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�

Abstract. This article highlights a robust adaptive tracking control approach for a nonholonomic

wheeled mobile robot by which the bad problems of both unknown slippage and uncertainties are

dealt with. The radial basis function neural network in this proposed controller assists unknown

smooth nonlinear dynamic functions to be approximated. Furthermore, a technical solution is also

carried out to avoid actuator saturation. The validity and efficiency of this novel controller, finally,

are illustrated via comparative simulation results.
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1. INTRODUCTION

Nowadays, it is well acknowledged that designing controllers for wheeled mobile robots
(WMRs) is strongly appealing to researchers throughout the world. The reason is that each
WMR has a wide range of action, which creates a favorable condition for its applicability
to be increasingly prevalent. Thus, significantly more WMRs have been applied in a variety
of practical applications than ever before. Such practical applications might be in military
operations, transportation, rescue, observation, and so forth.

Thanks to the remarkable improvement of the science and engineering in the control field,
there have been a great number of reports in the literature showing various control methods
for WMRs. For instance, the authors in [1] have proposed a robust adaptive tracking control
method for WMRs. The work [2] revealed a suggestion of an adaptive PID sliding mode
controller based on a neural network in order to control a nonholonomic WMR. The study
[3] tackled a tracking control problem in polar coordinates for a nonholonomic WMR via a
sliding mode control method. A tracking control method utilizing input-output linearization
was proposed in [4]. An adaptive control approach of an electrically driven nonholonomic
WMR through backstepping and fuzzy techniques was published in [5]. Such reports were
based on an assumption that wheels’ motion is pure rolling without slippage, that is to say,
the WMRs’ nonholonomic constraint is always satisfied.
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Nevertheless, the no-slip assumption is possibly violated in many practical applications
due to slippery and irregular surface, centrifugal force as soon as a WMR moves in a circular
path, and so on [6]. In other words, there may exist slippage between the wheels and the
floor. It is because of slippage that the performance of closed-loop control systems for WMRs
deteriorates [7, 8, 9, 10, 11]. As a consequence, necessary steps must be taken in order to
combat some reduction in tracking control performance due to slippage [12].

Of course, there have been researches addressing the slippage for a WMR. In particular,
in 2006, a linearized kinematic model-based robust controller for car-like mobile robots was
shown in [13]. In [14], thanks to extending the framework of the differential flatness theory
to the models with slip uncertainties, robust trajectory-tracking controllers for differential
driven two-wheeled mobile robots were developed via taking account of not only the dynamic
but also kinematic model with slippage. In [15] released in 2012, a nonlinear disturbance
observer was adopted with the purpose of estimating a nonlinear disturbance term involving
both lateral and longitudinal slip. Next, the same author extended such a work to an
obstacle avoidance problem [16] with not only slippage but also actuator saturation. In 2013,
a robust tracking controller based on a Generalized Extended State Observer for a WMR
badly affected by unknown skidding and slipping was proposed by [17]. In [18] published in
2014, the overall dynamics of a WMR subject to wheel slips has been considered as an under-
actuated nonlinear dynamic system. After that, control algorithms in not only regulation
but also turning tasks were proposed for the WMR.

Taking everything into consideration, most of these above control methods have not
addressed the tracking control problem in the body coordinate system which is attached
to the platform of a WMR, or, more precisely, they were designed in the global coordinate
system except for [7, 8, 9, 10, 11]. As a consequence, an estimator for obtaining sideslip
angle (see Figure 1) [19, 20] or an observer estimating the model of friction [21, 22] must be
needed for designing such controllers. In accordance with the assessment of [23] published in
2008, it is difficult and/or expensive to estimate the sideslip angle as well as the coefficient of
friction, even though fundamental variables such as linear acceleration, linear velocity, yaw
rate can be easily measured by means of affordable sensors.

In this article, the proposed control approach will confront the serious issue of slippage
under the body coordinate system, which is similar to [7, 8, 9, 10, 11]. As a result, observers
for estimating both the sideslip angle and the friction coefficient are not required anymore.

When it comes to actuator saturation as can be seen from Figure 2, one must remember
that it is one of the most common nonlinear factors in control systems. It exists due to
the fact that every actuator has a torque limitation. Once a controller demands a great
torque that exceeds such a limitation, the control performance goes down [24]. Designing
controllers considering actuator saturation, hence, has been widely conducted all over the
world and there have been many scientific reports in the literature about this problem [25].
There is a broad recognition that methods tackling actuator saturation are divided into
two major groups: ONE-STEP and TWO-STEP [26]. In particular, the one-step approach
simultaneously performs both designing a control law which meets all nominal specifications
of a desirable control performance and handling actuators’ constraints. Even though this
approach is acceptable in theory, it has still lacked applicability to several practical tasks
[27]. Meanwhile, the two-step approach firstly designs the pure control law without taking
account of actuators’ saturation. Subsequently, a saturation compensator such as an anti-
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Figure 1. Slipside angle [10]

Figure 2. Actuator saturation

windup compensator must be utilized so as to minimize the bad influence of the actuator
saturation on the control performance of a closed-loop control system once it happens. As
opposed to the one-step approach, the two-step one becomes more prevalent. An explanation
is that the latter permits practical engineers to design controllers without restriction, followed
by retrofitting a saturation compensator. Nonetheless, the disadvantage of the latter is that
they must also rapidly remove the output of the saturation compensator as soon as actuator
saturation stops happening [28].

Although our proposed control approach indirectly avoids the actuator saturation in the
one-step way, thanks to our novel technical solution, its applicability to several practical
problems will be enhanced significantly.

The contributions of this paper are composed of the two new findings as following:

• Designing a robust tracking controller, which is carried out in order to simplify the
algorithm in Chapter 4 of [10]. Therefore, the burden of computation will be also
reduced remarkably.

• As opposed to [7, 8, 9, 11], a technical solution is used to indirectly avoid actuator
saturation and then making this controller suitable for physical limitations in practical
applications.

The structure of this paper is organized as follows. Section 2 shows preliminaries comprising
the kinematics and dynamics of the WMR with slippage, followed by the description of a
RBFNN. Section 3 reveals the problem description, the robust kinematic control law, the
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Figure 3. The nonholonomic WMR subjected to unknown slippage

robust adaptive dynamic control law, and the stability analysis. Computer simulation results
are clearly shown in Section 4 in order to confirm the validity and efficiency of this proposed
control method. Finally, our conclusions are described in Section 5.

2. PRELIMINARIES

2.1. Kinematic model of a WMR subjected to slippage

Figure 3 is a clear illustration of a nonholonomic WMR composed of two differential
driving wheels and a passive wheel. G(xG, yG), namely, is an illustration of the platform’s
mass centroid. Likewise, the wheel-shaft’s midpoint is shown by M(xm, ym). Next, F1, F2

and F3, respectively depict the illustrations of the friction forces between the driving wheels
and the floor along the corresponding directions. F4 and $ are expressions of an external
force and moment acting on G, respectively. If there is no slip between the floor and the
driving wheels, then the two following conditions will be always fulfilled:

• The orientation of the linear velocity is always assured to be perpendicular to the
wheelshaft, or, more precisely, the sideslip angle (see Figure 1) always equals to zero.

• Both the velocities and accelerates of the WMR’s platform comprehensively depend
on the pure rolling motion of the two differential driving wheels.

If the WMR works in the presence of slippage, then the actual linear velocity of the WMR
along the longitudinal direction will be expressed in the following illustration [7, 8, 9, 10, 11]

ϑ =
r
(
φ̇R + φ̇L

)
2

+
γ̇R + γ̇L

2
, (1)

where φR and φL respectively representing the angular coordinates of the right and left
differential driving wheels about the wheel-shaft axis; γ̇R and γ̇L respectively are the longi-
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tudinal slip velocities of the right and left wheels; r denotes the radius of each driving wheel.
Likewise, the actual yaw rate is also computed as follows [7, 8, 9, 10, 11]

ω =
r
(
φ̇R − φ̇L

)
2b

+
γ̇R − γ̇L

2b
(2)

with b showing a half of the wheel-shaft.

Let η̇ be the lateral slippage velocity of this WMR along the wheel-shaft (see Figure 1.).
The kinematics, as a consequence, can be expressed as follows

ẋM = ϑ cos θ − η̇ sin θ

ẏM = ϑ sin θ + η̇ cos θ

θ̇ = ω.

(3)

The perturbed nonholonomic constrains can in turn be written as follows [15]
γ̇R = −rφ̇R + ẋM cos θ + ẏM sin θ + bω

γ̇L = −rφ̇L + ẋM cos θ + ẏM sin θ − bω
η̇ = −ẋM sin θ + ẏM cos θ.

(4)

2.2. The dynamic model of a WMR considering slippage

Applying Euler-Lagrange formulation, the dynamics of this WMR, which is similar to
[7, 8, 9, 10, 11] is shown in the following equation

Mv̇ + B(v)v + τ d = τ , (5)

where τ = [τR, τL]T is the input vector with τR and τL respectively showing the torques
at the right and left differential driving wheel about the wheel shaft; τd is the description
of an unknown vector including the bad influence of the slippage, the model uncertainties

(due to the variation and no prior knowledge of dynamic parameters); v =
[
φ̇R, φ̇L

]T
is

the angular velocities of the differential driving wheels about their rotational axis; M is the
inertial matrix; B is the centrifugal and Coriolis matrix.

Property 1. M is always invertible, differential, positive-definite, symmetric, and bounded
such that M1‖x‖2 ≤ xTMx ≤ M2‖x‖2 ∀x ∈ R2×1 where M1, and M2 are known positive
constants.

Property 2. Ṁ − 2B is a skew-symmetric matrix. It implies that xT(Ṁ − 2B)x = 0
∀x ∈ R2×1.

2.3. Radial basis function neural network

Evidently, no prior knowledge of the dynamics of controlled plants has been one of the
most popular reasons why unknown nonlinear smooth functions have existed. Such functions
need to be approximated so as to enhance the control performance. The radial basis function
neural network (RBFNN) is one of the most prevalent tools making approximations easier.
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Figure 4. The diagram of RBFNN

It has, therefore, been applied in various areas of the control theory and engineering. For
instance, the authors in [12] have utilized this RBFNN to make an approximation of such
unknown smooth dynamic functions of the WMR.

According to [10], the illustration of such a RBFNN will be briefly expressed in this
subsection. Overwhelmingly, what stands out from Figure 4 is that its structure is composed
of 3 layers: The input, hidden, and output layers.

In particular, the input layer is revealed by x = [x1, · · · , xN1 ]T with N1 showing the
number of the input-layer neurons. In the hidden layer, there are N2 activation functions.
It is, in this work, suitable to select every activation function as a Gaussian type function as
follows

σi(x) = exp

(
1

2ψ2
i

‖x− ξi‖2
)

with i = 1, . . . , N2, (6)

where ξi and ψi respectively show the illustrations of the center and width of the Gaussian
function of the i -th hidden-layer neuron.

When it comes to the output layer, it is formed via a linear combination of the weights
and such activation functions. Interestingly, the illustration of the j -th output-layer neuron
is expressed as follows

yj = Wj0 +

N2∑
i=0

Wjiσi(x) with j = 1, · · · , N3, (7)

where, N3 is the number of the output neurons.
Here, one striking feature is that Wj0 shows the illustration of the threshold offset of the

j-th outputlayer neuron. The neural network (NN) weight Wji makes a link between the
j-th output-layer neuron and the i-th hidden-layer one. For convenience in description, one
can rewrite (7) in terms of vector as follows

y(x) = WTσ(x), (8)
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Figure 5. The representation of target D in the body frame M-XY

where y(x) = [y1, · · · , yN3 ]T , σ(x) = [1, σ1, · · · , σN2 ]T , W is constituted by not only the
weights Wjt but the threshold offsets Wj0 also.

Assumption 1. W is bounded by a known positive real constant value. To be specific, let
WM be a known upper bound of W, which implies that ‖W‖F ≤WM with ‖W‖F denoting
the Frobenius norm [12] of W.

For any a bounded and continuous function vector f(x) : RN1×1 → RN3×1, there exists
an optimal matrix W such that

f(x) = y(x) + ε = W
T
σ + ε, (9)

where ε is the vector of reconstruction errors. For convenience in description, we denote
σ = σ(x).

Assumption 2. The reconstruction error vector ε is bounded by a positive constant value
εM. In other words, we can write that ‖ε‖ ≤ εM.

Let Ŵ be the actual weight matrix of the RBFNN in order to approximate f(x) in (9).
One can write a good approximation of f(x) as follows

f̂(x) = ŴTσ. (10)

3. DESIGNING THE CONTROL SYSTEM

3.1. Problem description

The control goal is to look for an adaptive tracking controller considering actuator satu-
ration for a WMR to cope with the unknown wheel slip such that the point P of the WMR
(see Figure 6) coincides with the target D with a desired tracking control performance.

Remark 1. According to [10] due to the fact that the nonholonomic constraint (4) stops M
converging to D along MX axis in the body frame M-XY (see Figure 5), the control goal is
to make point P (instead of M) coincide with the target D.
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Figure 6. The diagram of entire control system

According to [10], to solve this problem the overall diagram of the control system is
shown as Figure 6.

3.2. The robust kinematic control law

Firstly, the position of target D is shown in the body frame M-XY (see Figure 5) as
follows

ζ =

[
ζ1
ζ2

]
=

[
cos θ sin θ
− sin θ cos θ

] [
xD − xM
yD − yM

]
, (11)

where (xD, yD) is the postion of D in the world frame O-XY.

Assumption 3. Both xD and yD are bounded and twice differentiable

Differentiating (11) then yields

ζ̇ = hv +

[
cos θ sin θ
− sin θ cos θ

] [
ẋD
ẏD

]
+ χ, (12)

where h =


(
ζ2
b
− 1

)
r

2
−
(
ζ2
b

+ 1

)
r

2

−ζ1r
2b

ζ1r

2b

 and χ = −

[ γ̇R + γ̇L
2
η̇

]
+
γ̇R − γ̇L

2b

[
ζ2
−ζ1

]
.

Assumption 4. All slip velocities γ̇R, γ̇L and η̇ are bounded. As a result, there exists a
certain positive real constant value Γ such that‖x‖ ≤ Γ.

Remark 2. By virtue of det(h) =
ζ1r

2

2b
, h is invertible as long as ζ1 6= 0.

According to the aforementioned control goal in Subsection 3.1 and Figure 5, it is ap-

propriate to select the desired vector ζ as ξd =

[
C
0

]
. Therefore, the vector of the position
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tracking errors in the body frame M-XY is defined by

e =

[
e1
e2

]
= ζ − ζd. (13)

It is obvious that χ is unknown. If the condition ζ1 6= 0 is met (see Remark 2), then a
possible kinematic control law will be suggested as follows

vd = h−1
(
−Λe−

[
cos θ sin θ
− sin θ cos θ

] [
ẋD
ẏD

]
− Γ̂

e

‖e‖

)
, (14)

where Λ is a symmetric positive-definite matrix and can be arbitrarily selected; Γ̂ the kine-
matic robust gain online updated as the following equation

˙̂
Γ = H‖e‖, (15)

where H denotes a positive real constant and can be chosen in an arbitrary way. Substitution
of v in (12) by vd in (14) results in

ė = −Λe + χ− Γ̂
e

‖e‖
. (16)

3.3. The robust adaptive dynamic control law

An unknown smooth nonlinear dynamic function vector, first of all, is defined as the
following form

f(x) = −Mv̇d −B(v)vd (17)

with x =
[
vT,vT

d , v̇
T
d

]T
being the input of the RBFNN and easily measured.

Adding f(x) to the both sides of (5) results in

Mṡ = τ + f(x)−Bs− τd (18)

with s = v − vd presenting the vector of the angular velocity tracking errors.
Owing to the fact that there is no perfect knowledge of the dynamics of the WMR, it is

impossible to exactly know f(x). Let us, hence, propose the dynamic control law as follows

τ = −K · sgn(s)− f̂(x)− γ̂ s

‖s‖
, (19)

where f̂(x) is the output of the RBFNN described by (10) and is employed so as to estimate
f(x); K is a positive-definite diagonal constant matrix, and further it can be arbitrarily cho-

sen; sgn(s) = [|s1|α sign (s1) |s2|α sign (s2)]
> helps the dynamic controller avoid the actuator

saturation; α is a positive real constant selected in an arbitrary way meeting α < 1. Next,
γ̂ is the dynamic robust gain updated online as

˙̂γ = P‖s‖ (20)

with P being an arbitrary positive constant. Substituting (9), (10) and (19) into (18), leads
to

Mṡ = −K · sgn(s)−Bs + W̃σ − γ̂ s

‖s‖
+ d, (21)
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where d = ε− τ d is the total uncertainty term; W̃ = W − Ŵ.

Assumption 5. The total uncertainty term in (21) is bounded as the following inequality

‖d‖ ≤ Υ (22)

with Υ indicating a certain positive constant.
Let us propose an online weight updating law of the RBFNN via measurable signals in

x and s as follows
Ŵ = −QσsT, (23)

where Q is a diagonal, positive-definite constant matrix and can be arbitrarily selected.

3.4. Stability analysis

Theorem 1. Let us take the WMR into account in the presence of the unknown wheel slips,
model uncertainties, and actuator saturation. To be more specific, its kinematics and dynamics
are represented by (3) and (5), respectively. Let Assumptions 1-5 be met.

If the proposed control scheme as shown in Figure 6 is utilized, which is constructed from
the kinematic control law (14), the dynamic control law (19), and online updating laws (15),
(20), and (23), then both the position and angular velocity tracking error vector, e and s, will
converge to zero as t→∞.

Proof. Let us choose a Lyapunov candidate function in the form

V (t) =
1

2
eTe +

1

2
sTMs +

1

2
tr
(
W̃TQ−1W̃

)
+

1

2
H−1Γ̃2 +

1

2
P−1γ̃2, (24)

where, tr(.) denotes the trace of a matrix; Γ̃ = Γ− Γ̂; Υ̃ = Υ− Υ̂ (see Assumptions 4− 5).

Taking the first derivative of (24) with noting that ˙̃Γ = − ˙̂
Γ; ˙̃Υ = − ˙̂

Υ; ˙̃W = − ˙̂
W, it follows

that

V̇ = eTė + sTMṡ +
1

2
sTṀs− tr

(
W̃TQ−1Ẇ

)
−H−1Γ̃

˙̂
Γ− P−1γ̃ ˙̂γ. (25)

Substitution of (15), (16), (20), (21) and (23) into (25) with noting both Property 2 and

tr
(
W̃TσsT

)
= sTW̃Tσ leads to

V̇ = −eTΛe + eTχ− Γ̂‖e‖ − sTK · sgn(s) + sTd− γ̂‖s‖ − Γ̃‖e‖ − γ̃‖s‖. (26)

In the light of Assumptions 4-5, one can write the following inequality

V̇ ≤ −eTΛe− sTK · sgn(s). (27)

It is clear that V̇ ≤ 0 ∀e, s ∈ R2×1. This implies that V (t) ≤ V (0). Consequently, all
e, s, W̃, Γ̃, γ̃ are bounded for all t > 0 as long as they all were bounded at the initial time
t = 0. Thanks to applying Lyapunov criteria, the whole control system is certainly concluded
to be stable.

In order to demonstrate the asymptotic convergence of both e and s to zero, let us define
another Lyapunov candidate function as follows

V2(t) = V (t)−
∫ t

0

[
V (ξ) + eT(ξ)Λe(ξ) + sT(ξ)K.sgn(s(ξ))

]
dξ. (28)
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Taking the first derivative of (28) yields

V̇2 = −eTΛe− sTK · sgn(s). (29)

The uniform continuity of V̇2 is examined by looking at the following equation

V̈2 = −2eTΛė− ṡTK · sgn(s)− sTK · dsgn(s)

dt
. (30)

In accordance with [29, 30], the final term in (30) is guaranteed to be completely finite.
Moreover in the light of Assumptions 4 − 5, all the remaining terms in V̈2 are bounded.
Therefore, V̈2 is assured to be bounded. Applying Barbalat’s lemma [31], it is obvious that
V̇2 → 0 as t → 0. As a result, not only e but also s are guaranteed to be asymptotically
convergent to zero.

The proof is completely finished here. �

Remark 3. If |si| is much greater than 1, |si|α with 0 < α < 1 is much smaller than itself.
In the transient state, |si| is often much greater than 1, and therefore thanks to the presence
of −K · sgn(s) in (19) instead of - Ks as in [11], the capability of keeping the controller’s
output, τ, in the linear range of the actuators is significantly heightened (see Figure 2). The
ability of occurring actuator saturation of the former, hence, is noticeably smaller than that
of the latter.

4. SIMULATIONS

In this section, to confirm both the correctness and efficiency of the proposed control
method, two computer simulations for trajectory tracking of the WMR were performed via
Matlab-Simulink tool. The actual parameters of the WMR are expressed in Table 1. A fact,
however, is needed to highlight that there was no preliminary knowledge of the dynamic
parameters of the WMR. This is the reason why the RBFNN was used so as to approximate
the dynamic nonlinear function f(x) of this WMR.

Without loss generality, the unknown wheel slips between the floor and the driving wheels
have been assumed as follows[

γ̇R γ̇L η̇
]

= [sin t 1.5 cos 0.75t 0.5]. (31)

The control gains were chosen as follows Γ̂(0) = 0.5, Υ̂(0) = 2

K =

[
3 0
0 3

]
, Λ =

[
5 0
0 5

]
, α =

1

3
, κ = 6 = 0.05, H = 0.1, P = 1.

The architecture of the RBFNN was determined as follows: 6 inputs, 20 hidden neurons,
and 2 output nodes. The learning-rate matrix Q = 2I2×2. The initial values of the RBFNN
weight matrix ŵ(0) were chosen randomly in the range of (0, 1).

For comparative purposes, the computer simulations of [11] and [32] were respectively
carried out in the two following examples.

Example 1. The target D was on a straight line with the following trajectory{
xD = 4 + 0.4t
yD = −0.5 + 0.3t.

(32)
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The initial posture in the world frame O-XY was selected as[
xM(0) yM(0) θ(0)

]
=
[

0(m) 0(m) 0(rad)
]
. (33)

Figure 7. A comparison of tracking trajectories between two control methods in Example 1

Figure 8. A comparison of the position tracking errors e between two control methods in Example 1

Figures 7, 8 and 9 depict the result of Example 1. Particularly, as can be seen from
Figure 7, the proposed control method overcame the undesired influence of the unknown
wheel slips more effectively than the one in [32]. The most striking feature in the steady
state is that the greatest position tracking errors in the former were considerably smaller

than those in the latter (see Figure 8), with [|e1| , |e2|]T =
[

0.025, 0.013
]T

as opposed to

[|e1| , |e2|]T =
[

0.041, 0.07
]T

(m), respectively.
On the other hand, what stands out from Figure 9 is that the greatest torques (the

controller’s output), in the transient state, computed by the proposed control method are
significantly smaller than those by the approach of [32], with the former constituting τmax =
[24, 26]T and the latter [152,−41]T (N.m). An explanation is Remark 3. For this reason,
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Figure 9. A comparison of torques between two control methods in Example 1

the capability of occurring actuator saturation of the former is much smaller than that of
the latter.

Remark 4. Thanks to being designed in the body frame M-XY, our control method is more
advantageous than that in [32] which was designed in the world frame O-XY.

Example 2. The target D was on a curved line with the following equation{
xD = 2− 3 cos 0.2t+ 0.1t
yD = 2 + 3 sin 0.2t− 0.1t.

(34)

For comparison, the computer simulations of both this proposed control method and the
one in [11] were conducted.

The initial posture in the world frame O-XY was selected as[
xM(0) yM(0) θ(0)

]
=

[
0(m) 0(m)

2π

3
(rad)

]
. (35)

Figures 10, 11, 12 and 13 illustrated the comparative results of Example 2. Particularly,
as can be seen from Figures 10 and 11 that the tracking control performances of our proposed
control method and the approach in [11] are similar to each other. In contrast, the greatest
computed torques by the proposed control method were also significantly smaller than those
by [11] (see Figure 13), with the former constituting τmax = [14.2, 13.9]T and the latter
[81, 74]T (N.m).

Remark 5. So as to remove the chattering in vd (the output of the kinematic controller),
(14) is replaced by the following form

vd =


h−1

(
−Λe−

[
cos θ sin θ

− sin θ cos θ

][
ẋD

ẏD

]
− Γ̂

e

‖e‖

)
if ‖e‖ ≥ ψ

h−1

(
−Λe−

[
cos θ sin θ

− sin θ cos θ

][
ẋD

ẏD

]
− Γ̂

e

ψ

)
if ‖e‖ ≤ ψ,

(36)
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Figure 10. Another comparison of tracking trajectories in Example 2

Figure 11. Another comparison of the position tracking errors e in Example 2

Table 1. The parameters of this WMR

symbol Physical Meanings Values

m6 The mass of the WMR’s platform 30(kg)

Ic The platform’s the inertial moment about the vertical axis crossing G 15.625
(
kg.m2

)
a The length between G and M (see Figure 3 ) 0.2(m)

c The length between P and M (see Figure 5 ) 0.5(m)

mW each driving wheel’s mass 2(kg)

IW The inertial moment of each driving wheel about the rotation axis 0.0025
(
kg,m2

)
ID each driving wheel’s inertial moment about its diameter axis 0.005

(
kg,m2

)
b half-distance of the wheel shaft 0.3(m)

r The radius of each driving wheel 0.15(m)
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Figure 12. A comparison of the velocity tracking errors s in Example 2

Figure 13. Another comparison of torques between two control methods in Example 2

where ψ is the value of a small positive real constant indicating a boundary layer around
zero and can be chosen arbitrarily.

Remark 6. Likewise, to suppress the chattering of the dynamic control law τ in (19), the
replacement of (19) will be conducted by the equation

τ =

 −K · sgn(s)− f̂(x)− γ̂ s

‖s‖
if ‖s‖ ≥ κ

−K · sgn(s)− f̂(x)− γ̂ s
κ

if ‖s‖ < κ,
(37)

where κ is the value of a very small positive constant describing a boundary layer around
zero and can be selected arbitrarily.

Last but not least, Figure 14 illustrates the comparison of torques of our proposed control
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Figure 14. The bad effect of the chattering

method in Example 2 between with and without chattering (see Remarks 5-6). Of course,
avoiding chattering allows the proposed control system to protect actuators and to save
energy.

5. CONCLUSIONS

In this article, a novel robust tracking control scheme for actuator saturation has been
proposed for a WMR in the presence of slippage and model uncertainties. Thanks to this
control method, the asymptotic convergence of the tracking errors, namely both e and s, to
zero was guaranteed. The comparative simulation results have validated the correctness and
efficiency of this proposed control scheme. In future, the strictly mathematical proof of the
avoiding actuator saturation (see Remark 3) will be carried out.
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