Tap chi Tin hoc va Pidu khién hoc, T. 19, S. 3 (2003), 201-216

SOME CHARACTERIZATIONS OF COMPUTATION AND COMPLEXITY
OVER THE REAL NUMBERS AND OTHER ALGEBRAIC STRUCTURES

TRAN THO CHAU

National Unwersity Hanoi

Abstract. In this paper, the BSS model of computation over the reals and other rings as well as a
more general model of computation over arbitrary algebraic structures are introduced and discussed.
Some crucial results concerning computability and omputational complexity within both frameworks
are given and explained.

Tém tat. Trong bai bdo nay, chiing téi tong quan mét s6 dic tring cia hai mo hinh tinh todn: mé
hinh tinh todn ciia Blum-Shub-Smale trén s6 thuc (va cd trén cdc vanh), va mot moé hinh tong quét
hon vé su tinh todn trén cic cau tric dai s6 bat ky. Mot s6 két qué quan trong lién quan dén kha
nang tinh todn va do phitc tap tinh toan theo hai mo hinh néi trén duoc dua ra va nghién ctru.

1. INTRODUTION

In 1989, L. Blum, M. Shub and S. Smale [4] introduced a model for computations over
the real numbers (and other rings as well) which is now usually called a BSS machine. One
motivation for this comes from scientific computation. In the use of the computer, a reasonable
idealization measures the cost of operations and tests independent of the size of the number.
This contrasts to the usual theoretical computer science picture which takes into account the
number of bits of the operands. Another motivation is to bring the theory of computation
into the domain of analysis, geometry and topology. The mathematics of these subjects
can then be used in the systematic analysis of algorithms. A novelty of the approach of
Blum, Shub and Smale is that their model is uniform (for all input-lengths) whereas the
notions explored in algebraic complexity (straight-line, programs, arithmetic circuits, decision
trees) are typically non—uniform. One of the main purposes of the BSS approach was to
create a uniform complexity theory dealing with problems having an analytical and topological
background, and to show that certain problems remain hard even if arbitrary reals are treated
as basic entities.

Many basic concepts and fundamental results of classical computability and complexity
theory reappear in the BSS model: the existence of universal machines, the classes Pg and
NPy (real analogues of P and NP) and the existence of N Pg—complete problems. Of course
these notions appear in a different form, with a strong analytic flavour: typical examples of
undecidable, recursive enumerable sets are complements of certain Julia sets, and the first
problem that was shown to be N Pgr—complete is the question whether a given multivariate
polynomial of degree four has a real root [4]. In the Boolean parts all problems in the class
NPy are decidable within single exponential time (but this is not as trivial as in the classical
case), the Py versus NPy question is solved in Koiran’s model [17] and the Py versus NPy
question is one of the major open problems [11, 3.

Based on the computation model introduced in [12] for string functions over single sorted,
total algebraic structures, A. Hemmerling [12] studies some basic features of a general theory
of computability. The concept generalizes the Blum—Shub—Smale setting of computability over
the reals and other rings. The concept of S—computability of string functions over the universe

202 TRAN THO CHAU

of the structure S is defined and shown to be general enough to include classical recursion
theory. Moreover, nondeterministic computations of two kinds are considered, namely by
nondeterministic branching within program and by guessing of elements of the universe [13].
In this generalization is gives correspondingly general results of NP—completeness including
both Cook’s basic theorem on the NP-completeness of SAT and Meggido’s generalization of
the completeness results by Blum—Shub—Smale.

The principal technique used for demonstrating that two problems are related is that of
“reducing” one to the other, by giving a constructive transformation that maps any instance
of the first problem into an instance of the second one. Such a transformation provides the
means for converting any algorithm that solves the second problem into the corresponding
algorithm for solving the first problems.

The foundations for the theory of N P—completeness were laid in a paper of Stephen Cook,
presented in 1971, entitled “The Complexity of Theorem Proving Procedures” [5]. In this brief
but elegant paper Cook did several important things:

e Signifiance of “polynomial time reducibility”, that is, reductions for which the required
transformation can be executed by a polynomial time algorithm.

e On the class NP the decision problem can be solved in polynomial time by a nondeterministic
computer.

e One particular problem in NP, called the “satisfiability” problem, has the property that
every other problem in NP can be polynomially reduced to it. If the satisfiability problem
can be solved with a polynomial time algorithm, then so can every problem in NP, and if any
problem in NP is intractable, then the satisfiability problem also must be intractable. Thus,
in a sense, the satisfiability problem is the “hardest” problem in NP.

This survey is organized as follows: in section 2 the BSS model over the real numbers
is introduced together with the basic definitions, notions, and some results concerning the
complexity theory over R and variations of the BSS model (additive, linear, weak machines).
Section 3 generalizes the BSS model over the reals to the model over arbitrary structures,
and it gives correspondingly general results concerning computability theory and relationship
between the complexity classes.

2. THE BLUM - SHUB - SMALE MODEL

The computational model of the Blum-Shub-Smale is starting with defining as well as
introducing the main related complexity theoretical concepts.

Notation: ~R* := [J RF
kEN

- A point y = (1,99, .. .) € R™ satisfies y, = 0 for k sufficiently large.
2.1. Definitions

Definition 2.1. Let Y C R*°. A BSS-machine M over R with admissible input set Y is given
by a finite set I of instructions labelled by 0,1,...,N. A configuration of M is a quadruple
(n,i,7,x) € I x Nx NxR>®. Here n denotes the currently executed instruction, ¢ and j are used
as addresses (copy-registers) and x is the actual content of the registers of M. The initial
configuration of M’s computation on input y € Y is (1,1, 1, length(y),).

If n = N and the actual configuration is (N, 1,7, z), the computation stops with output x.
The instructions M can perform are of the following types:
o Computation:

— Data computations: n : xs «—— a0, @, Where o, € {+,—,%,/} or n: x; «— « for some
constant o € R. The register z; will get the value xj o, 2; or a resp. All other register—entries

SOME CHARACTERIZATIONS OF COMPUTATION AND COMPLEXITY OVER THE REAL NUMBERS 203

remain unchanged. The next instruction will be n+ 1.

— Index computations: ¢ «— ¢+ 1lori+«—1; 75— j+1o0rj— 1.

o Branch: n: if zg > 0 goto 3(n) else goto n+ 1. According to the answer of the test the next
instruction is determined (here 8(n) € I'). All other registers are not changed.

e Copy: n:x; «—— x;, 1. e. the content of the “read”-register is copied into the “write”-register.
The next instruction is n + 1. All other registers remain unchanged. All o appearing among
the computation—instructions built up the (finite) set of machine constants of M.

Remark 2.1.

— The kind of operations allowed depends on the underlying structure. A branch z > 0?
for example does only make sense in ordered set. The copy-registers and —instruction are
neccessary in order to deal with arbitrary long inputs from R*. The way of changing the
entries in the copy-register the (“addressing”) seems to be rather restrictive apart from the
fact that there is no indirect addressing. However it is general enough for our purposes, see
remark 2.2.

— In the initial configuration on input y, the length is included, since it cannot be seen
from the register contents if y terminates with some components equal to 0.

Now to any BSS—machine M over Y there corresponds in a natural way the function ¢ps
computed by M. It is a partial function from Y to R*> and is given as the result of M’s
computation on an input y € Y.

Definition 2.2. Let A ¢ B Cc R*® and M be a BSS—machine over B.

a) The outpul—set of M is the set ¢u(B). The halting—set of M is the set of all inputs y for
which ¢ar(y) is defined.

b) A is called recurcively enumerable over B iff A is the output—set recursive of a BSS-machine
over B. (If B=R>, A is simply called recursively enumerable.)

c) A pair (B, A) is called a decision problem. 1t is said decidableiff there exists a BSS-machine
M with admissible input set B such that ¢,; is the characteristic function of A in B. In that
case M decides (B, A).

As can be seen easily (B, A) is decidable iff A and B\ A are both halting sets over B.

Definition 2.3. a) For z € R such that z = (x1,...,2,0,0,...) it is
size(x) = k.

b) Let M be a BSS—machine over Y C R>, y € Y. The running time of M on y is defined by

number of operations executed by M on input y, if ¢ (y) is defined,

o0 else.

Tuo) - {

The first important differences to classical complexity theory of the above definition are
that this one.

e states that any real number — independently if its magnitude — is considered as entity.
¢ defines the cost of any basic operation to be 1-no matter about the operands.

Definition 2.4. Let A ¢ B C R*.

a) A decision problem (B, A) belongs to class Py (deterministic polynomial time) iff there exists
a BSS—machine M with admissible input—set B and constants k € N, ¢ € R such that M decides
(B, A) and

Yy € B(Twu(y) < c-size(y)").

204 TRAN THO CHAU

b) (B, A) belongs to class NPg (nondeterministic polynomial time) iff there exists a BSS—
machine M with admissible input-set B x R* and constants & € N, ¢ € R such that the
following conditions hold:

1) QOJ\/[(y7 Z) S {07 1}
2) emly,2)=l=ycA
3) Vyc Adz ¢ R (cpM (y,2) =1 and Ty (y,2) <c- Size(y)k) .

Herein, the input part z can be considered as a “guess”, and this will be done in some informal
descriptions of NPy algorithms.

c) (B, A) belongs to class co— NPy iff (B, B\ A) € NPx.

Remark 2.2
e The class NPr would not be changed if a more general way of addressing is used in the
definition of BSS—machine.

e In a similar way as above one defines further complexity classes, for examples EXPr and
NEXPg (here the running time is bounded to be single-exponential).

Examples

1) The computation of the greatest integer in z, for z > 0 in R (see Figure 1.)
Input x € R as the second coordinate of a point in R? with first coordinate 0
Replace (k,x) by (k+1,2—1)

Output k, the first coordinate

Input x € R as the (0, x)
second coordinate \l/
of a point in R? with
first coordinate 0 x>1
Branch
X / \
Output , the
coordinate k (k, x) < (k+1,x-1) Replace (k, x)
by (k+1, x-1)
Figure 1

2) Let S C Z', the positive integers. We construct a machine Mg over R that “decides” S.
That is, for each input n € Z*, Mg outputs 1 (yes) if n € S and 0 (no) if n ¢ S. Mg has a
built-in constant s € R defined by its binary expansion
1, ifnesS
§=-5182...5,..., Where s, =)
0, otherwise.

Mg with its built-in constant s, plays a role analogous to an “oracle” for a Turing machine
that answers queries “Is n € S7” at a cost of nlogn (see Figure 2.)

Definition 2.5. Let n € N and § € R™. Then the set S is semialgebraic if S is the set of
elements in R™ that satisfy a finite system of polynomial equalities and inequalities over R, or
equivalently if S is finite union of subsets of the form:

{yeR": fly) =0A g (y) >0,...,9.(y) >0},

SOME CHARACTERIZATIONS OF COMPUTATION AND COMPLEXITY OVER THE REAL NUMBERS 205

where f,g1,...9, € Rlxy,29,...,x,] are polynomials.

The class Pr can be considered as a theoretical formalization of the problems being ef-
ficiently solvable. The running time increases only polynomially with the problem size. The
nondeterminism in b) of the definition refers to the vector z. The N Pr—machine is not allowed
to answer “yes” if the input does not belong to A and for each y € A there must be a “guess” 2
that proves this fact in polynomial time. It is evident that P € NPg. The question Pr # NPy
can be considered as the main unsolved problem in real complexity theory and the analogue
to the classical P versus NP in the Turing theory. The difference between Pr and NPy is the
difference of fast proof-finding versus fast proof-checking [23].

n Inputn e ZcR
’ C
ompute
-1
(|-2 n,sj, 22 'SJ) (via Subroutines)
4
Branch

x]_xzy\x]_x2¢]
1 o]

Figure 2

Definition 2.6. Let (B, A1), (B2, A3) be decision problems.

a) (Ba, As) is reducible in polynomial time to (B, A;) iff there exists a BSS—machine M over
Bs such that ¢p(Bs) C By, pu(y) € A < y € Ay and M works in polynomial time.
Notation: (B, As) <g (B, 41).

b) (Bi1, A1) € NPg is NPg—complete iff (B, A1) is universal in NPp w. r. t. <g (i. e. any
Problem in N Py is reducible to it in polynomial time).

c) (Bi1, A1) € co— NPy is co— N Pg—complete iff it is universal w. r. t. <g in co— NPg.

Remark 2.3

Complete problems are essential for complexity classes because they represent the hardest
problems in it. As in classical theory, the relation <g is both transitive and reflective. This
implies Pp = NPy iff it exists a N Pr—complete problem in class Pg.

Example 2.1. For k € N consider the sets
F* .= {f|f polynomial in n unknowns with real coefficients ,deg(f) < k,n € N}

Fr = {f € F*|f has a real zero }, and

Ffer07+ = {f € F*|f has a real zero with all components being nonnegative },

where a polynomial is represented as an element of R* in the following way:

The polynomial f : R" — R of degree < 4 is powerfreely represented in R*™ as (4,n)
followed by a sequence of (a,a,) where a = (aj,as,a3,a4), a; € [0,...,7n], a; < ay11 and
as, € R. The pair (a,a,) stands for the monomial a,xa, Ta,Tas®a,, With xo = 1 to allow for
terms of degree less than 4. These (o, a,) are supposed ordered by the lexicographic order on
the a. Thus f(x) = > 00Zoy TayTasTa,- Note that f can be considered as a polynomial on R>

206 TRAN THO CHAU

which does not depend on z; for i > n. For each degree d ¢ Z1 | it is clear how to generalize this
description to get the powerfree representation in R> of polynomials f : R" — R of degree
<d.

The both decision problems (FF, FF

ko) and (F* FE) belong to NPg for all k € N by

guessing a (nonnegative) zero z, pluging it into f and evaluating f(x).

Remark 2.4

— The semi-algebraic subsets of R are finite unions of intervals-bounded or unbounded,
open, closed (including single point sets), or half open [4].

— The decision problems (R, Q), (R,Z), (R,N) and (Q,Z) do not belong to the class Py (see
[21]).

— The problem (R, Q) ist not decidable (see [21]); (R,Z), (R,N), (Q,Z) are decidable.

2.2. Basic complexity results

We come back to Cook’s fundamental theorem: the honor of being the “first” NP-complete
problem goes to a decision problem from Boolean logic, which is usually referred to as the

SATISFIABILITY problem (SAT for short).

Theorem 2.1. (Cook’s Theorem [9]) SATISFIABILITY is NP-complete.

The experience can still narrow the choices down to a core of basic problems that have
been useful in the past. Even though in theory any known NP—complete problem can serve just
as well as any other for proving a new problem N P—complete, in practice certain problems do
seem to be much better suited for this task. The following six problems are among those that
have been used most frequently and these six can serve as a “basic core” of known N P—complete
problems for the beginner (see [9]): Now we want return to continue the work on problems
like Pr versus NPr. Obviously if problems in NPr would not be decidable then it would
not make sense to speak about their complexity. Moreover, it is important to know whether
N Pg—complete problems exist and how they look like. We know that proving completeness
results for decision problems in principle is possible by reducing known complete problems to
those in question. Nevertheless it remains the task to find a “first” complete problem. This
is one of the major results in [3].

Theorem 2.2. (Blum—Shub-Smale [3])
a) For any k > 4 the problem (F*, FE

zero

) is N Pgp—complete.
b) All problems in class NPy are decidable in single exponential time.

Part a) is proved by an adaption of Cook’s famous N P-completeness result for the 3—
Satisfiability problem in Turing theory to the BSS—model. The decidability of problems in
N Pg is much harder to show than in discrete complexity theory. The problem is closely
connected with so called quantifier—elimination over real closed fields: The problem whether
a f € F* has a zero can be formulated via the first-order formula

Azy ... Az f(z1, ..., @) = 0.

Remark 2.5. If Pg £ NPy is assumed then k =4 is a sharp bound in Theorem 2.2. This is a
result by Triesch [31], who proved (F*, FE) belong to Pg for k=1,2,3.

Some more completeness results: o (@S, QS,.s), does a system of quadratic polynomials
have a common zero (N Pp—complete [3])

e Is a semi-algebraic set, given by polynomials of degree at most d, non—empty (N Pg—complete
for d > 2 [3])

SOME CHARACTERIZATIONS OF COMPUTATION AND COMPLEXITY OVER THE REAL NUMBERS 207

o (Fk FF

zero,+

) (N Pr—complete for k > 4 [16])
e Is a semi—algebraic set, given by polynomials of degree at most d, convex (co— N Pg—complete
for d > 2 [5])

Especially with respect to classical complexity theory, (F2,FZ,,) is interesting. This
bounds the complexity of many important combinatorial problems if considered over the re-
als, for examples, 3SAT, HC, Traveling Salesman are all reducible to it in polynomial time.
Starting with the first master problem according to Theorem 2.2. a) one can hopefully reach
many new N P—completeness problems those are used most frequently too.

2.3. Relations with weak—BSS—models and linear additive machines

Let M be a BSS—machine with real constants x1,...,xs. For any input—size n, M realizes
an algebraic computation tree. If any node v is passed by M during this computation, the
value computed by M up to this node is of the form f, (ay,...,as x1,...,2,) Where f, €
Qai,...,as,x1,...,2,) I8 a rational function with rational coefficients only. And now the
weak cost of the according operation is fixed as maximum of deg(f,) and the maximum height
of all coefficients of f, (here the height of a rational £ is given by [log(|p| + 1) + log(|q])])-

Definition 2.7. ([14]) The weak BSS-model is given as the BSS—model together with the
weak cost—measure, i. e. the weak running time of a BSS—machine M on input x € R* is the
sum of the weak costs related to all operations M performs until ¢,/ (z) is computed.

Weak deterministic and non—deterministic polynomial time as well as weak polynomial
time reducibility are defined in a straightforward manner (and denoted by Py, NPy etc.)

Definition 2.8. ([2,14])
a) Let C be a complexity class over the reals, the boolean part BP(C) of C denotes

(Ln{0,1}*: L ec).

b) ([2,7]). If C is a non—deterministic complexity class, then DigC (digital C') denotes the
subclass of those problems in C which membership can be established by guessing only elements
from {0,1}* (for example DigN Py, DigN Py).

Definition 2.9
— Any class of functions from N — ¥* call these functions advice functions.

— Let C be a class of sets, and let F be a class of advice functions. The class C/F is the class
of all the sets B for which there exists a set A € C and a function f € F such that

B = {x[(x, f(lx])) € A}.

The classes obtained in this way are known as nonuniform classes.
Theorem 2.3. ([14])BP(Pw) = P/poly.

Definition 2.10. If the set of operations in the BSS—model is reduced to addition /substraction
or to linear operations (i. e. addition/substraction and scalar multiplications with a fixed finite
set of reals) we get additive resp. linear BSS—machines. If only test—operations “z =07 ” can
be performed we get BSS—machines branching on equality.

Notation: The kind of branching is denoted as upper index whereas the kind of model is
indicated as lower indez, for example:

= < <
Py, P, P, etc

lin?

Theorem 2.4, ([14]) Pyw C Pp C NPp = NPy .

208 TRAN THO CHAU

This theorem means that the Py versus NPy question is solved in Koiran’s model, and
the equation NP = NPy is interesting that the full non—determinism is not stronger that
the weak one. Moreover, Cucker, Shub and Smale show that the problems (F*, F3,_,., and
(QS, QSyes) are complete also in the weak setting, i.e. w.r.t. weak in polynomial reductions.

Remark 2.6. The problem Knapsack belongs to DigN Py, \ Py (see [6]).

Considering the order—free linear resp. additive BSS—modell the P versus NP question
can be answered.

Theorem 2.5. ([15,17,18])
a) Py, # NPy, and Py, # NPy,

lin
b) DZQNPM = NPS DigNP,,, = NP, ,

lin

DigNPS,, = NP5, and DigNPo, = NP,

3. A MODEL OF COMPUTATION OVER ALGEBRAIC STRUCTURES

We know that the classical complexity theory based on the model of Turing machine does
not immediately deal with functions or decision problems over the natural numbers or the
integers. More precisely, it considers the digital encodings of those functions or problems.
This means that it deals with strings over finite alphabets which possibly represent numbers.
The “genuine” complexity of number problems has been scarely investigated so far (see [11,19]).
This ideas of the model of computation with respect to structures of finite signatures have
already been outlined and used by J. Goode [7] and B. Poizat [21]. That confirms once again
the importance of this approach.

Definitions

Definition 3.1. Let N, the set of all positive integers. An algebraic structure is a quadruple
S={(S;(¢;:1€lc);(Ri:t€Ir);(F;:4€Ir)), where e S is a nonempty set, called the universe
of S e (¢;:i € Io) is (possibly empty) family of base constants, i. e. ¢; € S for all i € I ®
(R; - i € Ig) is a family of the base relations, thus R; C S% | with some arity k; € N for all
1€ Ig o (F;: i€ Ip) is a family of the base functions, each with some arity l; € Ny. The triple
o= {c;(ki i€ lg);(l;: i€ Ip)) is called the signature of S. It is said to be finite if all the
index sets 1o, I, Ir are finite.

Examples
=({0,1};0,1; =; +, —, %, /)- the binary field
N = (N; 0; =; succ)- the Peano structure of natural numbers
A= (N;0,1; =; +, x)- the structure of elementary arithmetic
Z={Z;0, 17 <; 4, —, *)- the ordered ring of integer
R ={R;0,1; <; 4, —, *, /)- the ordered field of reals
G = (G;e;=;-, 1)~ arbitrary groups
V=(V;0,= (a re IR)7 +)- a linear vectorspace (o,.(x) =r -)
Riin, = (R; 0, 1;=; (ur : 7 € R), +)- the reals as linear space(u,(x) = r - x)
Riin, = (R; 0, 1; <; (i : 7 € R), +)- the ordered reals as linear space

To get a total operation of division is always assumed s/0 = 0.

The first six examples are structures of finite signatures, and the remaining three have infinite
signatures.

e Computability in S means the computability of (partial) k—arity functions ¢ : S* — S.

SOME CHARACTERIZATIONS OF COMPUTATION AND COMPLEXITY OVER THE REAL NUMBERS 209

(Spreeer)

v

S - machine <

(program)

©(S),..., 8) (ff it exists)

Figure 3

The Figure 3 illustrates the underlying basic idea of so—called finite algorithmic procedures.

The input (sq,s9,...,s;) is given to a “machine” which works according to a certain
program and the output is the value of the function iff the function defined.

e A (deterministic) programis a sequence P = (By, By, ... By) of instructions By which act on

finitely many of the variables (registers) zg, 1, ..., oy, ... Usually the instructions can be:
assignments: zj=C; (telx)
x; = Fi(xg,,. .. 25.) (telr)
X5 = X4,
branchings if Ri(xjy,. .., x5,) then goto Ay (i € Ip)
stops: halt

o Computability over S means the computability of (partial) string functions ¢ : ST — ST,
where ST = §* U {A} with the empty string A is not allowed to occur in the course of the
computations. The basic idea in Figure 6 remains unchanged essentially, but input and output
are strings now. It gives the differential kinds for the access of arbitrary many variables. Here
the approach avoids such a direct reference to natural numbers, and we use finitely many
pointers which act like the heads of a Turing machine on the current string of data.

For an illustration of data handling by the machine (see Figure 4).

string of data 5 s, s | s, | o s,
access by pointers D3 Py 19
Figure /

An S-program will use finitely many pointer variables p; (j = 1,...,k) which point to
elements of the current string w, i. e. they have values from {1,2,..., length(w)}.

The three types of atomic pointer expressions:

Pj = Pj’; (1 r-— end(Pj)§ (2) - end(Pj)§ 3)

for 1 < 7,7 < k, where p; = p;/ is true iff both pointer variables have the same current value;
r —end(p;) (resp. | — end(p;)) is true iff p; points to the right— (resp. left-) end of the current
string.

210 TRAN THO CHAU

Data variables are of the form “p; 1” for j = 1,...,k their current values are those elements
form S to which the p; point.

Data terms are inductively defined to be either data variables or constants C; (i € I), or to
have the form F;(tq,...,t;,) with a base function F; (i € Ir) and data terms ¢1,...,1#,.

Atomic data expressions are either equations “t; = t5” with data terms ¢; and 5, or predicative
expressions “R;(t1,...,t,)" with ¢ € Ir and data terms ¢,...,%,.

7

Definition 3.2. An S—program is a finite sequence P = (By; By;...; By), where n € N, and
the unconditional or conditional instructions By (A =0,..., N):

a) Seven unconditional instructions of the following types (j =1,...,k):
¢ assignments: “p; T:=1¢" with a data term ¢;

2.

e pointer moves: “r — move(p;)” or “l — move(p;)”;
¢ append instructions: “r — app(p;)” or “l — app(p;)”
e delete instructions: “del(p;)”;

¢ halt instruction: “halt”;

» with n,mg,...,m, € N;

e jumps: “goto(mg,...,my)
e guess instructions: “guess(p; 1)”;

b) A conditional instruction of the form “if Cond then Inst”

with an unconditional instruction Inst and an atomic (pointer or data) expression Cond.

The meanings of all above instructions:
— Assignments are straightforward.
— Stop instructions finish the work of the program.

— A pointer move is performed only if the pointer would not leave the current string by that
move, otherwise it doesn’t cause an action.

— If pointer p; occupies the right resp. left end of the current string, the append instruction
causes an enlargement of the string (to the right resp. left) by one place which has to be
filled with the former rightmost resp. leftmost element, and the pointer p; has to take
this position in the following step. If the pointer doesn’t occupy the corresponding end of
the current string, the append instruction has no effect.

— Delete instructions causes an action only if the current string has a length > 2 and if the
corresponding p; points to the right or left end of the string. Then this elements has to
be removed, and all pointers placed there take the new end elmenent as their positions in
the next step.

— Jump instructions causes a jump to one of the instructions whose indices are given in the
list of goal labels (my,...,m,).

— Guess instructions replaces the value of the corresponding data variable by an arbitrary
element of the universe S.

— In all cases of instructions (excepted jump and stop), after having performed them, the
program control continues with the next instruction of the program.

— Finally, the instruction Inst, within some conditional instruction as given above, has to be
performed iff the condition Cond holds with respect to the current values of the involved
pointer and data variables, otherwise the program goes to the next instruction.

A P — configuration is a (k + 2)~tuple k = (w,\,01,...,0k), where w € ST — the current
string, A € N — instruction counter, o; = 1,...,length(w) (i = 1,..., k), and the current values
of the pointers valy(p;) = 0; (j = 1,..., k). The values of data variables are valy(p; 1) = w|o;]

SOME CHARACTERIZATIONS OF COMPUTATION AND COMPLEXITY OVER THE REAL NUMBERS 211

(the o;~the element of the string w).

On this basis, the values of pointer expressions and of data terms, and data expressions
with respect to s can straightforwardly be defined.

To every P-configuration x = (w, \,01,...,0%) obtained from some initial configuration
(wo,0,1,...,1) by finitely many steps of the program, an instruction B, of the program is
assigned. Without loss of generality, let By be the only stop instruction of the program.
Then « is a stop configuration of P iff A = N.

Notation:

— k Fp & means that the configuration ' is obtained from s by executing one step of
program P.

— F% denotes the reflexive and transitive hull of relation tp, i.e. &} &' iff there are an
m € N and P—configurations kg, 51, ..., km such that K = kg, &' = ki, and x; Fp k41 for
all i =0,1,... ,m—1.
Finite or infinite sequences (kg, 1, ...) of configurations such that x; Fp x;y;1 are called
P—computations.
Let p C ST x ST. We say that the program P computes the relation p iff

p={(w,w): there is a stop configurationk = (w', N,01,...,0%) such that (w,0,1,...,1) s &'}

Let W C ST. We say that the program P recognizes W iff W = {w : there is a finite P—
computation which starts with (w,0,1,...,1) and terminates with some stop configuration }.
In other words, the recognizable sets over S are the domains computable relations or halting
sets of S—program.

A set W C ST is called decidable iff both W and ST\ W are recognizable by S—programs.

Definition 3.3. — An S-program is said to be deterministic (D-program) if it does not contain
a guess instruction, and all its jump instructions have just one goal label. D-programs compute
only single-valued relations, i. e. (partial) functions.

— A program is nondeterministic of the first kind or binarily nondeterministic (N,-program)
if it does not contain a guess instruction.

— A program is nondeterministic of the second kind or totally nondeterministic (No-
program) if it is an arbitrary program.

Remark 3.1. We shall speak of D—computability and N;—computability (z = 1,2), and use
the related notation with respect to recognitions or decisions.

Example.
Over the structure A of natural numbers the instruction “guess(p; 7)” can equivalently

be replaced by

ps 1= 0; T s goto(Ly, L), L : pj 1= p; 1 +1; goto(Lh); L .
Thus, No—program over A are not more powerful than N;—programs. The analogue does not
hold, however, over the ordered field R of real numbers. Indeed, the function ¢(w) = y/abs(w(1])
is not Ny—computable, but it is computed by the following No—program:

Lo : r — move(ps)

1f not(r — end(pa)) then goto (Lo); {p2 to the right end }

r — app(p2); guess(pz 1);

if pr 1< Othenpy T:=(=1) #p1 1 {p1 T:=abs(p1 1)}

212 TRAN THO CHAU

Ly if po T #p2 1 p1 T thengoto (Iy); { infinite cycle }
Lo : del(py); if p1 # pathen goto (Ls); { delete the input w}
halt.

Many authors, like BSS and Friedman—Mansfield, allow the use of arbitrary elements of the
universe as constants in their programs. This seems to be quite common with respect to RAM
model over the integers. Remark that any constant ¢ can be considered as term “1+14---+1”
(i times 1) if ¢ > 0, and “(—1) + (=1) + -+ (=1)" (i times —1) if 5 < 0.

We shall strictly distinguish between S —programs, where only the finitely many base con-
stants of the structure are allowed to occur as direct operands, and the S—quasiprograms which
are analogously defined but allowing arbitrary elements of the universe as direct operands.
Those will be denoted as quasiconstants.

Now we shall see that the computability of relations by quasiprograms can be characterized
by the computability by means of programs.

Lemma 3.1. A relation ¢ : ST = ST (subset of ST x ST) is computable by a (D—, Ni— or
Nao—) S—quasiprogram iff there are a relation ¢ : ST = ST and a string wg € S* such that
Y = @) and ¢ 1s compulable by an S—program of the same type.

Notation: A “Q)” in the prefix denotes the concepts “Quasiprogram” corresponding the D@—
computability, N;Q-recognizability, etc.

Lemma 3.2, For every xz € {D, N1, Na, DQ, N1Q, NoQ}, the class of all X —recognizable sets of
string is closed under (finite) union and intersection.

Definition 3.4. An element s € S is said to be (S—)constructible if the total constant functions
s With ps(w) = s for all w € ST, is deterministically S—computable.

A string wo € ST is called constructible if it consists of constructible elements only.

Lemma 3.3. Let so be an S—constructible element. Then, for every element s € S, it holds: s
1s S—constructible iff there is an S—term ts(x) containing only one individual variable x such
that s =1ts(s¢).

Proposition 3.1. Let A be a finite set of S—constructible elements, where card(A) > 2. Then
every partial recursive function ¢ : AT — A" s determistically S—computable.

Definition 3.5. A structure S is said to be bipotent if it contains at least two constructible
elements rg, ry.

Examples of bipotent structures are the structures with the number domains specifying
in section 2, and the nonbipotent structures are groups G or vector spaces V in section 2.

Remark 3.2. Quer bipotent structure, one can use auziliary tracks within string processing in
a rather natural way, evample: string © = ry s1ri,80- 15,5, (45 € {0,1}) instead of the current
String w = s159- - Sy,.-

Bipotent structures also allow a rather simple pairing of string:
. ! ! o ! ! !
PaBr(S1, ..., Sn, 1, -+, Syy) =df Y0S170S2 . . . FOSRT1S1705y - . . 70Sy,.
Obviously, the set {pair(wi,ws) : wy,wy € ST} is D—decidable.

Theorem 3.1. ([9]) A string relation p over a structure S is Na—computable iff there is a
D—computable string function ¢ such that

SOME CHARACTERIZATIONS OF COMPUTATION AND COMPLEXITY OVER THE REAL NUMBERS 213

p={(w,w'): thereis a stringa € ST such that p(pair(w,a)) = w'}.

A string relation p over a structure S is Ny—computable iff there is a D—computable string
function ¢ such that

p={(w,w') : there is a string a € {ro,r}" such that p(pair(w,a)) = w'}.

3.2. Recognizability and related concepts

— As defined in section 2, by (D—)recognizable sets of strings W C S, we understand the
domain of D—computable string functions ¢ : St — S*, W = dom(y). And the synonymous
denotation halting set is used.

— An oulput set W is the range of a D—computable string function ¢, W = ran(y).

— Aset W C ST is said to be (S)—enumerable if it is empty or there are an (S)—constructible
string wo and a D—computable (partial) string function + such that W = {¥%(w) : i € N},
where ¢ denotes the i-th iteration of 4.

This representation of W means that it can be exhausted by an S—effective counting
process starting with the constructible string wq. @ is called a successor function enumerating
w.

Proposition 3.2. ([9])A structure of finite signature is constructive iff its universe is enu-
merable.

Theorem 3.2. ([9]) For an arbitrary structure (S), the following condition are equivalent:
a) The universe of (S) is enumerable.

b) Every halting set over (S) is enumerable.

¢) Fvery output set over (S) is enumerable.

Definition 3.6. Let W C S*. Its projection is defined by
(W) =4 {w; : there is a wy € ST such that pair(w;,ws) € W}

Theorem 3.3. ([9]) Over arbitrary structures, the following conditions are equivalent:
a) The classes of all halting sets and of all output sets respectively, coincide.

b) The class of all halting sets is closed under projection.

¢) The class of all halting sets is closed under images of D—computable functions.

Remark 3.3. There exists the structure owning an output set that is not a halting set, for
example:

- Let M = (N;0,1;=; %), where “*” denotes the multiplication; 0 and 1 are the only con-
structible elements of the universe of M. Hence, N is a halting set which is not M —enumerable.
The set of square numbers {k? : k € N} is an output set, but not a halting set. Indeed, for
inputs of length 1: w = z € N, by the possible promises of conditional expressions with the
only variable z, the elements from N\ {0,1} cannot be separated each from the other.

- Over the (unordered) field of real numbers, R = (R;0,1;=:+, —, *, /), the set R. = {r:
r >0} = {r?:r 0} is an output set, but not a halting set.

3.3. Universal programs and some results

Here we suppose that the considered structures (S) have finite signature.

214 TRAN THO CHAU

Using two constructible elements rg and r;, every (S)—quasiprogram (P) can be encoded in
a straightforward manner by a string denoted by code(P). The keywords of the programming
language, the technical symbols, base constants, base relations and base functions be encoded
by strings from {r¢,71}", and indices of pointer variables and the goal labels be binarily
encoded over {rg,r}. The quasi—constants of quasiprograms are encoded by themselves.

It is convenient to use only the track of even—numbered places in strings for these encod-
ings, where as the odd—numbered places are filled by 7 or r; such that the starting places
of codes of the syntactic units can uniquely be identified. More precisely, instead of the
direct encoding “syss...s,” of some syntactic unit u, we use the padded string code(n) =
ri817082 . ..708,. Lhen for quasiprograms P = wjus...u,,, where u; are the syntactic units
(t=1,...,m), let code(P) = code(uy) - code(us) - - - code(u,,). Now, the parts of code(P) which
represent the codes of the syntactic units can be identified by a deterministic S—program.

Theorem 3.4. ([9]) There is a D—program U such that, for all D—quasiprograms P and all
strings w € St

wu(pair(code(P), w)) = pp(w).
For ¢ = 1,2 there is an N;—program U; such that, for all N;—quasiprograms P:

PP = {<w7 w')|(pair(code(’P)7 w>7 wl> € pu; }

This is proved by applying standard techniques of simulation and programming, as they
are well-known from classical computation theory based on the concept of Turing machine.
Notice that the concept of S—program corresponds to the notion of multihead Turing ma-
chine. Thus, the simulated program P may use arbitrarily many pointer variables, whereas
the universal program U and U; respectively, are equipped with some fixed number of pointers
only. Thus, in each step of the simulation, the positions of the P—pointers p; must be marked
by the simulating program ;; by means of encodings of p; at the corresponding places of the
(encoding of the) current P—configuration. To compute the values of base functions or base
relations, the universal programs can use (finitely many) suitable subroutines. The simulation
of nondeterministic steps can analogously be performed by subroutines.

The encoding of pairs of strings is used to define inductively the encoding of k—tuples of
strings, for k € Wt. Let
tupley (w) = w, tuples(w,w') = pair(w,w'),
tuplep1(w,, w, . . ., wy) = pair(wg, tupleg (w, . .., wy)) for k> 1.
We simply write [ws, ..., wy] instead of tupleg (wn, ..., wy) for k> 1.

Definition 3.7. A k—ary partial function ¢ : (ST)* — S7 is said to be (deterministically)
computable over S iff the unary string function 7 is deterministically S—computable, where:
B([wr, ..., we]) = p(wi, ..., wg) for wy,... wy € ST,

?(w) is undefined for w ¢ {[wy,. .., wg] : wi,...,wp € ST}

Notation. ¢, (w') instead of ¢y (pair(w,w')) with respect to some fixed universal program i

according to Theorem 5.1. Without loss of generality, suppose that ¢y (pair(w,w')) is undefined
if we {reg,r}".

Proposition 3.3. (s-m-n Theorem [9]) To every m,n € Ni, there is a deterministically
S—computable (m + 1)—ary total function o : ({rg,r1} 7)™ — {ro,r1}" such that for all
Wo, W1, . .. Wy € {ro, 1} and all wpy1, ... Wpgn € ST

‘Pwo([wlv coey Wy Wit 1, - wm+n]> = ‘Pa;{l(wo,wl,...,wm)([wm+17 ceey wm+n]>

SOME CHARACTERIZATIONS OF COMPUTATION AND COMPLEXITY OVER THE REAL NUMBERS 215

Remark 3.4. The functions o are recursive word functions on the alphabet {rq,r}.

Proposition 3.4. (Recursion Theorem [9]) Let n € Ny, and ¢ : (ST)"™ — ST be a de-
terministically S—computable function. There is a string we € {ro,r1}" such that for all
Wi,. .. Wy € ST

(wo, w1, . ., wn) = Py ([wr, . . . wy]).

Using this theorem, we have, for example, the following results:

Proposition 3.5. There exists a deterministically S—computable 2-ary total function ¢ :
({ro,r1})2 — {ro,71} " such that for alhv,w' € {ro,r1}" and alko,, ... w,, € ST :

Ouw([wi, .. wm]) - @ (W, . wn]) = Qo) (Wi, - w).

Proposition 3.6. The function

) if Ceode(p)([wi, ... wy]) exists and is equal
g(pair(code(P), (w1, ... wy]) =g tow' € ST
undefined, if Qeoge(p)([wi, ... wy]) does not exist.

for all D—quasiprograms P and all wy,wy, € ST, is S—computable.

Proposition 3.7. (Fixed—Point Theorem [9]) Let n € Ny, ¢ : ST — ST be a unary de-
terministically S—computable function. There is a string we € {ro,r1}" such that for all
wi, ..., wy €8T

@wo([wh) wﬂ]) = (pip(wo)qwlv) wﬂ])

Proposition 3.8. (Rice’s Theorem [9]) Let F be a set of deterministically S—compulable
unary partial functions which does not contain all such functions but does contain the empty
function . Then the index set

I(F) =ar {w:we {ro,r1}" and @, € F}

18 not determanistically S—recognizable.

REFERENCES

[1] S. Ben-David, K. Meer, C. Michaux, A note on non-complete problems in Ng, MSRI
Preprint No. 1999-008.

[2] L. Blum, F. Cucker, M. Schub, S. Smale, Complexity and real computation, Springer-
Verlag, New York, 1998.

[3] L. Blum, M. Schub, S. Smale, On a theory of computation and complexity over the real
numbers: NP—completeness, recursive functions and universal machines, Bull. Amer.
Math. Soc. (21) (1989) 1-46.

[4] S.A. Cook, The complexity of theorem proving—procedures, Proc. 3rd Ann. ACM Symp.
on Theory of Computing, Association for Computing Machinery, New York (1971) 151—
158.

[5] F. Cucker, F. Rossello, On the complexity of some problems for the Blum—Shub—Smale
model, Proc. LATIN 92, Lecture Notes in Computer Science (583) (1992) 117-129.

216
[6]

7]
8]

9]
10
ifl
12
13
14
15
16
17
i
19
20

[21]
22

23

TRAN THO CHAU

F. Cucker, M. Shub, S. Smale, Separation of complexity class in Koiran’s weak model,
Theoretical Computer Science (133) (1994) 3-14.

J.B. Goode, Accessible telephone directories, J. Symb. Logic (59) (1994) 91-105.

E. Gradel, K. Meer, Descriptive complexity theory over the real numbers, In 27th Annual
ACM Symp. on the Theory of Computing (1995) 315-324.

A. Hemmerling, Computability of String functions over algebraic structures, Math. Logic
Quarterly (44) (1998) 1-44.

Hemmerling, A., Computability and complexily over strutures of finite type, F.-M.-Arndt-
University Greifswald, Preprint 2 (1995).

Hemmerling, A., On genuine complexity and kinds of nondeterminism, J. Inform. Process.

Cybernet, EIK 30 (2) (1994) 77-96.

Hemmerling, A., On P versus NP for parameter—free prograins over algebraic structures,
Mathematical Logic Quarterly (47) (2001) 67-92.

Hemmerling, A., On the time complexity of partial real functions, J. of complexity (16)
(2000) 363-376.

P. Koiran, A weak version of the Blum-Shub-Smale model, FOCS 93 (1993) 486—495
and Neuro COLT TR Series NC-TR-94-5 (1994).

P. Koiran, Computing over the reals with addition and order, Theoretical Computer Sci-

ence (133) (1994) 35-47.

K. Meer, Computation over Z and R: a comparison, Journal of Complexity (6) (1990)
256-263.

K. Meer, Komplezitatsbetrachtungen fur reelle Maschinenmodelle, PhD. Dissertation, Ver-
lag Shaker, Aachen, 1993.

K. Meer, C. Michaux, A survey on real structural complexity theory, Bull. of the Belgian
Math. Society, (1996).

N. Megiddo, Towards a genuinely polynomial algorithm for linear programming, SIAM J.
Comp. (12) (1983) 347-353.

C. Michaux, P # NP over the nonstandard real implies P # NP over R, Theoretical
computer Science (133) (1994) 95-104.

B. Poizat, Les petit caillouz, Aleas. Lyon, 1995.

| M. Prunescu, P # NP for the reals with various analytic functions, J. of complexity (17)

(2001) 17-26.

| E. Triesch, A note on a theorem of Blum, Shub and Smale, Journal of Complexity (6)

(1990) 166-169.
Received October 6, 2002

