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NONLINEAR EQUATIONS OF HAMMERSTEIN TYPE

NGUYEN BUONG

Institute of Information Technology, NCST

Abstract. The aim of this paper is to present an algorithm to determine a regularized solution for the
operator equation of Hammerstein type z + FyFy(z) = f under the non-monotone perturbations F/*
and F} of the operators I} and Fy, respectively. Galerkin approximations and convergence of Galerkin
approximations of this regularized solution are considered in combination with regularizations.

Tém tdt. Bai bdo gisi thiéu mot thuat todn tim nghiém hiéu chinh cho phwong trinh todn tir loai
Hammerstein z + FyFy (x) = f, véi cdc nhieu FI va F} cda Fy va F; twong tng 13 khong don diéu.
Xéap xi Galerin va t6c¢ do hoi tu cia xap xi Galarin cho nghiém hiéu chinh xét gop véi qué trinh xap
xd hitu han chiéu.

1. INTRODUCTION

Let X be a real Banach space and X* be its dual which are uniformly convex. For the
sake of simplicity the norms of X and X* will be denoted by one symbol ||.||. We write (z*, z)
instead of z*(x) for * € X* and x € X. Let F; : X — X* and F»: X* — X be monotone,
bounded (i.e., image of any bounded subset is bounded) and continuous operators.

The main aim of this paper is to generalize the method in [4] for solving the operator
equation of Hammerstein type

z+ R = f, f € X. (1.1)
The approximate solution is defined by the solution z, of the operator equation
x+ Foo Fio(x) = f, (1.2)
where Fy, = F| + aU;, U; is the standard dual mapping of X (see [12], p. 311), i.e.,
(Ui (@), x) = [U(@)|llz]l = |l]*, ¥z € X,

Fs = Fy + als, Us is the standard dual mapping of X*, and « > 0 is a small parameter. For
every a > 0, equation (1.2) has a unique solution z,, and the sequence {z,} converges to a
solution of (1.1), as a — 0. Moreover, this solution z,, for every a > 0, depends continuously
on f. Let P, be a linear projection from X onto its finite-dimensional subspace X,, such that
Xn C Xpq1, Pyw — x, as n — oo for every = € X, and P} is the dual of P, with ||P,|| < ¢ =
constant for all n. Then, the finite-dimensional problem

x+F2anF1an(x> = f'ru T < X’ﬂ7
where Fo,,, = PoFo P, Fion = PIFLP,, [, = P.f, has a unique solution z,,, and the

sequence {x.,} converges to z,, as n — oo, without additional conditions on F;, ¢ =1, 2. The
convergence rates for the sequences {z,} and {z.,} are given in our recent paper [6]. Usually,
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instead of F» and F; we know only their continuous approximations F§ and F[', respectively,

such that
|Fi(a*) — Fo(z*)]| < h, Ya* e X*,

|Fz) = Fi(z)|| < h, VxcX,

then the regularized solution is constructed by the solution of the approximate equation
@+ I, P (x) = f, (1.3)

where F, = Fl+ Uy, Fl', = Fl'+ Uy, if E}* are both monotone (see [5]). When one of F}* is
not monotone, equation (1.3), perhaps, does not have solution. So, we have to determine an
element in X as regularized solution for (1.1). In this paper, a new approach of determining
such element is presented, the finite-dimensional approximations of this element and their
convergence in combination with regularization are given.

Below, the symbols — and — denote weak convergence and convergence in norm, respec-
tively.
From now on, we suppose that one of F*, i =1, 2 or both of them are not monotone.

2. REGULARIZED SOLUTION

An element z,, (w depends on a, h and ¢) is called a regularized solution of (1.1), if
there exists an element x¥ € X* such that z, = [z, z}], =}, satisfies the following variational
inequality

<F1ho¢<xw> - xjﬂ X — xw> + <F2ha(952) + Ly — f7 x* - xz> Z

1/2
—8<||:Jc— x|+ |2t — xZ||2> , VYzeX, a* € X*, € >V/2h. (2.1)

Lemma 2.1. The set S, of solutions of (2.1) is not empty.

Proof. Let ¥, = Fio(x,) and z, = [xa,2%]. Then, 2, is a solution of the following operator
equation

Fz) +ad(z) = f, (2.2)
where
F(2) = [Fi(z) — &%, Fo(z*) + ],
J(z) = [Ui(z), Uz (x")],

f=10,1], z = [z, € Z,

and Z = X x X* is the product of the spaces X and X* with the norm ||z]|? = ||=||% + ||=*||%.
Because z, is a solution of (2.2), we have

(F2a) + o (20) — f,2— 204) =0, V2 € Z.

It is easy to see that ||F"(z) — F(2)|| < V2h < &, Vz € Z, where F"(z) = [Fl'(x) — ¥, x+ Fl(z")].
Therefore,

<fh(za) +ad(za) = f,2— za> = <]:h(za) — F(zq),2— za>
F{F(za) + @ (2a) = fr 2 — 2a) = —V2h||z = zo|| = —£]|2 — 24, (2.3)

ie., z, satisfies (2.1). Consequently, S, contains z,. This means that S, # 0.
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Lemma 2.2. If (¢ +v/2h)/«a is bounded, then the set S, is bounded, too.
Proof. We can rewrite (2.1) in the form (see [5], [10])

(FM"(20) + aJ(20) = fr2 = 20) = —€llz — 20|, V2 € Z. (2.3)
From the monotone property of F in Z it follows that
(F(ow) = 20— 2) 20, V2 € 51 = So x F1(So),
where Sy denotes the set of solutions of (1.1) that we assume to be nonempty. Hence,
(F"(20) + od (20) = fr 20 — 2) + V2h|| 20 — 2| = aJ(20), 20 — 2).

By (2.3), we have

(J(20), 20 — 2) < et V2h 2w — 2[|, V2 € 5. (2.4)

«

Because of the boundedness of (¢ + v/2h)/a, from the last inequality follows the boundness of
the set {z,} in Z. Thus, {x,} is bounded in X.

Theorem 2.3. Assume that o, (¢ ++/2h)/a — 0. Then, there exists a subsequence of the set
{x,} converging to a solution of (1.1). Moreover, all the limit points of {x,} belong to So.

Proof. If (¢ +v/2h)/a — 0, then (s + /2h) is bounded. Therefore, by Lemma 2.2, the sequence

{2u}, 2w = |7w, 27, is bounded. Without loss of generality, assume that

2y — 1, and ' — .
Consequently, z, — 21 := [%1,%]]. As F is monotone in Z, we have

<f(z) —f.z— zw> > <]:(zw) —f.z— zw> = <]:(zw) — FM(z,), 2 — zw>
+ (FM(20) + ad (20) = f, 2 — 20) + I (20), 20 — 2)-

Therefore, from (2.3) it implies that
(F(2) =T, 2= 20) 2 —(e + V2R)||2 — 20| — a{J (2), 2 — 2u,)-
After passing a, h, € (¢ > v/2h) — 0 in the last inequality, we obtain
(F(z) = f,2—2)2>0, Vz€Z

Thus, 2 € S, i.e., x; is a solution of (1.1). On the other hand, from (2.4) and the property
of the standard dual mapping J of Z it follows that

0= (el -l = SR CL I ATS W (25)

81
Hence, (J(2),z — z1) > 0. Since z, z € S; and Sy is a convex closed subset in Z (see [4]),
replacing z by ¢tz + (1 — t)z; in the last inequality, dividing the result by ¢, and then tending
t — 0, we derive (J(21),2 — 21) > 0 (see [1]). Hence,

Izl < llzll, ¥z € S,
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Sy # 0, because Sy # §. Therefore, the sequence {z,} converges weakly to z;. Moreover, from

(2.5), by replacing z by 21, we also derive that ||z,| — |21||. Finally, we have z, — z;, and
|lzwll = ||z1|| (see [4]). As X is uniformly convex, then x, — z;.

3. GALERKIN APPROXIMATIONS

Consider the following variational inequality: find an element x,,, such that z,,, = [xwn,x
is an element of X, satisfying the inequality

ol
wrl?

<F1ho?(an> — T, T, — an> + <F2ho?(x2n> + Zon = fro 2y, — xjm> 2
1/2
_€<||x”_xw””2+”x2_xZ'rL”Q) ’ Yy, EXTH 952 EX:; £> \/§h7 (31>
where
F{Zf(acn) - (P;Flhpn +aPy U Py)(an),
PR () = (PaFEP) 4 aPali P,

The existence of z,, in (3.1) is proved in the same way as in Section 2 for x,.

Theorem 3.1. For every fived a > 0, h >0, and & > \/2h the set {xn} has a limit point being
a solution of (2.1), and all the limit points of {x.,} are the solutions of (2.1).

Proof. From (3.1) we have
<fh”(zwn) +ad"(zon) = [, 2n — zwn> > —¢€||lzn — zunll; Y2n € Zn, (3.2)
Therefore, 2
a{loull = Founl) < (T e0) = I )y 20 = )
< a<‘]n< - Z‘“”> + E”’Zﬂ - Zum” + <~7:h(zum> - ?'rw Bn — an>
< a(J"( — 2un) + (£ + V2h)|| 20 = zun|
+(F"(20) = frr 20 — 2m ) (3.3)

where F"(zy,) = |PYF1 Py () — x}, P, Fa Pl (x)) + ). Since a > 0 is fixed, then from the last
inequality it implies that the sequence {z,,} is bounded. Without loss of generality, assume
that

Zn), Zn
Zn), Zn

/ I .
Zun — 2, =[x, 2l]], as n — +oo.

From (3.3), the continuous property of F* and z, — z, we obtain (2.4) with z, = 2/,. This
means that z/, is a solution of (2.1). On the other hand, by replacing z, in (3.5) by 2/, =
[Pnzl,, Przl]] , we can see that ||zun|| — ||2L|, a3 » — +o0. Since X is uniformly convex, the
sequence z,, — x., as n — +oo (see [2]). Clearly, any convergent subsequence of {z,,}
converges to a solution of (2.1).

We now establish when the sequence {z,,} converges to a solution of (1.1), as «, h, (e >
V2h) — 0, and n — oo.

Theorem 3.2. Assume that the following conditions hold:

(i) Fy is Fréchet differentiable at some neighbourhood O of Sy, and Fy is Fréchet differentiable
at some neighbourhood Q of F1(So),

(ii) there exists a constant L > 0 such thal

IF7(x) = F{@)|| < Ll = y]l, ¥ @ € So, y € Oo,
1F5") = Pyl < Lila* = y*|l, ¥ 2" € F1(So), y* € Qo,

*

an
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(ill) ve = Y2(n) — 0 such that v»/a — 0, Yz € Sy, as n — +oo, where v,(n) is defined by
Ya(n) = max {||(I = Po)z|, [(I" — Py)Fu(@)|},

where I and I* denote the identity operators in X and X*, respectively. Then, the sequence
{@wn} converges to a solution of (1.1).

Proof. From (3.2) and the property of the standard dual mapping J of the space Z, it follows
that for every fixed z € 51, (x € Sp, =* € F1(S0)), 2n = [Poz, Plz*]

allznll = llzunlD)? < @ (zn), 20 = 2un) +llzn — 2unll+
<~7:h(zwn> — F(zun) + Flzun) — Flzn) + Flzn) — F(2), 2n — zwn>.

Since
[ F"(zm) = F(zon)|

<‘7:(an> - ‘7—-<Zn>7 Zn — Zum>

we have
(]l = zonl)” < (2s+ 1F () - f<z>||) T
+a(J(2n), 2n — 2un)- (3.4)

It is easy to verify that
17 (zn) = F(I? < 2<||Zn — 22+ Fu(wn) = FL@)|° + (| Fa(wr,) — F2(%")||2>~

Since for sufficiently large n, x,, € O, xf € Qo, We can write

Fy(zn) = Fi(7) + F{(2)(@n — @) + 7,
Fy(ay,) = Fa(a") + Fy(a*) (@), — %) + 7,

with [[ra]| < £ — Po)z|? and ||7,]| < &]/(I* = P#)a* || Therefore, from (3.4) and condition
(ii) of the Theorem it is easy to see that
alllznll = llzenl)? < <2€ HIF@) I = Poa| + | Fy(=*) (1" = Pyl
i/ E * * *
+ I = Pl + FI = PP = 2l
Jroz<=](,2:n)7 2 — zwn>7 Yz € 5.
Obviously, from this inequality and condition (iii) we obtain the boundedness of the sequence

Zun t. Without loss of generality, suppose that z., — 2| := [z}, 2] € Z, as n — +oo and
g Y, sSupp 1 1,21
a, £ — 0. By virtue of (2.1) we have

<f(zn) —f, zn— zwn> + 04<J(,2:n)7 Zn — zwn> + (e + \/§h)||zn — Zunl| = 0.

After passing n — +oo and «, (¢ > v/2h) — 0 in this inequality, the continuity of F and the
weak convergence of the sequence {z,,} give us

(F(z)=F. 2= =2) >0, V2 € Z
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Again, by Minty’s lemma 2| € Sy, i.e., 2} € Sp. By replacing z, in (3.4) by z1,, = [Pnx}, Plai¥]
and tending n — oo, £, a — 0, we see that {z.,} converges to zj. Consequently, the sequence
{@wn} converges strongly to x, a solution of (1.1).

As in the proof of Theorem 2.3 we have ||z{]| < ||z||, ¥z € S1. Since X and X* are uniformly
convex, they are strictly convex. Therefore, Z is strictly convex (see [4]). Thus, 2} is a unique
element in S; having minimal norm. Hence, the sequence {z.,} converges to z1. Consequently,
the sequence {x.,} converges to z}, a solution of (1.1).

Remark. Many problems of nonlinear deformation of circular and annular elastic membranes
are described in the form (1.1) (see [9, 14, 15]). Therefore, the results presented in this paper
can be applied to solve them.

This work was supported by the National Fundamental Research Program in Natural
Sciences.
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