Tap chi Tin hoc va Piéu khién hoc, T.20, S.3 (2004), 205-218

DESIGNING A LIFT CONTROL SYSTEM
PHAM TRAN NHU!, NGUYEN VAN TRUONG?

Unstitute of Information Technology,

2 Pedagogical University- Thai Nguyen University

Abstract. In this paper, we present an application of syntactical approach given in a formal design
technique for real-time embedded systems. The technique is the model of discretization at the state
level and the approximation of continuous state variables by discrete ones. The lift system presented in
this paper shall be monitored and controlled by a computing system that shall respect the components,
handle the events, and satisfy the usual procedures and invariants. The Duration Calculus with

Iteration is used in the paper to specify requirements of the system.

Tém tdt. Trong bai bdo nay chiing t6i trinh bay mot g dung - hé théng diéu khién thang m&y -
theo cach tiép can hinh thitc cho cdc hé nhing. K¥ thuat thiét ké dwoc diing 1a mo hinh hod su roi
rac va xap xi cdc bién trang théi lién tuc bdi cac bién trang théi roi rac. He thong thang may dugc
gidm sat va diéu khién thoéng qua mét hé thong tinh todn nhim quén 1y cdc bo phan, diéu khién
cic s kién va lam thod man cdc thi tuc cing nhitng bat bién dac trung cho hé théng. Tinh Toin
khodng lip dwroc ding trong bai viét dé dic ta cdc yéu cau ciia hé thdng.

1. INTRODUCTION

The lift control system belongs among real-time control systems. The system consists of
some physical plant, in permanent interaction with its environment, for which a suitable con-
troller has to be constructed such that the controlled plant exhibits the desired time dependent
behavior. Many authors have proposed approachs for designing the lift control system (e.g.
[2,10]). However, some approach is just a postulate - it has not yet been widely tested, so a
failure in the reaction of the plant may appear. The problem is to use suitable technique for
specifying and reasoning about the design of the system.

For any real-time systems in general, and for our lift control system in particular, the
continuous model (real numbers) is suitable for specifying the continuous behavior of the
states of the environment and those of the plant, which can change at any time according to
the laws of physics. However, the state of a digital program changes only at discrete time points
at ticks of a computer clock, so the discrete model (natural numbers) should be considered for
implementation of the system. Therefore, it is appropriate to combine two models into the
same formalism such that the design and its correctness can accurately be reasoned about in
an uniform manner.

Using formal methods is a key solution for buiding a correct system. In this paper, we apply
Duration Calculus with Tteration (DC™), a logic obtained by extending Duration Calculus
(DC) (cf. e.g. [12]) with the iteration operator (*) [1], to model of our lift control system.

206 PHAM TRAN NHU, NGUYEN VAN TRUONG

This makes for a logical framework that can handle both continuous time and discrete time
models for the system.

The design process can be formalised as follows. Firstly, a state variables model of the
system should be defined. The state variables model comprises continuous state variables
(modeling the behavior of continuous components) and discrete state variables (modeling the
behavior of discrete components). Secondly, the requirement of the system is formalized as
a DC formula Req over continuous state variables. A design decision must be established
in order to the requirement of the system will be met and refined into a detailed design
Des over continuous state variables such that A - Des = Req, where A stands for some
assumptions about the behavior of the environment and the relationship between continuous
state variables. Finally, the discretization step follows. We approximate continuous state
variables by discrete ones and formalize the relationship between them based on the general
behavior of the sensors and actuators. The control requirement is derived from the detailed
design and refined into a simple DC* formula C'ont over discrete state variables such that A,
Cont = Des, where A, stands for some assumptions about the behavior of the environment
and the relationship between continuous state variables, and relationship between discrete
state variables and continuous ones. The discrete formula Cont is the formal specification of
the controller.

The remaining of the paper is organized as follows. In Section 2 we give a brief summary of
DC*. The discretization technique is peresented in Section 3. Some refinement and verification
rules are given in Section 4. The formal design process of the lift control system, the main
part of the paper, is contained in Section 5. Section 6 concludes the paper.

2. DURATION CALCULUS WITH ITERATION

In this section we give a brief summary of DC*. The readers are referred to [1| for more
details on the calculus.

A language for DC™ is built starting from the following sets of symbols: a set of constant
symbols {a, b, ¢, }, a set of individual variables {x,y, z, ...}, a set of state variables {P,Q, ...}, a
set of temporal variables {u, v, ...}, a set of function symbols{f,g, ...}, a set of relation symbols
{R,U, ...}, and a set of temporal propositional letters { A, B, ...}

A DC* language definition is essentially that of the sets of state expressions S, terms i
and formulas o of the language. These sets can be defined inductively by the following BNF's:
S2o|P|-S|S vV S
A
t = claful [SIf(E, ..., t)

o 2 AR . D]=¢l(@V D)l 9) | (9% T

A state variable P is interpreted as a function I(P): IRT — {0, 1} (a state). I(P)(¢) =1
means that state P is present at time ¢, and I(P)(¢) = 0 means that P is not present at time
t. We assumne that a state has finite variability in any finite time interval. A state expression
is interpreted as a function which is defined by the interpretations for the state variables and
boolean operators.

For an arbitrary state expression S, its duration is denoted by f S. Given an interpretation
I of the state variables and an interval, duration f S is interpreted as the accumulated length

DESIGNING A LIFT CONTROL SYSTEM 207

of time within the interval at which S is present. So for any interval [¢, /], the interpretation
t/

I(f 9)([t,?]) is defined as [I(S)(t)dt.
¢

A formula ¢ is satisfied by an interpretation in an interval [¢,¢] when it evaluates to true
for that interpretation over that time interval. This is written as I, [¢, '] E .

Given an interpretation I, a formula ¢ ¢’ is true for [¢,¢”] if there exists a t’ such that
t <t <1 and ¢ and ¢’ are true for [t,¢'] and [/, 1], respectively.

We consider the following abbreviations:

s 1, 19] A (JS=ONE>0), op 2 (true” ¢ true), and Op 2 o —~p. We assume
that boolean connectives bind more tightly than . Besides, we use some other symbols as
abbreviations in the usual way.

The proof system for DC™* consists of a complete Hilbert-style proof system for first order
logic (cf. e.g. [8]), axioms and rules for interval logic, Duration Calculus axioms and rules and

axioms about iteration (cf. e.g. [12]). We only recall here some axioms and rules of the proof
system of DC™.

(DC1) f[0=0

(DC2) [1=¢

(DC3) [S>0

(DC4) [S1+ [So= [(S1VS2)+ [(S1AS2)

(DC5) ([S=a" [S=y)= [S=a+y

(DC6) [S) = [S2if S) & Sy in propositional calculus.

[£ = 0/Alp o = [AT[S]/Alp

(IR1) ¢ = [A~[-51/Alp
[true/A]e

[£=0/Alp ¢ = [[S] A/Alp

(IR2) ¢ = [[-S]A/Ale
[true/A]e

(w) Yk < w|([S1V [-S])F/Alp
[true/A]e

(DCF) L =0= ¢*

(DC3) (g~ ¢") = ¢*

(DCE) (* N true) = (¢ ANL=0"true) V (((¢* A =" @) A ') " true)

The proof system of DC™ is complete for sentences where iteration is allowed only for a
restricted class of formulas called simple.

Definition 1. Simple DC* formulas are defined inductively by the following BNF

p 2 0=0[[S]a << al(pV)l Ap)le ¢)le"

208 PHAM TRAN NHU, NGUYEN VAN TRUONG

Definition 2. Given a simple DC* formula ¢, we define a simple DC* formula PREF ()
as follows.

1. PREF([S)) £ [S]*

2. PREF(a <) 2 1>0

3. PREF(t<a)2(<a

4. PREF(¢V ¢') £ PREF(p)V PREF(y)

5. PREF(¢ A¢') 2 PREF(¢) N PREF(¢')

6. PREF(¢™¢') 2 PREF(¢)V (¢~ PREF(4))
7. PREF(¢*) £ o* " PREF(y)

Intuitively, PREF(D) is a simple formula that holds for all prefixes of an interval that
validates D. It follows immediately from the definition that

Proposition 1. ¢ = =(=PREF(p) true).

The class of simple DC* formulas plays an important role in our design process presented
in section 5. The following section presents the discretization technique.

3. DISCRETE INTERFACE

A model of real-time control systems is depicted in figure 1. The plant denotes the con-
tinuous componets of the system. The controller is a discrete component denoting a control
program executed by a computer. The sensors sample the states of the plant. The actu-
ators receive commands from the controller and control the plant accordingly. The sensors
and the actuators constitute the continuous-to-discrete and discrete-to-continuous interfaces

(environment)

respectively.
Plant Controller

N
Sensors

Figure 1. A model of controlled system

disturbances

In the following part of this section we defined three concepts for formalising the relation-
ship between continuous state variables and discrete ones.

Definition 3. (Stability) Given a state variable s and a positive real number §, we say s is

¢ — stable iff the following formula is satisfied by any interval

§ — stable(s) A O([=s] [s]” [-s] = [—s] ([s]A€>0)[=S])

The stability means that a state should not change quickly in order to be observable at
discrete time.

Definition 4. (Control state) Given two state variables r and s, and a non-negative real
number &, we say r & — controls s iff the following formula is satisfied by any interval

DESIGNING A LIFT CONTROL SYSTEM 209

regs 2 O([r]AL> 0= (£ <8 [s])

The concept of control state is used for formalising the behaviour of actuators. Let r be
a state variable modeling a program command, and s a state of the plant. Then the relation
r 5 § means that whenever the controller issues the command r, the plant gets into state s
within at most ¢ time units. So the maximum response time is time units.

Definition 5. (Observation state) Given two state variables r and s, and a non-negative real
number &, we say r ¢ — observes s iff the following formula is satisfied by any interval.

Py s 2 (spsr) A (mss—r)

The concept of observation state can be used for formalizing the behavior of the sensors.
Let r be a state variable modeling a discrete program variable, and s a state of the environment.
Then the relation r 55 s means that any change (stable enough) in s is observed by the
controller within ¢ time units. So the sampling step is ¢ time units. Note that the definition
say nothing about unstable change of s.

We will assume that environment state variables are stable enough to be observable by the
controller, otherwise there is no way to observe them in discrete time.

For formalising the discrete interface, for any continuous state variable s, we consider a
discrete state variable s. used by the control program to observe s via the sensors. The
relationship between s and its sampling s, is formalised by s, ;5 s for some non-negative real
number §. Similarly, for any state ¢ of the plant we consider a command {., a discrete state
for requesting (via the actuators) the plant getting into state ¢{. The ralationship between ¢
and t. is formalised by t. >, t for some non-negative real number 7.

4. REFINEMENT AND VERIFICATION RULES

Some rules given in this section are useful for both the refinement and the verification.
The proofs of some rules and more details are given in [7].

Transitivity rules
t o~ ~_ 1
(r>ss)(sprt) Rule 2 (r = s)(s ~: 1)

(g4 L T R(5tr) S

Rule 1

These rules say that the accuracy is deteriorated through sequential samplings of a state.
They are helpful for the design of distributed systems comprising many sensors, as well as how
to use the sensors efficiently.

Observation rules

Rule 3

(r=ss)
([SIAL>0)"([-s] AL >0) =<5 [r] [-r] true

Rule 3 allows to capture the change of state from 0 to 1 or from 1 to 0 by observation.
State Distance

210 PHAM TRAN NHU, NGUYEN VAN TRUONG

Rule 4a (r 25 s) 0 — stable(s)

(0 + 1) — stable(r) = 7 — stable(s)

Rule 4b (r 55 s) & — stable(r)

(0 + 1) — stable(s) = T — stable(r)

These rules define a necessary condition for the stability of a continuous state, which is
the stability of its sampling and vice-versa. It is useful for refinement.

State Occurrence

Rule ba (spyt)
Ot =<7)=0(s]|=>£<d+71)
Rule 5b (7‘ ;5 s)

O(fr]=¢<7)=0(s]|=£<d+71)

These rules are helpful for both refinement and verification. It define how fast the control
program should be to satisfy a time constraint about the occurrence of the state.

Duration of state

Rule 6 PREF([r1* ([-r] ([r1A€>8))*"[-r]) = d — stable(r)
Rule 7 PREF([-r]" ([rTAL <o) [-rD)* ([r1AL <) =0O([r] = £ <9)
Invariant Rule for loop

¢ = (true” —a) £=0=«

o= (=8 true) £=0=0

Rule 8 OZASO*Aﬂ =X = DX
¢ = L

Invariant Rule for sequential concatenation

Yy=0Ox ¢=0x o 8=x

Rule 9
P = (=0 true) ¢ = —(true” —a)
e~y = Dx
Trivial parallel composition
Rule 10
A=y B=0ULp
ANB =00 Ap)
Monotonicity
- <4
Rule 11a [Pr857 59 Rule 11b If »r = sthenrpgs
r>s S
t ~ ~
Rule 11c (r s 5)(E2s) Rule 11d (r = l< 5 w
(rAt)ps (s Au) (rAt) =5 (sAu)

DESIGNING A LIFT CONTROL SYSTEM 211
5. DESIGN A SINGLE LIFT CONTROL SYSTEM

5.1 Problem domain description

The logical control of a lift system studied in this paper consists of a simple, single lift
system. It allows movement of a single lift cage between a finite number of floors. The
starting and stopping of the lift [cage| and the opening and closing of floor doors are made by
the pressing of floor call, door close and cage send buttons.

Components: The lift system has the following immediate components: a lift cage with
send buttons, one for each floor; a motor; N +1 floors, each with a floor door, a call bullon
and a close button; sensors and actuators; a controller.

We identify floors by natural numbers, numbered 0 to N, and assume that the lift can
carry any number of clients!

The system state is made up from the above components with their attributes.
Attributes: The system and its components have the following attributes.

+ The fift cage is either stopped at floor j for j lying between 0 and N inclusive, or is moving
up (or down) between floors ¢ and i+ 1 (¢ and ¢ — 1), for ¢ lying between 0 and N — 1(N and
1).

+ A floor door is either open or closed.

+ The motor is either running up (or down) or is stopped.

+ The motor, when running, runs at a constant speed-which causes the lift cage to move
between immediately neighbouring floors in ¢,, time units.

Events: We consider only the following events.
+ A send button is pressed for floor k, for k=0, ..., V.
+ A call button on floor k is pressed, for k=0, ..., V.
+ A close button is pressed for the door at floor k, for k=0, ..., N.
+ The opening (and closing) of floor doors.
+ The starting and stopping of the motor-implying the same for the cage.

For the sake of simplicity we do not identify explicitly two journeys of the lift cage: upward
one and downward one.

Procedure: A lift journey is procedurally described.

+ Serwvicing a floor k means that a send button is pressed for floor k, or a call button on floor
k is pressed, or the lift cage is running upwardly or downwardly (towards floor k).

+ There is a request on floor j, means that a call or a send button at floor j is pressed, iff
there does not exist any services of floors and the floor door is closed; or a close button at
floor j is pressed when the floor door is open. This implies that the lift system services floors
succesively. This dogma makes our design simple.

Invariants: The above plus the invariants fully describe expectations.
+ There are at least two floors (a component invariant).
+ The cage has exactly one send button for each floor (a component invariant).

+ Pressing a call button at floor ¢ or pressing a send button for floor ¢ causes the lift to service
that floor within ¢4 time units (a procedural, functional invariant).

212 PHAM TRAN NHU, NGUYEN VAN TRUONG

+ A floor door may only be open if the lift cage is at that floor (a component safety invariant).

+ The floor door is open for at least ¢y time units and at most {y,x time units (a procedural,
functional invariant).

The lift system presented in this paper shall be monitored and controlled by a controller
that shall respect the components, handle the events, and satisfy the usual procedures and
invariants enumerated above.

5.2. Formalizing the requirements of the system

We introduce the following continuous state variables: variable ¢; holds if the call button
on floor ¢ is pressed, variable s; holds if the send button for floor ¢ is pressed, variable d; holds
if the door at floor i is open, and variable f; holds if the lift is at floor ¢, for ¢ ranges over
interval [0, ..., N]; variable motor hodls if motor is on (and this makes the lift cage move);
variable close; holds if the close button on floor ¢ is pressed (at the time when the door at
floor ¢ is open). We do not model lift positions between floors.

The requirements of the system are defined by
Req £ O(SafetyReq A FunctReq)

The safety property for the lift control system is: for every floor, the door must only be
opened if the lift is at that floor. This is equivalent to stating that “if the lift is not at floor
¢, then door ¢ must be closed”.

A
SafetyReq = [d;] = [fi]
The function requirement is the following conjunction

FunctReq A Fi N Fy N\ By

Pressing a send button causes the lift to service the corresponding floor within £, time

its. — . —
Hs ni [si] true = € <tsV (£ <t [d;] true)

This requirement states that for every observation interval for which s; hodls initially, i.e.
the send button for the ¢th floor is pressed, either the interval is shorter than or equal to
or it may be diveded into three subintervals where the first lasts at most t5, in the second the
door at floor 7 is opened, and a final subinterval which is unconstrained.

A similar condition must hold when pressing a call button: pressing a call button causes
the lift to service the corresponding floor within £, time units.

Py 2 o) “true = £ <tV (<] [di] true)

The system must guarantee that when a floor is serviced, the door is open for at least #g
time units and at most #,x time units.

By & ([=di] 7 [di] 7 [~di] = € > to) A ([di] = £ < tomax)

Having defined the requirements, we now present a design decision which implements the
requirements.

5.3. Design decision

We define the design decision by the predicate Des

DESIGNING A LIFT CONTROL SYSTEM 213

Des 2 0(D1AD2A D3N DAA D5 A D6 A DT)

The following formula is derived directly from the assumptions of the behaviour of the
system as described in section 5.1

DI 2 ((t=an[s;Vel]) (€=bA([~d]" [di]))

= U=a) " (L<bOA[=(s; Ve VsjVe)]) true) A [—(close; A —d;)]
A=(ei Ada)T A T=(e Asi)T A T=(si Ada)T A [=(es A di)T A [=(es Agj)]
A ["(Ci A Sj)-| A ["(Si A Sj)-| A [—|<Si A d])-|

If for every interval for which a send button for floor ¢ is pressed initially, and the lift is at
floor j and j # ¢, then the interval may be divided into three subintervals where the first lasts
at most € time units, in the second the motor is on, and an unconstrained final subinterval; in
the condition of ¢ = j, then the door at floor ¢ must be opened within # time units, where 0
stands for a response time of the system. A similar condition must hold when pressing a call
button at floor i.

D2 2 [(s; Vei) A fj] true = (£ < 0) [motor] ™ true
D32 [(siVe)A fi] true = (£ <0) [d;] true
If a send button for floor i is pressed while lift is at floor 7, the lift may reach the destination

floor and then the motor is off and the door at the floor is opened within # time units. A
similar condition must hold when pressing a call button at floor 7.

D42 [(s; Vei) A fj] true
) =i =Gl [(E< 0 [di) AL true) A[(si V) A fi] true
Y b= i —j|t, [(£ <0 [-motor]) A[fi]] true)

If the close button at floor 7 is pressed it may make the door at the floor open within 6
time units.
D5 & [close;] true = (£ < 0) " [—d;] true

Two following formulas will help satisfy the requirement of the maximum and minimum
time units for which a door is open.

D6 2 [—d;] [d;]™ true = [—d;]” € <ty [—close;|” true
Inittially the lift is idle at the ground floor with the doors close, motor stops, and no

requests for the lift.
Init 2 [—motor A fo A —d; A —s; A —e; A —elose;] true V []

214 PHAM TRAN NHU, NGUYEN VAN TRUONG

The maximum time it may take to service a floor corresponds to the time it takes to move
across N + 1 floors and the response time it takes to open doors.

AL L (ty > (n+ 1)ty +26)

The following formula is derived directly from the attribute of the motor as described in
section 5.1

A2 & [(s; Vi) Nfj] true = £ <0 €= 1|i—jlt, [f;] true
We assume that the response time 0 is small enough (compare to the speed of the motor) in

order to the lift, having reached the destination floor, can be at the floor within at least 6
time units while the motor is still running.

1>

A3
A4

[=fil [fi AN motor| true = [—fi] € <ON[fi] true

2 (o401 1< tomax)
Let AL Imit A ALA A2 A A3 A Ad

The following theorem says that the design Des implies the specification Req, under the
assumption A.

Theorem 5.3.1. AF Des = Req
Proof. See Appendix.

We will find a discrete specification for the controller as follows.

5.4. Discrete design

For any continuous state variable s, let s. be the discrete state variable used by the
controller to observe s via the sensors. Then the relationships between continuous state vari-
ables and discrete state ones are formalised as following formulas: f;. ;5 fis Cic 55 Ciy i 55
di, Sie ;5 s;, and close;, 55 close;, where ¢ is the sampling step.

Let Dopen;, Dclose;, Mon, and Moff be discrete state variables, which hold when the
controller requests the actuators to open the door at floor 7, close the door at floor i, start the
motor, and stop the motor, respectively. The relationship between them and the continuous
state variables d; and motor are expressed by Dopen; >, d;, Dclose; >, d;, Mon > motor, and
Mof fr, —motor, where 7 stands for the response time of the plant via the actuators. Besides,
we also introduce a symbol £ as one described above, but its value can be calculated only by
some computer clock.

Let
el = ([(cic V sic) A fje NMon) AN =7)" (i — jlty, <€ <0+ i —jltm) [Moff]
#2 2 ([(cieV i) A fje A Mon] AL =7) 7 (fi = jltm < £ <5 +1]i = jltm) " [Dopen]
¢3 = ([(cic V Sic) A fie N Dopen;] A (£ =T)
o1 L (€ >ty — 1) [close;. A Delose;]
62 2 (tpax — 0 — 1 < € <ty — 0) " [Delose;]

DESIGNING A LIFT CONTROL SYSTEM 215

pl 2 ([(cie V osie) Afiel (€< 0+ |i = jltm) " cie V sie V ¢je V sje])
[=(cic Adje) 1 A [=(eie A cje) | A T(cie A sje) T A [=(Sie A sje)] A
[2(sic A dje)] A [—(closeie N adic) | A [=(cie A dic)] A [=(Cie A sic)] A [7(85e A dic)]
[Hcic A =sic]™ (LA 92) V 937 g1V ¢2)*
TV [mcie A sic]l ((PLA92) V3T ¢l V ¢2)*

1>

u2

/>

|
|

/>

|V_‘Clc 1S4e

A discrete design for the controller is difined as following formula

Cont 2 (™ ¢V PREF(£™)) A pl A p2

Let
A, LAN (fic 55 Ji) A (cie ;5 ¢i) N (die ;5 di) N (Sie ;5 s;) A (close;. ;5 close;) N
(Dopen; >, d;) A (Delose; >y —d;) A (Mont>r motor) A (Mof f >, = motor) A
(0 >740)A([Dopen;] = £ < 0) A([Dclose;| = £ <0)

The following theorem shows the correctness of the discrete design, under the assumption

A..
Theorem 5.4.1. A, Cont = Des
Proof. See Appendix.

6. CONCLUSION

We have designed a lift control system by using the technique of modelling discretization at
the state level and the approximating continuous state variables by discrete ones. We consider
DC™* as specification language to reason about the design of the system. DC™ has been used
successfully in many case studies, see e.g. [1,5,7], except for our system described above.
Using the technique will make our system design move closer to real world compares to one
given in [10], and it is useful for programmers to implement it in some programming language.
Besides, it is not difficult to prove the correctness of the design of the system by using the
technique.

In general, we just have considered the system with simple requirements and the dogmatic
assumption. In our future work, we will use the technique to design more complex and practical
systems.

Acknowledgment. The authors would like to thank Mr. Dang Van Hung for his useful
references.

REFERENCES

[1] Dang Van Hung, Dimitar P. Guelev, Completeness and Decidability of a Fragment of Du-
ration Calculus with Tteration, Technical Report 163, UNU/TIST, P.O.Box 3058, Macau,
1999.

216

2]

EIRESNES)

[11]
[12]
[13]

[14]

PHAM TRAN NHU, NGUYEN VAN TRUONG

Derek N. Dyck, Peter E. Caines, The Logical Control of an Elevator,[EEE Transactions
on Automatic Control 40 (1995) 480-486.

Doron A.Peled, Software Reliability Methods, Springer-Verlag, USA, 2001.

Edward A. Lee, Embedded Software, Advances In Computers 56 (2002) 55-90.

Fancois Siewe, Dang Van Hung, Formal Design Technique For Real-Time Embedded

Systems, Technical Report, Science Conference on the Occasion of 25th foundation year,
Institute of Information Technology, Hanoi, Vietnam, 2001.

Francois Siewe, Dang Van Hung, Deriving Real-Time Programs from Duration Calculus
Specifications, Technical Report 222, UNU/TIST, P.O. Box 3058, Macau, 2000.

Fanoois Siewe, Dang Van Hung, From Continuous Specification to Discrete Design, Tech-
nical Report 182, UNU/TIST, P.O. Box 3058, Macau, 2002.

J. Shoenfield, Mathematical Logic, Addison-Wesley, Massachusetts, 1967.

Jan Vytopil, Formal Techniques in Real-Time And Fault-Tolerant Systems, Kluwer Aca-
demic Publishers, USA, 1993.

Kirsten Mark Hansen, Angers Peter Ravn, and Hans Rischel, Designing Verified Real-
time Systems, Technical Report, Dept. of Computer Science, Technical Uni. of Denmark,
EuroMicro 92, Paris, 1992.

Michael Schiebe, Saskia Pferrer, Real-Time Systems Engineering And Applications,
Kluwer Academic Publishers, USA, 1992.

Michael R. Hansen, Zhou Chaochen, Duration Calculus: Logical Foundations, Formal
Aspects of Computing 9 (1997) 283-330.

Rajesh Kumar Gupta, Co-synthesis of Hardware And Software For Digital Embedded
Systems, Kluwer Academic Publishers, USA, 1995.

S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli, Design of Embedded
Systems: Formal Models, Validation, and Synthesis, Proceedings of the IEEE, 85 (1997).

Appendix

A Proof of Theorem 5.3.1

We shall prove that A F Des = Req.
Observation:
+IfTHFA=BandTFHC=DthenTHFAANC= BAD
+ AFOB = C & A, BE C (Deduction theorem).
+ B¢ = ¢) = (O¢ = o)
Therefore, we can complete the above theorem if we can prove four following theorems.

Theorem 5.3.1.a A, DI AD2A D3ADAF [d;] = |fi]

For every interval at which d; holds, there always exists a smallest interval that contains
that one and it makes only ¢;, or only s; hold initially. Assume that ¢; holds initially, we
will give the brief proof of the theorem as follows.

1. [e;]” [di]™ [di] {assumption}

2. [e;] true {1,DC*}

3. el true = ([e;ANfi] true) A ([eiA=fi] true) Vo ([e A fi] true) A
([es A =fi] true) {D1,DCx}

DESIGNING A LIFT CONTROL SYSTEM 217

4. (Te; N fi]7 true) A (Je; A=fi] true)

= U<O) T (U=i—jltn) [0 Td]AN[fi])] true Att {D2,D3, D4, A}
= (<0 (U= i —jltn) [(€ <07 [d]) Al true {DC*}

5. ([ei A fi] true) A (Je; A=fi] true)

= (<0 [d;)) AN T[] true {D2,D4,D3, A3, DC*}

6. [ci] true = (£ <0 [di]) N[fi] truev

(Ji =jltm) S LSO+ i =Gt [(€ <O [d]) ATS]] true {2,3,4,5}

We can prove the theorem if si holds in the same way.

Theorem 5.3.1.b A, DIAD2AD3ADAN [s;] trueb £ <t,V (£ <t; [d;] true)
For every observation interval for which s; holds initially and the interval is longer than

ts, we present the brief proof of the theorem as follows.
1. [s;]" true {hypothesis}

2. [si] true = ([s; A fi] true) V ([s; A= fi] true) {DC*}
3. [si A fi] true = € <07 [d;] true {D3}

4. [(si V) A fi] true = (£ < 0) [motor]” true {D2}
=<0 (=1]i—jltn) £ <0 [d;] true {A2, D4}

= (0 <ts) [di] true {Al, Arithmetic}

5. (£ <0) [d;] trueV (£ <ty [d;] true) {1,2,3,4, DC*}
6. L <ty [d;] true {5, Al, DC*}

Theorem 5.3.1.c A, DI AD2AD3ADAA [¢;] trueb € <ty Vv (€ <t [d;] true)
The proof of this theorem can be induced from that of theorem 5.3.1.b.

Theorem 5.3.1.d A, D7TAD6A D5 F I3

L. [=d;] [di] true = [~d;]” € < 1y [—close;| true {D6} = [—d;]” (£ < tgl <
0) A [d;] true {D5}

2. ([=d;] " [di]" [=diD) A (< to) = ff{L,DC*}

3. [di] = € < tmax {DTandDC*}

4. F3 {A,2,3,0bs.andDC*}

B. Proof of Theorem 5.4.1
We shall prove that A, F Cont = Des

Observation:
(V)" & (¢ ¢")"
AFrB=C<s A BFC

Because of the space litmit, we don’ t give the complete proof of the theorem and we just

prove the following theorem.
Theorem A, Cont = D7

218

PHAM TRAN NHU, NGUYEN VAN TRUONG

1. ¢* "¢ {hypothesis}
2. ([7Cie A =8ic |* (01 A 92) V 37 p1 V ¢2)*)* 7 ([cic A =8ic|* V [Cic A =836
(Pl A@2) V379l V $2)")* {1,DC*}
3. ([Cie A =8ic| V(1A @2) V 371V ¢2))* ([—Cic A =185 | * V [7Cie A TS5
(LA @2) V37 gLV $2)*)* {2, 0bs*}
4. (Pl A p2) V371V ¢2
= [(Cic V Sic) A fije NMon] AN =17 (|i — jlt, <€ <+ |i—jltn) ([Dopen;])
V[(¢ie V 8ic) A fie N Dopeni] A =17 ((€ > tg — 7) " [close;. \ Dclose;])
V(tmax — 0 — 1 < € <tpax — 0)" [Dclose;] {DC*}
. [Dopen;] = £ < 77[d;] {A., Def.4, A}
. [Dclose;] = € <77 [-d;] {Ac, Defd, A}
A A (bax — 1 <€ < tpax) true {ass.}
APl AQ2) V3 Pl V ¢2
([(Cic\/ Sic) A fjc/\ MOTL—| NE = TA<|Z. _j|tm < 14 < o+ |Z _j|tm)A£ < T/\(tmax -
<< tma) A ([VS T (fmax — 1 < € < tax) A [di]) 7 [di] A (£ <
0) {4,5,6,7, A, Ruleba, Arithmelic}
9. (1A 2) V3 ¢l V ¢2
= ([di]A(tmax—1 < £ < tax)” true = (£2 tyax— 1A < tax) ™ [2d;] true) {8, DC*}
10. €= 0= 0OD7 {DC*}
11. ([7Cie A =Sic| V [7Cie A =8| ¥ = DT7{10, A., DC*}
12, Ae, (1 A @2) V 03701 V d2)* A ul A 2, ([di] A tmax — 1 < £ < tmay) true F
[d;]" [~d;i] true {9,10,11, DC*, obs.}
13. A, ([7Cie A =836V [7Cie A =183 *) A pl A p2, ([di] A tpax — 1 < € < bpax) true
[d;]" [-d;] true {11, DC*, obs.}
4. Ao (@) A pl A p2,([di] A tmax — 1 < £ < tpay) true F
[d;]” [—d;] true {1,2,3,10,12,13, obs., Rule9}
15. PREF(¢*) {hypothesis}
16, ([mcie A=msie]* (91 A 92) V 93761 V ¢2))* (6 = 0V [cie A=sie]) V
[—Cie A =8ic ¥ (P A 2) V 371 V ¢2)* {13, Def.of PREF()}
17. Ao, PREF(o*) A pl A p2,([di] A tmax — 1 < € < bpax) true F
[d;]” [—d;]” true {10,12,13, DC*, obs.}
18. Ao F Cont = D7 {14,17, 0bs.}

Nhén béi ngay 11 - 8 - 2003

