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DIFFERENCE SCHEMES FOR WEAK SOLUTIONS OF MIXED PROBLEM
FOR A CLASS OF PARABOLIC DIFFERENTIAL EQUATIONS, I

HOANG DINH DUNG, VU THE NGOC

Institute of Mathematics - NCST

Abstract. The approximate methods for the problems of parabolic differentail equations with non-
regular data are studied by some authors. For example in [1-3] are considered the cases of data
belonging to the Sobolev spaces W)"(€2). The difference schemes for solutions in H™(Q) of the
boundary problems for the elliptic equations with variable coeflicients were investigated in [4, 8]. In
this paper we extend the ideas introduced in [4, 8] to consider the approximate solutions of the mixed
problem in the Sobolevic spaces H2™™ () for the parabolic equations (see sec. 2). In section 3 it is
first time this approximate problem is considered in the space of Schwartz distributions D’(£2).

Tém tét. Cic phuong phép xap xi cho bai todn ddi véi cdc phuong trinh loai parabol véi dir liéu
khong tron da dwoc nhiéu téc gid nghién ctru. Chéng han trong [ 1 - 4, 8] da xét cdc trudomg hop
du kien thuoc cac khong gian Sobolev W (€2). Trong bai nay ching t6i phat trién cic phuong phip
trong [4, 8] dé nghién cttu nghiém sai phan clia bai todn hon hop trong cic khong gian kiéu Sobolev
H2mm(Q). Trong Muc 3, lan dau tién bai todn xap xi nay duoc xét trong khong gian cic phan bo
Schwartz D' () twong ting v6i1 cic dit kién ¢6 do khong tron bac cao.

1. INTRODUCTION

Consider the mixed problem for the following class of parabolic differential equations:
2

5 g (@) < fen, o en 0
u(:)c7t)|t:0 =o(x), = €G, (2)
uw=0, (z,t) €T, (3)

where the coefficients k;(z) € CY(G), ki(x) > C >0, i = 1,2, C is a constant, G is a bounded
region in B2, Q=G x (0,T)={(z,t): 2 € G,0<t < T < o0}, ' =0G x (0, 7).
It is known that in many applied problems the data f(x,t), o(x) are not continuously

differentiable in the classical sense. In these cases the generalized solutions (GS) are considered.
Below, at first, we consider GS u of the problem (1)—(3) in the Hilbert spaces H?™™ () with

the corresponding test functions v defined in the spaces i 2mm(Q)), m being the nonnegative
integers (see [5] for the spaces HZ™™(Q)).

By [6] the GS u(z,t) of the problem (1)—(3) satisfies the condition (3) and the following
integral equality (v is extended by zero onto Q= = R(¢) x R%(x) \ Q):
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ou 2
_/{ 85}5 z:: { (¢1, ) 8@}} v(¢)d¢
- / FO(Q) + @ (Ct Co)o(Cas G, 0)] o, (1)

where U(C) = u(Ch C27 C3>7 (p(&?) - 90(3317 x2>7 U<x7 t) = U<x17x27 t3)
2. DIFFERENCE SCHEME FOR GS

2.1. Construction of difference scheme

For simplicity of presentation, let € be the unit cube:

Q={(z,t) = (w1, 22,13) : 0 < @1, 29, t3 < 1}. Let us introduce in € a grid &:
W= {(96179627153) Dxy = Xy, = Johg, 13 = gshs; ji = 0,1, .., Ny,
1

1
hi=—,i=1,2,j5=0,1,... M, h :—}7
Ni 1 713 3 M

where N; and M are positive integers. For the steplengths, assume that C; < h—l < (s,
2

Cs < h_2 < C, uniformly as hy, ho, ks — 0, here Oy, [ = 1,4, being positive constants.
3

Denote the set of interior and boundary gridpoints of Q by w and ~ respectively, v = w\ w.

To obtain a net problem we introduce an auxiliary cubic grid covered the cube € and
containing three families of planes which are parallel to the coordinate planes x; Oy, 2013,
t30x; with steplength distances hy, ho, hs respectively. In Q denote by w* this grid consisting
of the parallelepipeds with centres at the gridpoint (z,t) of the grid w. The cell of w* at the
gridpoint (z,t) is denoted by e:

e=e(x,t) ={¢C=1(¢1,(,C): |G —ai| <0Dh;, i =1,2, (3 —t3]| < 0.5 hs}.

Now, as in [8] (see Sec. 1, Chap. 3) one may take the test function v in (4) by the form

(x t) _ { (hl hg hg)il for (a?ﬂf) ce,

0 for (x,t) € Q\e. 5)

Then, by (4), the GS w of the problem (1)—(3) satisfies the following integral equality:

1 1
Fihshs / {acg izacz { (. ¢2) acj}dg Fihahs / O+ e ()

Let us set
Yo +0.5he,
1
SOéu(y> = h_ u(y17 () COH sy yTL)dCOc P
Oéyafo.{iha
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u(Eke) = u(ika)(y) =w(yt, ooy Yo T KRy ooy Yn)s

ultle) —y u— ulte)
Uy, =y, () = ———, ug, =ug (4) = ———

where 1 <a<n, £=0,51;...,yc R", here n = 3.

Then, from (6) we have the following net problem for the GS w(z, t) of the problem (1)—(3):
2

ou
Py = 515253% - Z

o\ (059
S353_i | k; =R S, (x,t ,
303 < ax) ) J+Se, (x,t) cw 7)

i=1

u =0, (x7t> €,
where R = 5152537 S = 5152 .

Now, to obtain the difference schemes of the operator P°u (7), one may approximate the
mean integral operator S; by the quadrature formula of average rectangles and the partial
derivatives by difference quotients as in [8]. For instance, one has

B\ (0
S350 | k1 —
302 < 1 (%1)
t3+0.5h3 1‘2+0.5h2
Ju
== h3h2 k‘l (331 — 0.5h17 Zg)a—xl(xl — 0.5h17 Z2, Zg)dZQng
t370.5h3 i) 70.5}7,2

—0.5
~ /{/‘E Ol)u;

IR

Then, one has the following difference scheme of the problem (1)—(3)
2
Py =vi, = > (K0 0s) = aleranta), (0,0 cw,
i—1 i (8)
y(e,t) =0, (x,t) €7,
where ¢ = Rf + Sop.
The difference schemes of the form (8) are investigated by many authors (see, e.g., [9]).

The scheme (8) may be written in the form:

2
Piy =SSy, = > (KOs ) = qlan,@ata), (@0) € w, o)
i=1 ‘

y(x,t) =0, (x,t) €,

2.2. Estimation of the convergence rate

Consider now the convergence of the approximate solution y to the GS u of the form
(4),(5) of the problem (1)—(3). For this purpose we estimate the method error z = y — u of
the scheme (9). From (9) one has

2
i=1

Z4

Hence, by (7) and (9),
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Lz=p— Lu=-Y(xz,t), (x,1) € w,
2(x,1) =0, (z,1) €,

where
9 2 (—0.5;)
0.5 ou ou
v — (k( 0.5; 5> =57 8585 [ ki 518585 [ 2L _ o
;z uw; 303 o, +1238C3 Vi,
Thus,
2 ( : 2
- k‘705z 5) - i +A b 7t € w,
12;(1 ) ;(77)90 0, (#,1) € w (10)
2(x,t) =0, (z,t) €,
where
0.5 ou \ 05 Ou
= ks = 5585 [ ks No = 595555 [ —— — . 11
7 i Uz, 303 < &Jci) ) A0 202 3<3C3 yz3> (11)

Now, to obtain the error estimation, consider the space H of grid functions « on @ and
let Hy be its subset of the functions satisfying the condition u(x,t) =0 as (z,t) € .

Let a(x,t), b(x,t) € Ho or H. Introduce the following scalar products and corresponding
grid norms:

(@,b) = > alw, )b(x, )hrhohs,
(z,t)Ew
M N; Nx—1

(a, B> = Z Z Z alirhy, iaha, j3ha)b(i1hy, iaha, jaha)hihohs
J=0i1—1 i1
M N1 N,

(a, b = Z Z Z alirhy, iaha, j3ha)b(i1hy, iaha, jaha)hihohs

J=0 i1—=1 iz—1
lall* = llall§ o = (@), llalf = (a,alf*, i=1,2.
Let us scalar multiply both sides of (10) with z(x, t):
2 2
_ Z <<k§0-0i)%i> 7z> = Z (77%'72) + (Ao, 2).
i=1 o i—1

Then, by the same way as in Sec. 2.2 [4] one has

[2]l1,0 < C (Imlio + In2]20 + | Aol]) (12)

where the constant C is independent of h and z (|k|? = h? + h3 + h2),

2
lelliw = 1205w + 1V, V2050 =D 2]

i=1

2
20 *
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To estimate the terms in the right-hand side of (12), we introduce in the space H2™")(Q)
following seminorms and norms:

|U|2mQ|: Z / DO‘Dﬂ ‘ dxdt

lo|+268=2m }

1/2
lwll2m,0 = { Z / DO“DO‘ZDﬂ‘d:cht} ,

la]+28<2m
where |a| = a1 + a3z, a; and 3 being the nonnegative integers.

Now, consider the functional 7, (x,t) defined by (11)

1 t340.5hs
T (x7t> = I{?l (331 — 0.5h17 952)“51 — h_/ %
3 Jt3—0.5hs
x2+0.5ha

{h% ki(x1 — 0.5k, CQ)%(M — 0.5k, (2, CS)dCQ}dC&

i) 70.5}7,2

The expression of n;(z,t) is anologous to the one of n; in Sec. 2 [4], then in the same way
as we did for the estimation (26) in that section, one has

7)o < ClA|lull20, @=1,2. (13)
For the term )\, by (11) one has
)\0 = 515253 <8C > + 515253 ( yts) = )\1 + )\2, (14)

By the Cauchy-Buniakovskij inequality one has

|)\(1)| < (h1h2h3)1/2{/6[8u(o _ufs(%t)rdC}l/Q.

9¢3
One has
t3
/ a_u — U~ ( t) Qdc i/ h*l / au(C) _ au(x17:)c27a) d Qdc
R A 9¢s da e
ts*hg
Then,
IAo| < C(hihohs) 2[R (Julz.e + [uls,e)
where

e =€ (x, ) = {{ = ((1, 2, (3) ¢ |G — @3] < 0.5hy, i = 1,25 t5 — hy < (3 < l3}.

Hence,

1/2
||Aé||[ 3 |Aé|2h1h2h3} < O[] [ula. (15)
(z,t)Ew
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From (14) and (15) it follows
Aol < ClAl[lull20- (16)
Combining (12), (13) and (16) yelds
2l e = lly = ulliw < ClA] ulls,o. (17)

Further, for the problem (1)—(3) one has the following a priori estimate (see [5,Sec. 2,
Chap. 6]):
lullze < Clellme) + 1 lr2@),
where the constant C is independent of ¢ and f.
Finally, from the last inequality and (17) one has the following
Theorem 1. Let the given functions f(z,t) € L2(Q), ¢(x) € HY(G) and k;(z) € WL(G)NC(G),
i = 1,2. Then the solution y of the difference scheme (8) converges to the GS (6) u(z,t)

(w € H2X(Q)) of the problem (1)—(3) in the grid norm || - |1 with the rate O(|h|), such that
one has the following error estimation

ly = ulhw < Claflu]20,
where the constant C is independent of h and u(z, ).
3. DIFFERENCE SCHEMES FOR WEAK SOLUTION

Now consider the GS u(z, t) of the problem (1)—(3) in the form (4), where the test functions
have the form

(@) = { i) e | = S’} (w0 < (13)
0 , (x,t) € Q\ e,
where [ is a positive integer.
Then, by (4) the GS u(x,t) of the problem (1)—(3) satisfies the following equality:
2
(h1h2h3)*1 /6{ T ; { Ch CQ aCj } (C)dC —
(uhaha) [ 11(Q)a(0) + 961, Gal6r, 2 0}, (19)

where a(¢) = hihohs v(().
Thus, one has the following net problem for the GS w(z, ¢):

(—0.5;)
535371‘ <Oék‘ au) ‘|
&Jci

da Ou =, =~ (20)
=R Sp=gq t
3¢, ¢, f+S¢p=4q, (x,t) cw,

(:Jc7t) =0, (x,t) €,

2
ou
Py = slsgsga% - Z

i=1

24

+ 515253 Z/f Cr,Go)—
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where Rf = 515555 a(¢)f(C), S¢ = 5155 [a(Cr, G2, 0)0 (1, Go)] -
3.1. Difference schemes

Arguing as in the proof of the form (8), Sec. 2.1, we obtain the following difference scheme

of the net problem (20):
2

2
Py = 818285 (O, — D (aiths, ), + 515255 Y kiw)az, iz,

- = q¢(z, 1), (x,t) € :: @D

Y(@,t) =0, (x,t) €,
where a; = a(*0'5i)k§70'5i) ().

Furthermore, as in [4] (see the forms (9) and (12) in Sec. 2.1) one has an other difference
approximation for the problem (20):

2
2P = 5198395, — Y (bithw.),, = G, (,1) €w,

1 (22)
9(@,t) =0, (z,1) € v,
where b;(x) = {059 (x),
2 (—0.5; 2
ou da Ou
q(:mt) = 5152538_ — ; 535371 <Oék‘laxl> | + 515253 ;kl(Ch CQ)a_Qa_Q . (23)

3.2. Estimation of the convergence rate

a. Consider first the scheme (22). We see that the scheme (22) has the form (9), then by (17)
one has

19— ull o < Claflu]z0, (24)
where ¢ being the solution of the scheme (22), u being the GS of the problem (1)—(3).
Now consider the following mixed scheme:
1
My = 3 (1P,‘Li + QP,f) y=4q, (x,t) €w,
y(a, 1) =0, (x,1) €,

where y = 1 (¥ +9), ¥ and ¢ being defined by (21) and (22) respectively.

Then, by (21) and (22),

[\

2
My= 25158511+ a(Olyr, — 5 D@ + b L,

i=1

2
1
+ 5515253 ; kzaizyiz - 57 (x7 t) € w, (25>

y(x,t) =0, (z,t) €.
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Note that it can be verified that

lim /R 9(Q)(OdC = gl 1),

hi ha,ha—0
where the function g(¢) is summable in e and continuous at the gridpoint (z,t).

Hence, if hy, ho and hs are sufficiently small, one may write (25) in the form:

. ; {k( w)(Ha( 00)) } Zk% Yz, = 4, (z,1) € w, 26)
y(:)c715):07 (x,t) € .

By [9] it should be noted that there exists uniquely a solution of the difference problem
(26) and, then, of the scheme (21).

Consider now (25), one has

Moy = Z [(Ctl + bl)y@]wz = 515253[1 + Oé(C)]yg

i=1

2
+ 515553 Z klagzygz — 24 =p, (a?7 t) c w. (27)

i=1

Let 2 = y —u, where u being the GS of the problem (1)—(3) in the form (4), (18). By (27),
(23) and (20),

MOZ :ﬁ_ MOU = _w<x7t>7 (x7t> € w,

(28)
2(@,t) =0, (x,1) €,
where
2 2
w: Z[(az+b ZacI an+ﬂz +)\0+)\1+57
i=1 i=1
B (—0.5;) B (—0.5;)
i = GiUz; — 5353 <Oé/fzau > y Mi = biu@ — 5353 4 <Oé/fiau > )

ou ou
)\0 = 515253 <8C yzs> ; )\1 51525304 <8C %3) ;

Oa O
B = 51553 Z/% <2_a - O@yiz) :
i—1

0G; 9¢;

From (28), (29) one has the following inequality analogous to (12):

2
Izlh e <€ (Z [lmlio + llpsalliol + Aol + l[Ax] + IIBII) :

i=1

The terms in the right hand side of the last inequality are estimated by exactly the same
manners as they were done above in Sec. 2 and as in [4] (see Sec. 2). Then one has

1
el = gllo+ 9 = 2ul|, , < Clalull2q (30)
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Finally, by (24) and (30) we get the estimation of method error for the difference scheme
(21):
= ell, . < ClA ull0- 1)

Remark. By a manner analogous to the proof of the inequality (31), one may verify that this
estimation is also valid if, in the form of the GS u(x,t) (4), v(x,t) is any test function in the
Schwartz basic space D(Y), ' € Q.

b. The estimation (31) is obtained with the assumption f € Ly(Q) and ¢ € H'(G), we now
show that the result may be generalized to the equations with right hand side f € D'(Q) and
the initial condition ¢ € D'(G), here D'(G) being the space of Schwartz distributions on G [7].
Indeed, by our assumption and by the theorem on local structure of distributions and its
corollary, there exist the functions g(z,t) € La(e), ¥(x) € H'(eo) and the nonnegative integers
k1, ko such that
f=DyDpg(x,t), ¢ D2y, (32)
an
where DY = ————, the open set ¢ e Q C Riz) x RY(t), e0 = {(z,1)
Oxy' 0xy°
(x,t) € e, t =0}

Let v(x,t) € D(e). By [6], the GS u of the problem (1)—(3) satisfies the following equality:

<%—§;Q(mggﬂ><v+ﬂmX&mw) (33)

where @, f and ¢ are the extended functions of u, f and ¢ by zero onto Q~ = R'(t) x R2(x) \ Q2
and G~ = R?(x)\ G respectively, (@, v) denotes the value of a functional @ on the basic function
v.

By (32) one may write (33) as

/ {3_“ -y aaci {m(ch @)gﬂ } ()¢ = By + b, (34)

where

ﬁg:/%@m@%ﬁ§¢:/¢@£ﬁdﬁéﬂa
Ul(x7t> = (_1>leZlDflU(x7t>7 U2<x> - DI;ZU(%7O>'

We see that vy (z,t) and ve(x) are also the test functions. Thus, the equation (34) has the
form (4), (20). Hence, one may repeat the procedure used above for the difference schemes
(21), (22) and obtains the following result analogous to (31):

Theorem 2. Let in the problem (1)—(3) the data f € D'(Q), v € D'(G) and ki(x) € WL (G),
i =1,2. Then, there exists uniquely a solution of the difference scheme (21) and this solution
y converges to the GS (33), (34) u(x,t) of the problem (1)—(3) with the rate O(|h|) such that
one has the error estimation

5=, ., < ClAl a0,
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where Y € Q.

Remark

1°. For the sake of simplicity, the homogeneous condition (3) was considered. In the case
of nonhomogeneous condition, the theorems 1, 2 may be proved quite analogously.

2° In the part 11 of this publication we will consider the difference schemes of the problem
(1)—(3) in a region of arbitrary form.

ot
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