MỘT SỐ MỞ RỘNG TỔNG KẾT DŨ' LIỆU TRÊN CO' SỞ DỮ LIỆU QUAN HỆ MỜ*

TRĂN THIÊN THÀNH
Khoa Tin học, Trừong Đai học Su pham Quy Nhơn

Abstract

In this paper, we present some extensions of data summaries on fuzzy relational databases based on a pattern matching process of D. Dubois and H. Prade. An algorithm for discovering data rules based on hierarchical tree of template rules is given.

Tóm tắt. Trong bài báo này, chúng tôi trình bày một số mở rộng tính toán cho các luật tổng kết từ dữ liệu trên mô hình cơ sở dữ liệu quan hệ mờ. Các tính toán được xây dựng dựa trên đối sánh mẫu cuả D. Dubois và H. Prade. Bài báo cũng dưa ra thuật toán xây dựng các luật tổng kết dữ liệu dựa trên cây phân cấp của các luật mẫu.

1. ĐẶT VẤN ĐÈ

Việc phát hiện tri thức từ dữ liệu là một trong những hướng nghiên cứu đã tạo ra một cách nhìn mới vể những dữ liệu được lưu trữ. Cùng với sự phát triển các mô hình cơ sở dữ liệu quan hệ mờ (cơ sở dữ liệu quan hệ với dữ liệu mờ) đã cho phép thu thập nhiều thông tin và qua đóo hỗ trợ nhiều cho việc phát hiện các tri thức. Các tri thức phát hiện từ dữ liệu thường có dạng các luật dữ liệu bao gồm các yếu tố mờ như lượng từ mờ, tân từ mờ, các phép so sánh mờ, \ldots và các luật này có độ tin cậy là một giá trị trong doạn $[0,1]$. Tiêu biểu cho hướng nghiên cứu này là các kết quả của Yager [9, 10], Kacprzyk [7], Cubero [3], Bosc [1], Dubois, Prade [6],...

Trong bài báo này, trên cơ sở đánh giá độ tin cây của luât có dạng " $Q r$ are P " của Dubois và Prade [6], chúng tôi xây dựng cách đánh giá độ tin cậy cho các luật có dạng " $Q P_{1}$ r are P_{2} " và " $Q_{1} P_{1} r \theta Q_{2} P_{2} r$ ", trong đó Q, Q_{1}, Q_{2} là các lượng từ mờ, r là một quan hệ mờ, P_{1}, P_{2} là các tân từ mờ, θ là toán tử so sánh mờ. Cùng với cách đánh giá độ tin cậy, dựa vào thứ tự phân cấp của các tập mờ, chúng tôi đưa ra thuật toán nhằm xây dựng tập các luật tổng kết dũ liệu theo mẫu cho trước trên các dữ liệu có sẵn.

Bài báo được tồ chức như sau: phần 2 trình bầy những kiến thức cơ sờ gồm: mô hình CSDLQH mờ dựa trên khả năng; đánh giá các tân từ mờ; biểu diễn các lượng từ ngôn ngữ bằng tập mờ; lực lượng tập mờ. Phần 3 trình bày cách đánh giá các luật tổng kết dữ liệu và một số tính chất liên quan. Phần 4 trình bầy thuât toán xây dựng các luật theo mẫu dựa vào thứ tự phân cấp của các tập mờ. Cuối cùng là kểt luận và một số hướng nghiên cứu tiếp theo.

2. CÁC KIẾN THỨC CƠ SỞ

2.1. Mô hình cơ sở dữ liệu quan hệ mờ dựa trên khả năng

Bằng phân bố khả năng có thể biểu diễn dữ liệu cưa từng thuộc tính cho mỗi n-bộ. Giả sử A là một thuộc tính cưa lược đồ quan hê, D là miên trị của A. Giá trị của một n bộ t tại thuộc tính A được biểu diễn bởi phân bố khả năng chuẩn $\pi_{A(t)}$ trên miền trị mở rộng

[^0]$\widetilde{D}=D \cup\{e\}$, trong đó e là phần tử bổ sung vào mỗi miền trị, được sử dụng trong trường hợp thuộc tính A không áp dụng được cho bộ t (chi tiết xem trong [4]).

2.2. Tính toán trên các tân từ mờ

Cho X là một biến nhận giá trị trên miền D kết hợp với phân bố khả năng π_{X}, F là một tập mờ trên D. Độ turơng thích cưa X với tập mờ F được đánh giá trên hai độ đo khà năng (II) và cần thiết (N) được xác định bởi:

$$
\begin{gather*}
\Pi_{X}(F)=\sup _{u \in D} \min \left(\mu_{F}(u), \pi_{X}(u)\right) \tag{2.1}\\
N_{X}(F)=\inf _{u \in D} \max \left(\mu_{F}(u), 1-\pi_{X}(u)\right) . \tag{2.2}
\end{gather*}
$$

Với θ là một phép so sánh mờ được xác định bởi hàm thuộc μ_{θ}, mệnh đề " $X \theta F$ " được xem tương đương với mệnh đề " X is $F \circ \theta$ ", với $F \circ \theta$ là phép hợp thành của một giá trị mờ F với một toán từ so sánh mờ θ được xác định bởi: $\forall d \in D, \mu_{F \circ \theta}(d)=\sup _{d^{\prime} \in D} \min \left(\mu_{\theta}\left(d, d^{\prime}\right), \mu_{F}\left(d^{\prime}\right)\right)$. Độ thỏa mệnh đê " $X \quad \theta$ " được đánh giá như trong (2.1) và (2.2):

$$
\begin{gather*}
\Pi(X \theta F)=\Pi_{X}(F \circ \theta)=\sup _{u \in D} \min \left(\mu_{F \circ \theta}(u), \pi_{X}(u)\right) \tag{2.3}\\
N(X \theta F)=N_{X}(F \circ \theta)=\inf _{u \in D} \max \left(\mu_{F \circ \theta}(u), 1-\pi_{X}(u)\right) . \tag{2.4}
\end{gather*}
$$

Dựa trên đánh giá của những tân từ nguyên tố, trong [4] đưa ra những công thức đánh giá cho tân từ kết hợp các tân từ nguyên tố bởi các phép toán logic not, and, or.

2.3. Các lượng từ mờ

Trong [19] Zadeh đề xuất một cách biểu diễn lượng tì̛ ngôn ngữ theo cách tiếp cận của lý thuyết tập mờ, trong đó mỗi lượng từ Q được xem như một tập mờ trên tập cơ sở X và được xác định qua hàm thuộc $\mu_{Q}: X \rightarrow[0,1]$, với X là tập số nguyên không âm hoặc doạn $[0,1]$ tuỳ thuộc vào loại lượng tìr.

Zadeh chia các lượng tì̛ ngôn ngữ thành hai loại: lượng tiu tuyệt dối (absolute quantifiers) và lương tư tỷ lệ (proportional quantifiers). Lượng từ tuyệt đối dùng trong những mệnh đề với số lượng xác định như: "khoảng શٌ", "nhiều hơn 5 ", ... Lượng tìr tuyệt đối được biểu diễn bằng tập mờ trên tậ cơ sở là tập các số nguyên không âm. Lượng từ tỷ lệ thể hiện những số lượng phụ thuộc vào số lượng tập các đối tượng mà nó thể hiện, như các lượng từ: "hầu hết', "khoảng một nứa", ... Với những lượng từ này biểu diễn bằng tập mờ trên miên cơ sở là đoạn $[0,1]$.

Lượng từ Q gọi là adơn ảiệu tăng nếu với mọi $x_{1}>x_{2}$ thì $\mu_{Q}\left(x_{1}\right) \geq \mu_{Q}\left(x_{2}\right)$. Chằng hạn: "at least 3", "almost all', "most",...

Lượng từ Q gọi là dơn diệu giảm nếu với mọi $x_{1}>x_{2}$ thì $\mu_{Q}\left(x_{1}\right) \leq \mu_{Q}\left(x_{2}\right)$. Chằng hạn: "at most 3", "few", "almost none",...

Lượng từ Q gọi là lượng từ unimodal nếu tồn tại hai giá trị a, b với $a \leq b$ sao cho với mọi $x<a$ thì Q là lượng từ đơn điệu tăng; với $x>b$ thì Q đơn điệu giảm và $\mu_{Q}(x)=1$ với mọi $x \in[a, b]$.
Nhận xét 2.1. Với mọi lượng từ unimodal Q bao giờ cũng tìm được hai lượng từ Q_{a} đơn điệu tăng và Q_{d} đơn điệu giảm sao cho $Q=Q_{a} \cap Q_{d}$.

Lương tư phủ dịnh (negation) của một lượng từ Q, ký hiệu \bar{Q}, đurợc xác định bời $\mu_{\bar{Q}}(x)=1-\mu_{Q}(x) \forall x$. Chẳng hạn not many là lượng tù̀ phủ định của lượng từ many.

2.4. Lực lượng mờ

Có nhiều cách tiếp cận để định nghĩa lực lượng mờ, trong bài báo này chúng tôi dùng định nghĩa lực lượng mờ theo cách tiếp cận của Dubois và Prade [6].

Cho F là tập mờ trên tập hữu hạn $U=\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$. Đặt $k=|\operatorname{ker}(F)|$, với $\operatorname{ker}(F)=\left\{u \in U \mid \mu_{F}(u)=1\right\}$. Lực lượng của tập mờ F, ký hiệu $|F|_{f}$ (hoặc $|F|$ nếu không gây nhầm lẫn) là một phân bố khà năng chuẩn $\pi_{|F|}$ trên đoạn $[0, n]$, được xác định nhur sau:

$$
\pi(t)=0 \quad \text { với } \quad 0 \leq t<k,
$$

$$
\pi(k)=1,
$$

với $j>k$ thì $\pi(j)$ là giá trị lớn thứ j trong danh sách các giá trị $\mu\left(u_{1}\right), \mu\left(u_{2}\right), \cdots, \mu\left(u_{n}\right)$.
Nhận xét 2.2. Nếu $F^{\prime} \subseteq F$ thì với mọi $i \geq k$ ta có $\pi_{\left|F^{\prime}\right|}(i) \leq \pi_{|F|}(i)$, với $k=|\operatorname{ker}(F)|$.

3. TỔNG KẾT DỮ LIỆU

Trong phần này xây dựng các công thức tính độ tin cậy của một luật tổng kết dữ liệu. Độ tin cậy được đánh giá trên hai độ đo khả năng và cần thiết.

3.1. Dạng Q r are P

Mệnh đề " Q r are P " có nghĩa là định lượng các bộ trong quan hệ r thỏa tân từ P ở mức độ nào đó turơng thích với lương từ Q. Chằng hạn các mệnh đề :"Có it nhất 5 nguời trong CSDL có luoong cao" hay "Hầu hết những nguời trong CSDL là trè".

Độ tin cây của mệnh đề " Q r are P " được đánh giá như độ tin cậy của mệnh đề " $\left.\right|_{\left.r_{P}\right|_{f}}$ is $Q^{\prime \prime}$, với r_{P} là tập các bộ của quan hệ r thỏa tân từ P ở mức độ khả năng (hoặc cần thiết). Theo công thức (2.1) và (2.2) trong trường hợp Q là lượng từ tuyệt đối ta có:

$$
\begin{gather*}
\Pi_{Q r \text { are } P}=\max _{k \leq i \leq n} \min \left(\mu_{Q}(i), \pi_{\left|r_{P}\right|}(i)\right) \tag{3.1}\\
N_{Q \text { r are } P}=\min _{k \leq i \leq n} \max \left(\mu_{Q}(i), 1-\pi_{\left|r_{r}\right|}(i)\right), \tag{3.2}
\end{gather*}
$$

với n là số bộ của quan hệ $r, k=\left|\operatorname{ker}\left(r_{P}\right)\right|$.
Nếu Q là lượng từ tỷ lệ, trong các công thức trên ta thay $\mu_{Q}(i)$ bởi $\mu_{Q}(i / n)$.
Định nghĩa 3.1. Cho P và P^{\prime} là hai lượng từ mờ áp dụng trên lược đồ quan hệ r. Tẩn từ P^{\prime} được gọi là yếu hơn tân tùr P, ký hiệu $P^{\prime} \subseteq P$ nếu với mọi quan hệ r của lược đồ r thỏa $\Pi\left(t \mid P^{\prime}\right) \leq \Pi(t \mid P)$ và $N\left(t \mid P^{\prime}\right) \leq N(t \mid P)$, với mọi bộ $t \in r$.

Dựa vào công thức (3.1) và (3.2) ta dễ dàng chứng minh được hai bổ đề sau:
Bổ đề 3.1. a) Nếu Q là lượng từ doon diệu tăng thi N_{Q} rare $P=\mu_{Q}(k)$.
b) Nếu Q là lương từ doon diệu giàm thi $\Pi_{Q \text { rare } P}=\mu_{Q}(k)$, với $k=\left|\operatorname{ker}\left(r_{P}\right)\right|$.

Bổ đề 3.2. Với mơi lương tù Q và tân tì P áp dưng trên quan hệ r, ta có

$$
\Pi_{\bar{Q}_{r \text { are } P}}=1-N_{Q r \text { are } P} \quad v \grave{Q} \quad N_{\bar{Q} r \text { are } P}=1-\Pi_{Q r \text { are } P} .
$$

Định lý 3.1. Nếu Q, Q^{\prime} là các lương từ dơn diệu tăng thơa $Q^{\prime} \subseteq Q$ và P, P^{\prime} là các tân từ thỏa $P^{\prime} \subseteq P$ thì với mọi quan hệ r, ta có $\Pi_{Q r \text { are } P} \geq \Pi_{Q^{\prime} r \text { are } P^{\prime}}$ và $N_{Q r \text { are } P} \geq$ $N_{Q^{\prime} \text { r are } P^{\prime}}$.

Chúng minh. Đặt $k=\left|\operatorname{ker}\left(r_{P}\right)\right|, k^{\prime}=\left|\operatorname{ker}\left(r_{P^{\prime}}\right)\right|$. Vì $P^{\prime} \subseteq P$ nên $k^{\prime} \leq k$. Từ Bổ đề 3.1. và do $Q^{\prime} \subseteq Q$ là các lượng từ đơn điệu tăng nên dễ dàng suy ra $N_{Q r \text { are } P} \geq N_{Q^{\prime} r}$ are P^{\prime}.

Ta có:

$$
\begin{aligned}
& \Pi_{Q \text { r are } P}=\max _{k \leq i \leq n} \min \left(\mu_{Q}(i), \pi_{\left|r_{P}\right|}(i)\right) \quad \text { và } \quad \Pi_{Q^{\prime} r \text { are } P^{\prime}}=\max _{k^{\prime} \leq i \leq n} \min \left(\mu_{Q^{\prime}}(i), \pi_{\left|r_{P^{\prime}}\right|}(i)\right) . \\
& \text { Dễ thấy } \forall i, k \leq i \leq n \text { thì } \min \left(\mu_{Q}(i), \pi_{\left|r_{P}\right|}(i)\right) \geq \min \left(\mu_{Q^{\prime}}(i), \pi_{\left|r_{P^{\prime}}\right|}(i)\right) \text { và } \\
& \forall j, k^{\prime} \leq j<k \quad \text { thì } \quad \min \left(\mu_{Q}(k), \pi_{\left|r_{P}\right|}(k)\right) \geq \min \left(\mu_{Q^{\prime}}(j), \pi_{\left|r_{P^{\prime}}\right|}(j)\right) .
\end{aligned}
$$

Tù̀ đó suy ra $\Pi_{Q r \text { are } P} \geq \Pi_{Q^{\prime} r \text { are } P^{\prime}}$.
Tương tự, ta có định lý tương ứng cho các lượng từ đơn điệu giảm.
Định lý 3.2. Nếu Q, Q^{\prime} là các lương từ ảon diệu giảm thỏa $Q \subseteq Q^{\prime} \quad$ và $\quad P$, P^{\prime} là các tân tì thỏa $P^{\prime} \subseteq P$ thì với mọi quan hệ r, ta có:

$$
\Pi_{Q r \text { are } P} \leq \Pi_{Q^{\prime} r \text { are } P^{\prime}} \quad v \dot{a} \quad N_{Q r \text { are } P} \leq N_{Q^{\prime} r \text { are } P^{\prime}} .
$$

3.2. Dạng $Q P_{1} r$ are P_{2}

Mệnh đề " $Q P_{1} r$ are P_{2} " cón nghĩa là định lượng các bộ trong quan hệ r thỏa tân từ P_{1} cũng thỏa tân từ P_{2} tương thích với lượng từ Q.

Trường hợp Q là lượng từ tuyệt đối thì ta có sự tương đương về mặt ngữ nghĩa của hai mệnh đề "Q $P_{1} r$ are P_{2} " và " $Q r$ are P_{1} and P_{2} ". Do đó hoàn toàn có thể đánh giá theo công thức (3.1) và (3.2). Chẳng hạn mệnh đề "Có it nhất 5 người tuổi cao trong cơ sở dûu liệu cũng có lưong cao" tương đương với mệnh đề "Có it nhất 5 người trong cơ sở dưu liệu có tuổ cao và luơng cao".

Trường hợp Q là lượng tù tý lệ, ta có thể xem mệnh đề " $Q P_{1} r$ are P_{2} " turơng đương với mệnh đề " $Q r_{P_{1}}$ are P_{2} ", với $r_{P_{1}}$ là những bộ của quan hệ r thỏa tân từ P_{1}.

Ký hiệu $k_{1}=\left|\operatorname{ker}\left(r_{P_{1}}\right)\right|$, độ đo khả năng thơa mệnh đề " $Q P_{1} r$ are P_{2} " được xây dựng qua các bước như sau:
Bước 1. Với mỗi i trong khoảng các giá trị có thể là lực lượng của quan hệ $r_{P_{1}}, k_{1} \leq i \leq n$, gọi r^{i} là quan hệ được chọn từ $r_{P_{1}}$ gồm i bộ có độ thơa tân từ P_{1} cao nhất. Khi đó độ tin cậy của mệnh đề " $Q \dot{r}_{P_{1}}$ are P_{2} " chính là độ tin cậy của mệnh đề " $Q r^{i}$ are P_{1} and P_{2} " dược đánh giá theo công thức (3.1)

$$
\Pi_{Q r^{i} \text { are } P_{1} \text { and } P_{2}}=\max _{k_{2} \leq j \leq i} \min \left(\mu_{Q}(j / i), \pi_{\mid r_{P_{1} \wedge P_{2}}^{i}}(j)\right), \quad \text { vói } k_{2}=\left|\operatorname{ker}\left(r_{P_{1} \wedge P_{2}}\right)\right|
$$

Trong khi đó khả năng để quan hệ $r_{P_{1}}$ có i bộ là $\pi_{\left|r_{P_{1}}\right|}(i)$ nên độ đo khả năng thơa mệnh đề " $Q r_{P_{1}}$ are $P_{2}^{\prime \prime}$ trong trường hợp $r_{P_{1}}$ có đúng i bộ là:

$$
\Pi_{Q r_{P_{1}} \text { are } P_{2}}(i)=\min \left(\max _{k_{2} \leq j \leq i}\left\{\min \left(\mu_{Q}(j / i), \pi_{\left|r_{P_{1} \wedge P_{2}}^{i}\right|}(j)\right)\right\}, \pi_{\left|r_{P_{1}}\right|}(i)\right)
$$

Bước 2. Khả năng thỏa mệnh đề " $Q P_{1} r$ are P_{2} " được đánh giá trong trường hợp thuận lợi nhất, nên:

$$
\begin{align*}
\Pi_{Q P_{1} r \text { are } P_{2}} & =\max _{k_{1} \leq i \leq n}\left\{\Pi_{Q r_{P_{1}} \text { are } P_{2}}(i)\right\} \\
& =\max _{k_{1} \leq i \leq n}\left\{\min \left[\max _{k_{2} \leq j \leq i} \min \left(\mu_{Q}(j / i), \pi_{\left|r_{P_{1} \wedge P_{2}}\right|}(j)\right), \pi_{\left|r_{P_{1}}\right|}(i)\right]\right\} \tag{3.3}
\end{align*}
$$

Từ độ đo khả năng ta dễ dàng suy ra độ đo cần thiết là:

$$
\begin{equation*}
N_{Q P_{1} r \text { are } P_{2}}=\min _{k_{1} \leq i \leq n}\left\{\max \left(\min _{k_{2} \leq j \leq i} \max \left(\mu_{Q}(j / i), 1-\pi_{\left|r_{P_{1} \wedge P_{2}}^{i}\right|}(j)\right), 1-\pi_{\left|r_{P_{1}}\right|}(i)\right)\right\} . \tag{3.4}
\end{equation*}
$$

Một số kết quả sau thể hiện thứ tự của các độ đo tương ứng với thứ tự các lượng từ và tân từ mờ.

Định lý 3.3. Nếu Q, Q^{\prime} là các lượng tì̛ tuyệt daối, ảơn ảiệu tăng thỏa $Q^{\prime} \subseteq Q$ và P_{1}, P_{1}^{\prime}, $P_{2}^{\prime}, P_{2}^{\prime}$ là các tân từ thỏa $P_{1}^{\prime} \subseteq P_{1}, \quad P_{2}^{\prime} \subseteq P_{2}$ thì vó́i mọi quan hệ r ta có:

$$
\Pi_{Q P_{1} r \text { are } P_{2}} \geq \Pi_{Q^{\prime} P_{1}^{\prime} r \text { are } P_{2}^{\prime}} \text { và } N_{Q P_{1} r \text { are } P_{2}} \geq N_{Q^{\prime} P_{1}^{\prime} r \text { are } P_{2}^{\prime}} .
$$

Chứng minh. Vì Q, Q^{\prime} là các lượng từ tuyệt đối nên $\Pi_{Q P_{1} r}$ are $P_{2}=\Pi_{Q r \text { are } P_{1} \text { and } P_{2}}$, và $\Pi_{Q^{\prime} P_{1}^{\prime} r \text { are } P_{2}^{\prime}}=\Pi_{Q^{\prime} r \text { are } P_{1}^{\prime} \text { and } P_{2}^{\prime}}$.

Từ $P_{1}^{\prime} \subseteq P_{1}$ và $P_{2}^{\prime} \subseteq P_{2}$ suy ra P_{1}^{\prime} and $P_{2}^{\prime} \subseteq P_{1}$ and P_{2}, theo kết quả Định lý 3.1. dễ dàng suy ra $\Pi_{Q P_{1} r \text { are } P_{2}} \geq \Pi_{Q^{\prime} P_{1}^{\prime} r \text { are } P_{2}^{\prime}}$.

Kết quả tương tự cho các lượng từ tuyệt đối, đơn điệu giảm thể hiện qua định lý sau.
Định lý 3.4. Nếu Q, Q^{\prime} là các lượng tưu tuyệt âối, àơn diệu giảm thỏa $Q \subseteq Q^{\prime}$ và P_{1}, P_{1}^{\prime}, P_{2}, P_{2}^{\prime} là các tân tù̀ thóa $P_{1}^{\prime} \subseteq P_{1}, P_{2}^{\prime} \subseteq P_{2}$ thì vó́ mọi quan hê r ta có

$$
\Pi_{Q P_{1} r \text { are } P_{2}} \leq \Pi_{Q^{\prime} P_{1}^{\prime} r \text { are } P_{2}^{\prime}} \quad v \grave{a} \quad N_{Q P_{1} r \text { are } P_{2}} \leq N_{Q^{\prime} P_{1}^{\prime} r \text { are } P_{2}^{\prime}} .
$$

Với lượng từ tỷ lệ, các kết quả có một số thay đổi, cụ thể như sau:
Định lý 3.5. Nếu Q, Q^{\prime} là các lượng ti̛ tỷ lê, alonn diêêu tăng thỏa $Q^{\prime} \subseteq Q$ và P_{2}, P_{2}^{\prime} là các tân tù thỏa $P_{2}^{\prime} \subseteq P_{2}$ thi với mọi quan hê r ta có

$$
\Pi_{Q P_{1} r \text { are } P_{2}} \geq \Pi_{Q^{\prime} P_{1} r \text { are } P_{2}^{\prime}} \quad \text { và } \quad N_{Q P_{1} r \text { are } P_{2}} \geq N_{Q^{\prime} P_{1} r \text { are } P_{2}^{\prime}}
$$

Chưng minh. Từ công thức (3.3) ta có:
$\Pi_{Q P_{1} r \text { are } P_{2}}=\max _{k_{1} \leq i \leq n} \Pi_{Q r_{P_{1}} \text { are } P_{2}}(i)$ với $\Pi_{Q r_{P_{1}} \text { are } P_{2}}(i)=\min \left(\Pi_{Q r^{i}}\right.$ are P_{1} and $\left.P_{2}, \pi\left|r_{P_{1}}\right|(i)\right)$ và
$\Pi_{Q^{\prime} P_{1} r \text { are } P_{2}^{\prime}}=\max _{k_{1} \leq i \leq n} \Pi_{Q^{\prime} r_{P_{1}} \text { are } P_{2}^{\prime}}(i)$ với $\Pi_{Q^{\prime} r_{P_{1}} \text { are } P_{2}^{\prime}}(i)=\min \left(\Pi_{Q^{\prime} r^{i} \text { are } P_{1} \text { and } P_{2}^{\prime}, \pi\left|r_{P_{1}}\right|}(i)\right)$.
Theo Định lý 3.1. ta có $\Pi_{Q r^{i}}$ are P_{1} and $P_{2} \geq \Pi_{Q^{\prime} r^{i}}$ are P_{1} and $P_{2}^{\prime}, \forall i, k_{1} \leq i \leq n$ nên

$$
\Pi_{Q r_{P_{1}} \text { are } P_{2}}(i) \geq \Pi_{Q^{\prime} r_{P_{1}} \text { are } P_{2}^{\prime}}(i)
$$

Do đó $\Pi_{Q P_{1} r \text { are } P_{2}} \geq \Pi_{Q^{\prime} P_{1} r \text { are } P_{2}^{\prime}}$.
Tương tự ta chứng minh được $N_{Q P_{1} r} r$ are $P_{2} \geq N_{Q^{\prime} P_{1} r \text { are } P_{2}^{\prime}}$.
Tương tự ta có định lý sau cho các lượng từ đơn điệu giảm.
Định lý 3.6. Nếu Q, Q^{\prime} là các lượng từ tỷ lệ, alơn ảiệu giảm thỏa $Q \subseteq Q^{\prime}$ và P_{2}, P_{2}^{\prime} là các tân tù thỏa $P_{2}^{\prime} \subseteq P_{2}$ thì vór mọi quan hẹ r ta có:

$$
\Pi_{Q P_{1} r \text { are } P_{2}} \leq \Pi_{Q^{\prime} P_{1} r \text { are } P_{2}^{\prime}} \quad \text { và } \quad N_{Q P_{1} r \text { are } P_{2}} \leq N_{Q^{\prime} P_{1} r \text { are } P_{2}^{\prime}}
$$

3.3. Dạng $Q_{1} P_{1} r \theta Q_{2} P_{2} r$.

Mệnh đề " $Q_{1} P_{1} r \theta Q_{2} P_{2} r$ " có ý nghĩa là định lượng các bộ trong quan hệ r thơa tân từ P_{1} có quan hệ θ với các bộ trong quan hệ r thỏa tân từ P_{2} ở mức độ cưa lượng tùr Q_{2} là tương thích với lượng tir̀ \dot{Q}_{1}. Chằng hạn "Hầu hết những người lớn tuổi trong CSDL có lưong cao hơn nhiều ngừ̀ i trè".

Độ tin cậy của mệnh đề dạng này được đánh giá qua các bước như sau:
Bưóc 1. Với mỗi bộ $t_{i} \in r$, ta tính độ tin cậy của mệnh đề định lượng số bộ của quan hệ r thởa tân từ P_{2} có quan hệ θ với bộ $t_{i}, P_{i}=$ " $t_{i} \theta Q_{2} P_{2} r$ " được biểu diễn tương đurơng với mệnh đề " $Q_{2} P_{2}$ r are $t_{i} \circ \theta$ ". Do đó độ tin cậy cuả mệnh đề P_{i} được đánh giá theo công thức (3.3) và (3.4) :

$$
\begin{gather*}
\Pi_{P_{i}}=\max _{k_{2} \leq j \leq n} \min \left(\Pi_{Q_{2} r_{P_{2}}} \text { are } t_{i} \circ \theta(j), \pi_{\left|r_{P_{2}}\right|}(j)\right) \tag{3.5}\\
N_{P_{i}}=\min _{k_{2} \leq j \leq n} \max \left(N_{Q_{2}} r_{r_{P_{2}}} \text { are } t_{i} \circ \theta(j), 1-\pi_{\left|r_{P_{2}}\right|}(j)\right) \tag{3.6}
\end{gather*}
$$

với $k_{2}=\left|\operatorname{ker}\left(r_{P_{2}}\right)\right|, \Pi_{Q_{2} r_{P_{2}}}$ are $t_{i} \circ \theta(j), N_{Q_{2} r_{P_{2}}}$ are $t_{i} \circ \theta(j)$ tương ứng là độ đo khà năng và cần thiết của mệnh đề " $Q_{2} r_{P_{2}}$ are $t_{i} \circ \theta$ " trong trường hợp $r_{P_{2}}$ có đúng j bộ của r có độ thơa tân từ P_{2} cao nhất.
$B u \not o ̛ ́ c$ 2. Ta xem " $\theta Q_{2} P_{2} r$ " là một tân từ mờ trên các bộ của quan hệ r, ký hiệu tân từ này là P. Khi đó mệnh đề " $Q_{1} P_{1} r \theta$ $Q_{2} P_{2} r$ " được đưa về dạng turơng đương " $Q_{1} P_{1} r$ are P ". Do đó độ tin cậy được đánh giá :

$$
\begin{gather*}
\Pi_{Q_{1} P_{1} r \theta Q_{2} P_{2} r}=\max _{k_{1} \leq i \leq n} \min \left(\Pi_{Q_{1} r_{P_{1}} \text { are } P}(i), \pi_{\left|r_{P_{1} \mid}\right|}(i)\right) \tag{3.7}\\
N_{Q_{1} P_{1} r} r Q_{2} P_{2} r=\min _{k_{1} \leq i \leq n} \max \left(N_{Q_{1} r_{P_{1}} \text { are } P}(i), 1-\pi_{\left|r_{P_{1} \mid}\right|}(i)\right) \tag{3.8}
\end{gather*}
$$

với $k_{1}=\left|\operatorname{ker}\left(r_{P_{1}}\right)\right|, \Pi_{Q_{1} r_{P_{1}}}$ are ${ }_{P}(i), N_{Q_{1} r_{P_{1}}}$ are $P(i)$ tương ứng là độ tin cậy khả năng và cần thiết cuà mệnh đề " $Q_{1} r_{P_{1}}$ are P " trong trường hợp $r_{P_{1}}$ có đúng i bộ đurợc chọn trong r có độ thỏa tân từ P_{1} cao nhất.
Định lý 3.7. Nếu $Q_{1}, Q_{1}^{\prime}, Q_{2}, Q_{2}^{\prime}$ là các lượng từ tuyệt dâ̂́i, äon diệu tăng thỏa $Q_{1}^{\prime} \subseteq Q_{1}$, $Q_{2}^{\prime} \subseteq Q_{2}$ và $P_{1}, P_{1}^{\prime}, P_{2}, P_{2}^{\prime}$ là các tân từ thơa $P_{1}^{\prime} \subseteq P_{1}, P_{2}^{\prime} \subseteq P_{2}$ thì vó́ mọi quan hệ r ta có:

$$
\Pi_{Q_{1} P_{1} r \theta Q_{2} P_{2} r} \geq \Pi_{Q_{1}^{\prime} P_{1}^{\prime} r \theta Q_{2}^{\prime} P_{2}^{\prime} r} \quad v a ̀ \quad N_{Q_{1} P_{1} r \theta} Q_{2} P_{2} r \geq N_{Q_{1}^{\prime} P_{1}^{\prime} r \theta Q_{2}^{\prime} P_{2}^{\prime} r} .
$$

Chưng minh. Với mọi $t_{i} \in r$, gọi P_{i} là mệnh đề " $Q_{2} P_{2} r$ are $t_{i} \circ \theta^{\prime}$, P_{i}^{\prime} là mệnh đề " $Q_{2}^{\prime} P_{2}^{\prime} r$ are $t_{i} \circ \theta^{\prime}$. Vì $P_{2}^{\prime} \subseteq P_{2}$ nên theo định lý 3.3. ta có $\Pi_{P_{i}} \geq \Pi_{P_{i}^{\prime}}$ và $N_{P_{i}} \geq N_{P_{i}^{\prime}}$.

Do đó nếu gọi P là tân từ " $\theta Q_{2} P_{2} r$ " và P^{\prime} là tân từ " $\theta Q_{2}^{\prime} P_{2}^{\prime} r$ " thì ta có $P^{\prime} \subseteq P$.
Theo Định lý 3.3 . suy ra

$$
\Pi_{Q_{1} P_{1} r \text { are } P} \geq \Pi_{Q_{1}^{\prime} P_{1}^{\prime} r \text { are } P^{\prime}} \text { và } N_{Q_{1} P_{1} r \text { are } P} \geq N_{Q_{1}^{\prime} P_{1}^{\prime} r \text { are } P^{\prime}} .
$$

Định lý sau cũng đúng cho các lượng từ tuyệt đối, đơn điệu giảm.
Định lý 3.8. Nếu $Q_{1}, Q_{1}^{\prime}, Q_{2}, Q_{2}^{\prime}$ là các lương từ tuyệt đđối, đ̈on điệu giảm thỏa $Q_{1} \subseteq Q_{1}^{\prime}$, $Q_{2} \subseteq Q_{2}^{\prime}$ và $P_{1}, P_{1}^{\prime}, P_{2}, P_{2}^{\prime}$ là các tân từ thơa $P_{1}^{\prime} \subseteq P_{1}, P_{2}^{\prime} \subseteq P_{2}$ thì vó́ mọi quan hệ r ta có:

$$
\Pi_{Q_{1} P_{1} r \theta Q_{2} P_{2} r} \leq \Pi_{Q_{1}^{\prime} P_{1}^{\prime} r \theta Q_{2}^{\prime} P_{2}^{\prime} r} \quad v a ̀ \quad N_{Q_{1} P_{1} r \theta Q_{2} P_{2} r} \leq N_{Q_{1}^{\prime} P_{1}^{\prime} r \theta Q_{2}^{\prime} P_{2}^{\prime} r}
$$

Với các lượng từ tỳ lệ ta có các kết quả sau:

Định lý 3.9. Nếu $Q_{1}, Q_{1}^{\prime}, Q_{2}, Q_{2}^{\prime}$ là các lương từ tỵ lệ, donn diệu tăng thỏa $Q_{1}^{\prime} \subseteq Q_{1}$, $Q_{2}^{\prime} \subseteq Q_{2}$ thì với mọi quan hệ r ta có:

$$
\Pi_{Q_{1} P_{1} r \theta Q_{2} P_{2} r} \geq \Pi_{Q_{1}^{\prime} P_{1} r} \theta Q_{2}^{\prime} P_{2} r \quad v \grave{a} \quad N_{Q_{1} P_{1} r} \theta Q_{2} P_{2} r \geq N_{Q_{1}^{\prime} P_{1} r} \theta Q_{2}^{\prime} P_{2} r .
$$

Chứng minh. Dùng kết quả của Định lý 3.5 với kỹ thuật chứng minh tương tự như chứng minh của Định lý 3.7 ta dễ dàng chứng minh được định lý này.

Định lý 3.10. Nếu $Q_{1}, Q_{1}^{\prime}, Q_{2}, Q_{2}^{\prime}$ là các lượng tư týy lê, a̛on diệu giảm thỏa $Q_{1} \subseteq Q_{1}^{\prime}$, $Q_{2} \subseteq Q_{2}^{\prime}$ thi với mọi quan hê r ta có:

$$
\Pi_{Q_{1} P_{1} r} \theta Q_{2} P_{2} r \leq \Pi_{Q_{1}^{\prime} P_{1} r} \theta Q_{2}^{\prime} P_{2} r \quad v \grave{a} \quad N_{Q_{1} P_{1} r} \theta Q_{2} P_{2} r \leq N_{Q_{1}^{\prime} P_{1} r} \theta Q_{2}^{\prime} P_{2} r .
$$

4. XÂY DỰNG CÁC LUẬT TỬ DŨ̉ LIỆU

Một trong những nội dung quan trong đặt ra cho việc phát hiện các luât từ dữ liệu là cần có những thuật toán tự động xây dựng các luật trên những dữ liệu cụ thể sao cho độ tin cậy vượt một ngưỡng cho trước nào đó. Tuy nhiển cho đến nay những thuật toán như vậy đều cần thiết phải có sự hỗ trợ một phần của con người. Trong phần tiếp theo chúng tôi trình bày một cách tiếp cận cho việc tổng kết dữ liệu tự động dựa theo mẫu và thứ tự phân cấp các tập mờ trong cùng miền trị.

4.1. Phân cấp các tập mờ'

Cho là một tập hữu hạn các tập mờ trên miền D, khi đó cùng với quan hệ \subseteq của các tập mờ tạo thành một thứ tự phân cấp. Với bất kỳ tập các tập mờ trên miền trị D ta bỗ sung một tập mờ đặc biệt none được xác định $\mu_{n o n e}(x)=1, \forall x \in D$. Dễ thấy với mọi $F \in$ ta có $F \subseteq$ none. Tập mờ none được xem là gốc của cây thứ tự phân cấp các tập mờ.
Ví dụ 4.1. Giả sử là tập các lượng từ tỷ lệ $=\{$ none, for all, there exists, most, at least half, as many as possible, many, at least 75\%, about half, no more than half, not many, few\}. Cây thứ tự phân cấp các tập mờ trong như hình vẽ 1 .

Hình 1. Cây phân cấp các lượng từ tỷ lệ

4.2. Luật mẫu và cây phân cấp

Từ các dạng luật được xem xét trong các mục $3.1,3.2,3.3$, với một quan hệ r cụ thể, ta xem xét các luật mẫu với các tân từ nguyên tố có các dạng sau:

Dạng 1. " Q A is F"
Dạng 2. " $Q A$ is F also B is G "

Dạng 3. " $Q_{1} A$ is $F \theta Q_{2} B$ is G "
với Q, Q_{1}, Q_{2} là lượng từ mờ, A, B là các thuộc tính của lược đồ quan hệ R, r là một quan hệ trên lược đồ R, F, G là các tập mờ tương ứng trên miền trị của thuộc tính A và B.

Phần này chỉ trình bày các nội dung liên quan đến luật mẫu dạng 1 , các dạng còn lại có kết quà tương tự.

Xét luật mẫu có dạng " $Q A$ is F ", trong đó Q là một lượng tì̛ nhận các giá trị trong một tập các lượng từ cho trước, A là một thuộc tính của lược dồ quan hệ r, F là một tập con mờ nhận giá trị trong một tập các tập mờ trên miền trị của thuộc tính A.

Từ những kết quả trong phần 3 , ta có kết quả sau thể hiện thứ tự phân cấp của các luật:
Hệ quả 4.1. Nếu Q, Q^{\prime} là nhưnng lự̛ng từ dơn diệu tăng thỏa $Q^{\prime} \subseteq Q \quad$ và $\quad F^{\prime} \subseteq F$ thi $\Pi_{Q A \text { is } F} \geq \Pi_{Q^{\prime} A \text { is } F^{\prime}} \quad v \grave{a} \quad N_{Q A \text { is } F} \geq N_{Q^{\prime} A}$ is F^{\prime}.
Chúng minh. Với mỗi bộ $t \in r$, ký hiệu giá trị của bộ t tại thuộc tính A là phân bố khả năng $\pi_{A(t)}$.

Từ độ đo khả năng về tương thích của phân bố khả năng $\pi_{A(t)}$ với tập mờ F, F^{\prime}
$\Pi\left(\pi_{A(t)} \mid F\right)=\sup _{u \in D} \min \left(\mu_{F}(u), \pi_{A(t)}(u)\right)$ và $\Pi\left(\pi_{A(t)} \mid F^{\prime}\right)=\sup _{u \in D} \min \left(\mu_{F^{\prime}}(u), \pi_{A(t)}(u)\right)$
Do $F^{\prime} \subseteq F$ nên ta có $\Pi\left(\pi_{A(t)} \mid F\right) \geq \Pi\left(\pi_{A(t)} \mid F^{\prime}\right)$.
Tương tự, dễ dàng kiểm chứng $N\left(\pi_{A(t)} \mid F\right) \geq N\left(\pi_{A(t)} \mid F^{\prime}\right)$.
Nếu xem P là tân từ " A is $F^{\prime \prime}$ và P^{\prime} là tân tì̛ " A is $F^{\prime \prime}$ " thì ta có thứ tự $P^{\prime} \subseteq P$.
Theo Định lý 3.1. ta có $\Pi_{Q ~ A ~ i s ~} F \geq \Pi_{Q^{\prime} A \text { is } F^{\prime}}$ và $N_{Q A \text { is } F} \geq N_{Q^{\prime} A}$ is F^{\prime}.
Từ hệ quả trên, khi Q và F lần lượt nhận các giá trị tương ứng trong ${ }_{a}$ (tập các lượng từ tăng) và với thứ tự phân cấp cho trước. Khi đó các cặp (Q, F) tạo ra một cây thứ tự phân cấp theo độ đo khả năng và cần thiết.

Ví dụ 4.2. Với luật mẫu Q Age is F, với $Q \in \quad{ }_{a}$ (tập các lượng từ tăng trong Ví dụ 4.1), $F \in \quad=\{$ none, young, old, middle, very young, very old, about 20, about 40 , not young $\}$. Một phần cấu trúc cây phân cấp của luật mẫu có dạng như Hình 2.

Với lượng từ đơn điệu giảm ta cũng có kết quả tương tự dựa vào kết quả của Định lý 3.2. Từ đó ta có thuật toán xây dựng tập các luật cho luật mẫu dạng 1 ứng với tập lượng từ đơn điệu (tăng hoặc giảm).

4.3. Thuật toán xây dựng luật từ dữ liệu

Thuật toán 4.1. Xây dựng tập các luật từ luật mẫu dạng 1 cho tập lượng từ đơn điệu
Input : r là một quan hệ mờ
Luật mẫu $\mathrm{RL}=$ " $Q A$ is $F "$
$(, \subseteq)$ là tập các lượng từ mờ đơn điệu với thứ tự phân cấp $(, \subseteq)$ là tập các tập mờ trên thuộc tính A với thứ tự phân cấp Nguỡng xác định độ tin cậy α, β
Output: Tập các cặp (Q, F) thỏa $\Pi_{Q A \text { is } F}(r) \geq \alpha$ và $N_{Q A \text { is } F}(r) \geq \beta$.
Format: Rules (RL, , , α, β)
Method:
$H:=($ none, none $) ;$
$C S:=\{H\} ;$
$S S:=\emptyset ;$
While $C S \neq \emptyset$ do

NextCS := \emptyset;
For each H in $C S$ do

> If $\operatorname{Sat}(H, \alpha, \beta)$ then $$
S S:=S S \cup\{H\} ;
$$

For each Hnext in Child (H) do
$N e x t C S:=N e x t C S \cup\{$ Hnext $\} ;$
EndFor
Endif
EndFor
$C S:=N e x t C S$;

EndWhile

Return SS;

Trong dó:

$C S, S S, N e x t C S$ là các mảng chứa các cặp (Q, F).
$\operatorname{Sat}(H, \alpha, \beta)$ là thủ tục kiểm tra bộ $H=(Q, F)$ có thỏa luật mẫu với ngưỡng α, β hay không.

Child (H) là tập các nút con của nút H trong cây phân cấp của luật mẫu.
Với các lượng từ unimodal ta có kết quả sau:

Hinh 2. Cây phân cấp luật " Q Age is F "
Định lý 4.1. Nếu Q là một luợng tì unimodal dược phân tích thành hai luợng từ äoon diệu $Q=Q_{a} \cap Q_{d}$, thi
$\Pi_{Q A \text { is } F}(r) \geq \alpha$ khi và chi khi $\Pi_{Q_{a} A \text { is } F}(r) \geq \alpha \quad$ và $\quad \Pi_{Q_{d} A \text { is } F}(r) \geq \alpha$
$N_{Q A \text { is } F}(r) \geq \beta$ khi và chí khi $N_{Q_{a} A \text { is } F}(r) \geq \beta$ và $\quad N_{Q_{d} A}$ is $F(r) \geq \beta$
Chúng minh. Dễ dàng.

Cho tập các lượng từ , ta có thể phân hoạch thành 3 tập a là tập các lượng từ đơn điệu tăng, ${ }_{d}$ là tập các lượng từ giảm và u là tập các lượng từ unimodal. Giả thiết là tập các lượng từ đóng đối với các lượng từ unimodal, nghĩa là với mọi lượng từ $Q \in{ }_{u}$ đều tồn tại $Q_{a} \in \quad a$ và $Q_{d} \in{ }_{d}$ sao cho $\dot{Q}=Q_{a} \cap Q_{d}$.

Từ định lý trên ta có thể hoàn chînh thuật toán xây dựng các luật dựa vào luật mẫu dạng 1 cho các lượng từ dạng unimodal.

Thuật toán 4.2 . Xây dựng tập các luật từ luật mẫu dạng 1
Input : r là một quan hệ mờ
Luật mẫu $R L=$ " $Q A$ is F "
$(, \subseteq)$ là tập các lượng từ mờ với thứ tự phân cấp
$(, \subseteq)$ là tập các tập mờ trên thuộc tính A với thứ tự phân cấp
Ngưỡng xác định độ tin cậy α, β
Output: Tập các cặp (Q, F) thơa $\Pi_{Q A \text { is } F}(r) \geq \alpha$ và $N_{Q A \text { is } F}(r) \geq \beta$.
Format: DataSummary1(RL, , , α, β)
Method:

$$
\begin{aligned}
& a:=\operatorname{Rules}(\mathrm{RL}, \quad a, \quad, \alpha, \beta) \\
& d:=\operatorname{Rules}(\mathrm{RL}, \quad d, \quad, \alpha, \beta) ; \\
& u:=\emptyset
\end{aligned}
$$

For each $Q=Q_{a} \cap Q_{d}$ in ${ }_{u}$ do
For each F in do
If $\left(Q_{a}, F\right) \in \quad{ }_{a}$ and $\left(Q_{d}, F\right) \in \quad{ }_{d}$ then ${ }_{u}:=\quad u \cup\{(Q, F)\} ;$

EndIf

EndFor

EndFor

$:={ }_{a} \cup{ }_{a} \cup{ }_{u}$;
 \section*{Return ;}

Tương tự trên, các luật mẫu dạng 2 và 3 hoàn toàn có thể xây dựng thuật toán xây dựng tập luật dựa vào thứ tự phân cấp các tập mờ. Ngoài ra các kết quả trên vẫn còn đúng khi chúng ta mở rộng các tân từ nguyên tố bởi sự kết hợp các tân từ nguyên tố với phép toán and.

5. KẾT LUẬN

Với một số kết quả mở rộng tính toán về các luật tổng kết dữ liệu có yếu tố mờ đã cho phép chúng ta đánh giá được độ tin cậy của một số luật thường gặp trong thực tế và điều này là cần thiết cho các nghiên cứu tiếp theo. Việc phát hiện các luật dữ liệu với sự hỗ trợ của các chuyên gia đã được thực hiện bước đầu qua Thuật toán 4.1. và 4.2 . và có thể mở rộng cho nhiều dạng luật khác. Các nghiên cứu tiếp theo của chúng tôi sẽ hoàn chînh và bỗ sung thêm các dạng luạ̉t khác. Những kết quả tính toán sẽ được tiếp tục nghiên cứu để cài đặt trên mô hình CSDLQH mờ mà chúng tôi đã xây dựng trên PROLOG.

Lời cám ơn

Tác giả xin chân thành cảm ơn PGS. TS Hồ Thuần và PGS. TS Đặng Huy Ruận đã đóng góp những ý kiến quý báu trong quá trình hoàn thành bài báo này.

TÀI LIỆU THAM KHẢO

[1] Bosc P., Lietard L., Pivert O., Quantified statements and Database Fuzzy querying. Fuzziness in Database Management Systems, Bosc P., Kacprzyk J. eds., Physica Verlag, 1995, 275-308.
[2] Bosc P., Prade H, An introduction to the fuzzy set and possibility theory-based treatment of soft queries and uncertain or Imprecise databases. Uncertainty Management in Information Systems : From needs to Solutions, A. Motro, Ph. Smets, Eds., Kluwer Academic Publ., 1997, 285-324.
[3] Cubero J.C., Medina J.M., Pons O., Vila M.A., Data summarization in relational databases througt fuzzy dependencies, Information Sciences, 121 (1999) 233-270.
[4] Dubois D., Prade H., Possibility Theory: An Approach to Computerized Processing of Uncertainty, Plenum Press, New York, 1988.
[5] Dubois D., Prade H., Using fuzzy sets in database systems: Why and how?, Proceedings of the 1996 Workshop on Flexible Query-Answering Systems (FQAS'96), Christiansen H., Larsen H. L., Andreasen T., eds., 1996, 89-103.
[6] Dubois D., Prade H., Fuzzy cardinality and the modeling of imprecise quantification, Fuzzy Sets and Systems, 16 (1985) $199-230$.
[7] Kacprzyk J., Ziólkowski A., Database Queries with Fuzzy Linguistic Quantifiers, IEEE Transactions on Systems, Man and Cybernetics, 16 (3) (1986) 474-479.
[8] Petry F., Bosc P., Fuzzy Databases: Principles and Applications, Kluwer, Norwell, MA, 1996.
[9] Rasmussen D., Yager R.R., SummarySQL - A Fuzzy Tool for Data Mining, Intelligent Data Analysis, 1(1) (1997).
[10] Rasmussen D., Yager R.R., Finding fuzzy and gradual functional dependencies with SummarySQL, Fuzzy Sets and Systems, 106 (1999) 134-142.
[11] L.T.Vuong, H. Thuan, A relational databases extended by application of Fuzzy set theory and linguistic variables, Computers and Artifical Intelligence, 8 (2) (1989) 153-168.
[12] H. Thuan, T. T. Thanh, On the Functional Dependencies and Multivalued Dependencies in Fuzzy relational databases, Journal of Computer science and Cybernetics, 17 (2) (2001) 13-19.
[13] H. Thuan, T. T. Thanh, Fuzzy Functional Dependencies With Linguistic Quantifiers, Journal of Computer science and Cybernetics, 18 (2) (2002) 97-108.
[14] T.T.Thành, Ngôn ngữ hỏi mềm dèo trong các cơ sở dữ liệu quan hệ mờ, kỷ yếu Hội nghi khoa học kỷ niệm 35 năm thành lập Học viện Kỹ thuât quần sư, Hà nội 10/2001, 116-122.
[15] Ullman J. D., Principles of Database systems, Comp. Science Press, 1980.
[16] Yoshikane Takahashi, A Fuzzy query language for relational databases, IEEE Transactions On Systems, Man, and Cybernetics, 21 (6) (1991) 365-384.
[17] Yager R.R., Fuzzy Summaries in Database Mining, Proceedings of the 11th Conference on Artifical Intelligence for Applications, Los Angeles, 1995, 265-269.
[18] Zadeh L., Fuzzy sets as a Basis for Theory of Possibility, Fuzzy Sets and Systems, 13 (1978) 3-28.
[19] Zadeh L. A., A Computational Approach to Fuzzy Quantifiers in Natural Languages, Computers and Mathematics with Applications, 9 (1983) 149-184.

[^0]: * Công trình được hoàn thành với sự hỗtrợ kinh phí của. Hội đòng khoa học tự nhiên.

