now, to obtain the error estimation, consider the space H of grid functions « on @ and
let Hy be its subset of the functions satisfying the condition u(x,t) =0 as (z,t) € .

Let a(x,t), b(x,t) € Ho or H. Introduce the following scalar products and corresponding
grid norms:

(@,b) = > alw, )b(x, )hrhohs,
(z,t)Ew
M N; Nx—1

(a, 0] = Z Z Z alirhy,ighs, jahs)b(ishi, isha, jshs)hihohs
=0 i1=1 is=1
M Ni—1 N

(a, b7 = Z Z Z alirhy,ighs, jahs)b(ishi, isha, jshs)hihohs
J=0 i1—1 iz—1
lall* = llall§ o = (@), llalf = (a,alf®, i=1,2.
Let us scalar multiply both sides of (10) with z(x, t):

2

() ) Bl

im1
Then, by the same way as in Sec. 2.2 [7| one has

Izlhw <€ (Z [[7:]li0 + IIAoll) ; (12)

i=1

where the constant C is independent of h and z (|k|* = h? + h3 + h3),

2
0 *

2
lelliw = 2050 + 1V V2050 =D 2]
i=1

To estimate the terms in the right-hand side of (12), we first consider the functional 7, (z, t)
defined by (11):

1 t340.5hs
m (z,t) = k1(x1 — 0.5k, x2)uz, — h_/ %
3 Jt3—0.5h3
x2+0.5ha
1 ou
_ k1 (331 — 0.5h17 C2>—(Z1 — 0.5h17 C27 C?))dCQ dCS
hz o

i) 70.5}7,2
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We see that the expression of n;(z,t) is anologous to the one of n; in Sec. 2 [4], then by
the same way as we did for the estimation (26) in that section, one has

[millio < ClA™ Hullme, i=1,2, m=2,3, (13)
where
1/2
lller = lalsmiey = | 3 / D (e, )P dadt
| <m

For the term )\, by (11) one has

%

)\0 == 515253 <8—C§ — uzsts

> + 515285 (uz,y, — Vi) = Ao+ Ad- (14)

By the Cauchy-Buniakovskij inequality one has

|)\(1)| < (h1h2h3>71/2{ / [821/,(0 _ uzs(%t)} QdC}l/Q.

¢
One has
Au 2
/{a—ég_ufgtg(wi} d¢ =
2
t3 ~v+hs
Pu(()  O%u(xy,xa, )
ha? — ey do| d dc.
/3//<ac3? 9o ot e
e t3—hs3 Y
Then,
IAoI” < C(hahahs)  R? ([ul3 . + [ul3.,)
where

€3 = 63(Z7t) = {C = (C17C27C3) : |Cl —xi| < 05h“ i = 1727 tg — hg < Cg < tg}

1/2
|t e = Z /|Do‘u(x7t)|2dxdt

la=m e
Thus,

1Al < ClAl fuls.q- (15)
From (14) and (15) it follows

Aol < ClAl[lulls0- (16)
Combining (12), (13) and (16) yelds

2l e = lly = ullio < ClA] ulls,o- (17)

Further, for the problem (1)—(3) one has the following a priori estimate (see [10,Sec. 2,
Chap. 5)):
lulls.0 < C(llellsnt+ [¥llze + 1 fll2e),
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where the constant C is independent of ¢, ¢ and f.
Finally, from the last inequality and (17) one has the following

Theorem 1. Let the given functions f € H*(Q), v € H*(Q), ¢ € H3(G) and ki(x) € WL(G)N
C(G), i =1,2. Then the solution y of the difference scheme (8) converges to the GS (6) u(z,t)
(w € H3()) of the problem (1)—(3) in the grid norm || - |1 with the rate O(|h|), such that one
has the following error estimation

ly = ullw < Claf ]z,

where the constant C is independent of h and u(z, ).

3. DIFFERENCE SCHEMES FOR WEAK SOLUTION

Now consider the GS u(z, t) of the problem (1)—(3) in the form (4), where the test functions
has the form

— el i+l
o(, ) — { (47! RbRY)—3/2 exp{ T TARTRLRL }7 (2,1) Ei (18)
0 , (@, t) € Q\ e,
where [ is a positive integer.
Then, by (4) the GS u(x,t) of the problem (1)—(3) satisfies the following equality:
2
1 -
(hyhshs) /{ e ; { (¢1,¢2) ag} } a(¢)d¢ =
unata) [ {70a(@) 1 o6 @ate a0 - v fae a9)
where a(¢) = hihohs v(().
Thus, one has the following net problem for the GS w(z, ¢):
8%u 2 ou \ (703
Pu_&&&a%é ;;&&i<wa%> |
da Ou (20)

+S1525321f (¢1,¢) = = Rf + 8¢ -Te=4, (z,1) € w,

a¢; 0¢;
ulz, >:07 (x,t) €,
where Rf = 15253 a(¢)£(C), St = 8185 [alCi, G2, 0)(Cr, Go)],

oa]

Tp =515 {@(Ch Cg)a%
3

3.1. Difference schemes

From (20), arguing as in the proof of the form (8), Sec. 2.1, we obtain the following

difference approximation of the problem (1)—(3):
2

2
1P}fy = 51525304 t ats Z aly— + 515253 Zk‘l(aﬁagz%z
=t = (21)
Yz, t) =0, (x,t) €7,



DIFFERENCE SCHEMES FOR WEAK SOLUTIONS OF MIXED PROBLEM FOR A CLASS 223

where a; = (05 )k( 054 ().
Furthermore, as in [4] (see the forms (9) and (12) in Sec. 2.1) one has an other difference
scheme of the problem (1)—(3):
2

PP = 81985, — Y (biths),, = 4, (1) € w,

= (22)
gla,t) =0, (z,1) €7,
where b;(x) = (705 (x),
Py o ou 051 da Ou
Q1) = 51525 5o ; S35 i (M%) + 515,55 Zk SO o )

3.2. Estimation of the convergence rate

a) Consider first the scheme (22). We see that the approximation (22) has the form (9), then
by (17),

19— ullw < Clafu]se, (24)
where ¢ being the solution of the scheme (22), u being the GS of the problem (1)—(3).
Now consider the following mixed scheme:
1
M= 0B Py - @ cw
y(a, 1) =0, (x,1) €,

1

where y = — (3 + ¢), ¥ and ¢ being defined by (21) and (22) respectively.

Then, by (21) and (22),

o |

2

. 1
Qy = 551585 [1+ alOlvry, — 5 ; (@i + by L.,

2
1 -
+ 5515253 Z/%O@y@ =4q, (x7t> € W, (25>

y(x,t) =0, (z,t) €.

Note that it can be verified that

lim /R 9(Q)(OdC = gl 1),

hi,ha,h3—0

where the function g(¢) is summable in e and continuous at the gridpoint (z,t).
Hence, if hq, he and hs are sufficiently small, one may write (25) in the form:

Vs — ;i{k( w)(HQ( 00)) } Zkawy— g, (x,1) € w, (26)

=1
y(ﬂcﬂf):& (z,t) €.

By [6] it should be noted that there exists uniquely a solution of the difference problem
(26) and, then, of the scheme (21).
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Consider now (25), one has
2
Y= Z [(ai + b)yz,],, = S152893[1 + a(O)]ys,,,
i1

2
+ 515253 Z klagzygz — 24 =p, (a?7 t) c w. (27)

i=1

Let 2 = y —u, where u being the GS of the problem (1)—(3) in the form (4), (18). By (27),
(23) and (20),

QOZ - ﬁ - QOU = _w<x7t>7 (x7t> cw,

28
2 t) =0, (0,8) € v, @8)
where
2 2
Z a1+b ZacI an+ﬂz +)\0+)\1+57
i=1 i=1
P (—0.5;) P (—0.5;)
N = a;ug, — S353 <Oé/f¢a—u> . Hi = bjuz, — S355_; <Oé/f¢a—u> ,
X; X; (29>

%u ~ (0%u
o= (5 =) 2= (g ).

B—Rik« gladu
S Tagag T )

From (28) one has the following inequality analogous to (12):

2
Izlh e <€ (Z [lmlio + llpsalliol + Aol + l[Ax] + IIBII) :

i=1

The terms in the right hand side of the last inequality are estimated by exactly the same
manners as they were done above in Sec. 2 and as in [7] (see Sec. 2). Then one has

[543 2], , < Clbl s )

Finally, by (24) and (30) we get the estimation of method error for the difference scheme
(21):

5= ul, , < Clhl ulls - (31)

Remark. By a manner analogous to the proof of the inequality (31), one may verify that this
estimation is also valid if, in the form (4) of the GS w(z,t) (4), v(x,t) is any test function in
the Schwartz basic space D(€Y), ¥ € Q.

b) The estimation (31) is obtained with the assumption f € Ly(2) and ¢ € La(G), we now
show that the result may be generalized to the equations with right hand side f € D'(Q) and

the initial conditions ¢, € D'(G), here D'(G) being the space of Schwartz distributions on G
[9].
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Indeed, by our assumption and by the theorem on local structure of distributions and its
corollary, there exist the functions g € H?(e), s(x) € H?(eo), r(x) € H3(eo) and the nonnegative
integers ki, ko, k3 such that

f=DEDF g(a,t), o = DFs(x), ¢ DFr(x), (32)

an
where D = prw the open set e Cc Q C R3*x) x R'(t), e = {(z,t)
L10%y

(x,t) € e, t =0}
Let v € D(e). By [§], the GS w of the problem (1)—(3) satisfies the following equality:

<§§—§;%(m%97§<f+%@x&ﬂ+ﬁ@xyww) (33)

where @, f, and ¢ are the extended functions of w, f, ¢ and ¢ by zero onto Q= = R'(t) x
R%(z)\ Q and G~ = R2%(x) \ G respectively, (u,v) denotes the value of a functional w on the
basic function v.

By (32) one may write (33) as

/{8@ 22:

5

|: C17C2 p)

C}}v«wcﬁg+§w—f% (34)

where

Rg = / g(Qvi (¢)d¢,; S = / s(C1, C2)va(Cr, Go)dC, T = / (G, C2)vs (1, Go)dC,

5

vi(x,t) = (=) DP DFy vy (x) = DF2o(z,0), vs(x) = DFe [Dtv(x7t)]t:0.

We see that vi(z,t), va(x) and vs(x) are also the test functions: v, € D(e); vo,v3 € D(ep).
Thus, the equation (34) has the form (4), (20). Hence, one may repeat the procedure used
above for the difference schemes (21), (22) and obtains the following result analogous to (31):

Theorem 2. Let in the problem (1)—(3) the data f € D'(Q), ¢,¢ € D'(G) and ki(x) € WL (G),
i =1,2. Then, there exists uniquely a solution of the difference scheme (21) and this solution
y converges to the GS (33), (34) u(x,t) of the problem (1)—(3) with the rate O(|h|) such that
one has the error estimation

|5 =, , < ClAllulls g
where V' € Q.

Remark

1°. For the sake of simplicity, the homogeneous condition (3) was considered. In the case
of nonhomogeneous condition, the theorems 1, 2 may be proved quite analogously.

2° In the part 11 of this publication we will consider the difference schemes of the problem
(1)—(3) in a region of arbitrary form.
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