Tap chi Tin hoc va Piéu khién hoc, T.20, 8.3 (2004), 193-204

AN APPROACH TO IMPROVE THE PARTITION TESTING
HARETON LEUNG!, NGUYEN HOANG PHUONG?, TRAN NGOC CUONG?, LE HAI KHOI?

L The Hong Kong Polytechnic University, Hung Hom Kowloon, Hong Kong
2 Vien CNTT, Vién Khoa hoc vi Cong nghé Viét Nam

Abstract. Some methods of software testing, including partition testing and random testing were
studied and compared [1,2]. Based on their studies, in general, the partition testing is better than
random testing, but it is not always fitted for all cases. In this paper, we will continue to investigate
in what conditions the efficacy of partition testing is performed and we will propose a strategy that
makes partition testing always better or at least the same as random testing.

Tém tat. Trong linh virc cong nghé phan mém, kiém tra sdn pham 13 mét trong nhirng khau quan
trong. Cé hai phwrong phép kiém tra sdn pham thong dung dwoc cdc nha nghién ciru quan tam, dé
14 phurong phap kiém tra theo vimg va kiém tra ngau nhién. Theo mot s6 nghién ciru, kiém tra theo
ving t6t hon kiém tra ngau nhién, nhung diéu dé khong phéi lic nao cling ding cho moi trudng
hop. Bai bdo dé xuét chién liroc phan ving sao cho phurong phép kiém tra phan viing luén tét hon

hoac it nhét 14 bang phuwong phép kiém tra ngau nhién cdc sdn pham phin mém.

1. INTRODUCTION

Partition testing is a technique of testing which partitions the program input area into
multiple classes of the equivalent values and tests the representative values of each class. Ran-
dom testing is a technique of testing which does not divide the input domain into subdomains.
In this case, the partition consists of one class, namely, the entire domain. Random testing
can, therefore, be viewed as a degenerate form of partition testing.

Some comparisons of the fault detection capabilities of partition testing and random testing
are as follows:

Hamlet and Taylor [3] and Duran and Ntafos[4] compared experimentally random testing
and partition testing and their research results showed that although the partition testing was
generally better than random testing at finding bugs for a given number of test cases, the
difference in effectiveness was relatively small.

Elaine J. Weyuker and Bingchiang Jeng [2], based on the probability of detecting at least
one failure-causing input, found that in some cases partition testing is worth the effort and in
other cases partition testing is not.

To continue develop the partition testing analysis of Elaine J. Weyuker and Bingchiang
Jeng, we aim to find the way to make partition testing to be a good strategy, which can
overcome the existing weakness of the methods [3,4] for some conditions.

In this paper we propose an approach to improve the partition testing method in some
conditions by making a good partition and controlling the selected test cases. The rest of the

194 HARETON LEUNG, NGUYEN HOANG PHUONG, TRAN NGOC CUONG, LE HAT KHOI

paper is organized as follows: The second section reviews some notions of partition testing
method and random testing method. The third section presents an approach to improve the
partition testing effect. The fourth section presents an approach to a practical support for
testing method. The final section discusses limitations of the methods and further research.

2. SOME NOTIONS OF PARTITION AND RANDOM TESTING

Let us review some notions and symbols of partition testing and random testing:

Consider that a program P, with domain D of size d, m points of which produce incorrect
output- called that inputs failure-causing inputs, and assume that d >> m. Let n be the
number of test cases selected. And let # denote the failure rate, the probability that a failure-
causing input will be selected as a test case.

In random testing, if it uses a uniform probability distribution of case random selection
then @ = m/d. If it is done based on another operation distribution of case random selection

k
then 6 = Y p;0;, with assuming that a probability distribution of inputs divides the program
i=1

inputs into k& subdomains and p; is the probability that randomly chosen test case is from
subdomain D;.

Denote that the probability of finding at least one failure causing input in n randomly
selected tests:

P=1-(1-0)" (1)

In partition testing, the domain is divided into k subsets, D1, Do, ..., Dy, of size dy, ds, ..., dg,
and failure rate 64, 05, ..., Oi, respectively. Assume that the number of subdomains is at least
two and the subdomains are disjoint. Some reference documents about partition testing can
be found in [7-11].

Let m; denote the number of inputs in subdomain ¢ for which the program produces an
incorrect output. In partition testing, the elements of a subdomain are grouped together
because it is believed that they are closely related in some essential way, and that any member
of the class is a representative as good as any other. Therefore, when selecting members from
a subdomain, the distribution is assumed uniform, and 6; = m;/d;.

Let P, denote the probability of finding at least one failure causing input using partition
testing with n; test cases chosen randomly from each D; :

k

N | (SR 2)

=1

k

When comparing random testing and partition testing, we assume that n = > n;. That
i=1

is, we are comparing how the two techniques behave with the same number of test cases.

3. APPROACH TO IMPROVE PARTITION TESTING

Why we need to improve partition testing? Recall Weyuker and Jeng’s observations [2] in
brief:

- P, is maximized if one subdomain contains only inputs that produce incorrect inputs.

AN APPROACH TO IMPROVE THE PARTITION TESTING 195

- Partition testing can be better, worse, or the same as random testing, depending on how
the partitioning is performed.

Based on Weyuker and Jeng’s observations [2], there are some cases in which partition
testing is not better than random testing:

Case 1: Weyuker and Jeng’s observation 3
k=1
P, is minimized when n; =ng = ---=np =1, > di=n—1, dg =d—(n—1), (kis the
i=1

number of subdomains) with all m failure - causing inputs in Dy.

Following the formula (2):

i=1
k—1
0O\? m m
f 102 (-2 (=),
’ Hl i) U7, i
m m

P gy d—n+1

This case is the worst case since for subdomain Dy, the failure rate is minimized by making
its size as large as possible (namely d —n + 1). In most cases, this partitioning will be worse
than random testing.

Case 2: Weyuker and Jeng’s observation 5.

Ifdy =dy =---=dgand ny = nyg = -+ = ng but p; # d;/d for some 1 < i < k, then
partition testing can be better, worse, or the same as random testing.

Case 3: Weyuker and Jeng’s observation 8.

Let D Dbe partitioned into k& subdomains and assume that ny = ny, = --- = ng = ¢ test
cases are selected from each subdomain. Then partition testing can be better, worse, or the
same as random testing.

For cases 2 and 3, without knowing anything about the distribution of failure-causing
inputs, if the partition divides the domain into equal sized subdomains, and we sample them
equally, then we will never do worse than random testing. But notice that unless there is a
very large number of subdomains (or the number of test cases chosen from each subdomain
is large relative to its size), the assumption that m < d means that even in the best case,
when all failure-causing inputs are grouped into one subdomain, the probability of finding a
failure-causing input with partition testing with equal-sized subdomains will be relatively low.

Based on Weyuker and Jeng’s results, and the formula (2) there are two important elements
that make P, better or worst than P, are: how the partitioning is performed and how to control
the selected test cases:

Following the formula (2):

Pp1—zk:(1—91)”i1—zk:(1—?—:)m,

i=1 i=1
ms
the partition will make — change its value, and the selected test cases on each subdomain

will make n; change its value.

196 HARETON LEUNG, NGUYEN HOANG PHUONG, TRAN NGOC CUONG, LE HAT KHOI

Then, we can make partition testing worth the effort by controlling these elements. In
other words, make the partition performance and the distribution of test cases to be more
effective for partition testing.

3.1. Developing a better partition

It is possible to choose the subdomains for a good partition in testing strategy. This partition
tensile uses the input conditions of the program and parts the range of the effective values
and the range of the ineffective values of each condition to divide the subdomain. Specifically,
when it uses specification- context of the program to divide the subdomain, or in other words,
it resorts to heuristic techniques.

In the case that subdomains are not of equal size, may be we meet the third Weyuker and

k—1
Jeng’s observation [2]: P, is minimized when ny =ng = -+ =np =1, > . di=n—1, dp =
i=1
d — (n —1), with all m failure-causing inputs in Dy, P, = o L, what do we do to
dk d—n+1

enhance this problem?

Observation 1: In this case, let the test cases ni on Dy greater than 1 (n; = ng = -+ = ng =
¢ > 1), it will make P, take higher value. Because of: V¢ > 1, ¢ € N :

m c m
(- gmrt) <(-a01)
d—n+1 d—n+1

m m c m
here (1——"—) <1 then Pf —1— (1—-—"—)">1-(1- ————) - pl.
e T Ty S e i—nt1) ~ d—nt1) 7

Consider the limitation of P, when ¢ tends to +oo :

lim (P,) = lim (1 - (1 - dL)) — 1,

c—+oo c—+oo —n+1

m
becase of (1 —") <1
ecause o d—n il <

Then P, always takes a higher value when the test cases 7 take higher value. It is therefore
unnecessary that some subdomains be relatively small and contain only failure-causing inputs,
or at least nearly so.

But may be we meet the eighth Weyuker and Jeng’s observation [2]: “Let D be partitioned

into k£ subdomains and assume that ny = ny = - -+ = n = ¢ test cases are selected from each
subdomain. Then partition testing can be better, worse, or the same as random testing”, or
the fifth Weyuker and Jeng’s observation [2]: “If dy =do = ---=dgand ny =ng = --- = ng

but p; # d;/d for some 1 < ¢ < k, then partition testing can be better, worse, or the same as
random testing.”

It can be enhanced by using the control of test cases: do not let ny = no = ---=ng = ¢,
it will make P, higher than P, on the fault-based measure.

3.2. Control of the selected test cases

We consider a set of test cases as a result of a random process. There are two compo-
nents concerning with this problem: the probability distribution of selected test cases and the
limitation of selected test cases.

AN APPROACH TO IMPROVE THE PARTITION TESTING 197

Proposition. IF the probability distributions of selected test cases are arranged sensibly, it
will then make partition testing always better than or at least the same as random testing.

Proof: We have some constraints on P, and P, on this problem:

P=1—(1—0)"

0= lzkjlpi@i
szl_i(_%)nz (3)

=1

k
dYoni=n
i=1

What conditions make P, > P,7

We have:
k s
Pp:1—2(1—d—’) >1—(1—0)" =P,
i=1 i
k 4 k N
:>Pp:1—2(1—%)Z>1—(1—Zp191) P,
i i i1
k MmN\ " k m n
=>Pp:1—2(1—d—l) Zl—(l—Zpl#) —p.
i=1 t i=1 t
= (-2) = I0-30) ()
i=1 ’ i=1 ’

N
Assume that there is a distribution of n;, denotes as {p. }, that means p} = i or n; = [np}],

symbol [| this formula denotes an operation which returns an integer value of n;. Change the
values of n; in (4), we have:

k m; i m;\ [}

= (1-2n) =10 -F)
k '\
(- (102

k .
Because of 0 < (1 — Zpl) <land 0 < (II (1 — %)pz) < 1 then:

=1 2

0—2%) HO——) 6

That means if there exists a probability distribution {p}} of selected test cases make (5)
become true, F, is always greater than or at least equal to F.

198 HARETON LEUNG, NGUYEN HOANG PHUONG, TRAN NGOC CUONG, LE HAT KHOI

We will control the selected test cases by applying a probability distribution to the set of
selected test cases.

3.2.1. Applying a distribution for the set of selected test cases

Using an adequacy simulation model for an adequacy probability distribution we can find
a distribution of selected test cases as we want.

There exist a probability distribution of inputs that the software will actually encounter
during it will have been used, in practice that information is frequently not available, partic-
ularly before the software has actually been operational for some time. In addition, for many
software products the operational distribution changed as the software matures, and it is there-
fore meaningless to speak of the operational distribution. This distribution is p1, po, ..., P&

k
That is the distribution which makes 6 = Z p;0; in random testing.
i=1
Applying this distribution to our selected test cases, we will take a set of selected test
cases, respectively:
n; = [n.pjl
k 6
S (6)
i=1
Where n; is the number of selected test cases of subdomain D;. Symbol [| in formula (6)
denotes an operation which returns an integer value from a real value of n * p;, because n; is
an integer number.
Observation 2: In the case m; takes a high value on the subdomain D; which has high
probability value (p;), partition testing is always better than or at least the same as random
testing.

Example 1. Assume that domain size is 100, among them 7 of which are failure causing
inputs, and 10 test cases are selected (n = 10). Let m; denote a number of inputs in subdomain
1 for which the program produces an incorrect output. Let k£ denote the number of subdomains.

Let & = 10, the detail of subdomains and its probability is shown in table 1:

Table 1
{ D; pi | My
1 1-10 0.3 2
2 11-20 0.2 1
3 21-30 0.1 1
4 31-40 0.1 1
5 41-50 | 0.05 | 1
6 51-60 | 0.05 | 1
7 | 61-70 | 0.05 | O
8 71-80 [005 | O
9 81-90 [0.05| O
10 | 91-100 | 0.05 | O

Where i is the order number of subdomain. D); is the subdomain i-th of D.p; is the
probability that a randomly chosen test case is from subdomain D;.m; is the number of
inputs in D; for which the program produces an incorrect output.

AN APPROACH TO IMPROVE THE PARTITION TESTING

In random testing:

With an uniform distribution, follow the formula (1):

}1:1—(1—ﬁgn:1—(1 7)m:052

d 100
10
With distribution {p;}, shown in table 1, we have: 6 = Zpi x 0;.
i=1

6—0.3x 2 + 0.2 x ! + 0.1 x ! +0.1 x ! + 0.05 x ! + 0.05 x ! =0.11
"7 10 T 10 T 100 T 100 T 10 10

Po=1-(1-0)"=1—-(1-01D"=0.69.

In partition testing:

If using the uniform distribution of selected test cases, which means nq = ne = ---

nip = 1, as in Weyuker and Jeng’s observation 8, P, will take the value:

2\ 1 131 131 131 151 141
}%:1—@——) x@——) x@——) x@——) x@——) x@——ﬁ x@——-
10 10 10 10 10 10

P, = 0.57.

199

In this case, B, = 0.57 < P, = 0.69, which means the partition testing is worst than

random testing (E. J. Weyuker and B. Jeng’s observation 8 [2]).

If we use the distribution n; = [n % p;] of selected test cases, the test cases for each

subdomain (n;) are shown in table 2:

Table 2
{ D; pi | My | 1y
1 1-10 0.3 2 3
2 11-20 0.2 1 2
3 21-30 0.1 1 1
4 31-40 0.1 1 1
5 41-50 | 0.05 | 1 1
6 51-60 | 0.05 | 1 0
7 61-70 | 0.05 | O 1
8 71-80 | 0.05 | O 0
9 81-90 | 005 | 0O 1
10 | 91-100 | 0.05 | O 0

Where ¢, D;, p;, m; are the same as in table 1, n; is the number of test cases on D;. In the
table 2, some n; take value 0 and some take 1 because of constraint (6), and n; is an integer

number.

200 HARETON LEUNG, NGUYEN HOANG PHUONG, TRAN NGOC CUONG, LE HAT KHOI

Then, P, becomes:

213 12 1y 1y N
B=1-(1-2) x(1-=) x(1-=) x(1-=) x (1-=) =o7.
10 10 10 10 10

In this case, although P, is higher when it uses the distribution {p;} than it uses the
uniform distribution, but P, = 0.70 > P, = 0.69, which means partition testing is better than
random testing. Using the samne example with others values of n, and the test cases on each
subdomain (n;) are in table 3:

Table 3
i D; pi | mi | ni(n=10) | n;(n =20) | n;(n=30) | n;(n=40) | n;(n = 50)
1 1-10 03 | 2 3 6 9 12 15
2 | 11-20 | 0.2 1 2 4 6 8 10
3| 21-30 | 0.1 1 1 2 3 4 5
4 | 31-40 | 0.1 1 1 2 3 4 5
5 | 41-50 | 0.05 | 1 1 1 2 2 3
6 | 51-60 | 0.05| 1 0 1 1 2 2
7 | 61-70 | 0.05| O 1 1 2 2 3
8 | 71-80 | 0.05 | O 0 1 1 2 2
9 | 81-90 | 0.05| O 1 1 2 2 3
10 | 91-100 | 0.05 | O 0 1 1 2 2
we have a result: Table /
n | 10 20 30 40 50
P, 1069 | 090 | 0.9695 | 0.990 | 0.9970
P, 10701 0.93] 0.9720 | 0.992 | 0.9975
Chart 1 shows that P, is higher than P, graphically.
.‘l PI'.'
B
1
Jg3 Pees (050 (03710
| om 7 Dem 0@z |08975
0 090 .
05 /
|
0 10 a0 30 40 50 gl n

Figure 1

AN APPROACH TO IMPROVE THE PARTITION TESTING 201

Observation 3: In the case m; takes a high value on the subdomain which has low probability
value, partition testing may be worst than random testing.

Example 2. Assume that the domain size is 100, among them 9 of which are failure causing
inputs, and 10 test cases are selected. Let k denote the number of subdomains.

Let k& = 10, the detail of subdomains and its probability {p;} are shown in table 5:

Table 5
{ D; pi | My
1 1-10 0.3 0
2 11-20 0.2 0
3 21-30 0.1 0
4 31-40 0.1 0
5 41-50 | 0.05 | 1
6 51-60 | 0.05 | 1
7| 61-70 | 0.05 | 1
8 71-80 | 0.05 | 1
9 81-90 | 0.05| 2
10 | 91-100 | 0.05 | 3

In random testing: With this distribution {p;} :

10
1 1 1 1 2 3
0= % 0; = 0.05 X — +0.05 X — +0.05 X — +0.05 X — +0.05 X — +0.05 X — = 0.045.
Z;px AT T A T R T R R T AR TV
Po=1—-(1-0)1°=1—(1-0.045)"" = 0.37.

In partition testing: The distribution of selected test cases (n;) is shown in on the table 6:

Table 6
i D; pi | mg |y
1 1-10 0.3 0 3
2 11-20 0.2 0 2
3 | 21-30 | 0.1 0 1
4 31-40 0.1 0 1
5 | 41-50 | 0.05 | 1 1
6 | 51-60 | 0.05 | 1 0
7 | 61-70 | 0.05 | 1 1
8 | 71-80 | 0.06 | 1 0
9 | 81-90 | 0.05| 2 1
10 | 91-100 | 0.05 | 3 0
Then, P, is:
k
Ppl—i]_{(1—7;—:)m1—(1—11—0)1x (1—11—0)1>< (1—1—20)1:0.35.

In this case, P, < P,.
What do we do to improve this problem? We try to find the way, in order B, > P,.

202 HARETON LEUNG, NGUYEN HOANG PHUONG, TRAN NGOC CUONG, LE HAT KHOI

Observation 4: In the case m; take a high value on the subdomain which has a low probability
value, partition testing is better than random testing if we use a big enough number of test
cases base on this simulation.

Example 3. Use the same assumption of example 2, but let n = 20.

In random testing:

Po=1-(1-0)*=1—-(1-0.045)*= 0.6

In partition testing: The distribution of selected test cases is:

Table 7
{ D; pi | My | 1y
1 1-10 0.3 0|6
2 | 11-20 | 0.2 0| 4
3| 21-30 | 0.1 0] 2
4 | 31-40 | 0.1 0] 2
5 | 41-50 | 0.05 | 1 1
6 | 51-60 | 0.05 | 1 1
7 | 61-70 | 0.05 | 1 1
8 | 71-80 | 0.06 | 1 1
9 | 81-90 | 0.05| 2 1
10 | 91-100 | 0.05 | 3 1
Then, P, is:
k .
RS (s
o 1\1 1y\1 1y\1 131 2\1 3\1
== (imgg) x(i-g5) x (-g5) x (1-55) x (1-55) x (1-55)
10 10 10 10 10 10
= 0.63.

In this case, P, > F,, that mean partition testing is still better than random testing on
the failure -based measure. Using this example with other values of n, and the test cases on
each subdomain (n;) are in table 8:

Table 8
{ D; pi | My n; n; n; n; n; n;
(n=10) | (n=20) | (n=30) | (n=140) | (n=750) | (n=60)
1 1-10 0.3 2 3 6 9 12 15 18
2 11-20 0.2 1 2 4 6 8 10 12
3 21-30 0.1 1 1 2 3 4 5 6
4 31-40 0.1 1 1 2 3 4 5 6
5 41-50 | 0.05 | 1 1 1 2 2 3 4
6 51-60 | 0.05 | 1 0 1 1 2 2 4
7 61-70 | 0.05 | O 1 1 2 2 3 4
8 71-80 | 0.05 | O 0 1 1 2 2 4
9 81-90 | 005 | 0O 1 1 2 2 3 4
10 | 91-100 | 0.05 | O 0 1 1 2 2 4

AN APPROACH TO IMPROVE THE PARTITION TESTING 203

we have:
Table 9

10 20 30 40 50 60
0.35 1 0.60 | 0.75 | 0.84 | 0.90 | 0.94
P, 1037063076 087094097

o=

This result is represented as a chart below, in this P, begins higher than P, from a value
of n between 10 and 20:

jl. Pll
P —
1
09 — 0.3
. 0z7 PY o
07 (o= .24
0s S hen 1075
= ey .60
M5 LES
'
1] 10 20 30 40 50 al n

Figure 2

In this chart we show that if there exists a big enough number of selected test cases, it
will make P, greater than P, when m; takes a high value on the subdomain which has low
probability value.

How lo estimate the value of the number of selected test cases that make P, greater than
P, in the observation 4?

Denote this number as Ngyi, we have some estimations of Ng; but we still not prove this
result.

We show an estimation of Ny :

k i\ Pi
m([1(-3)")
111(1—1_2]6:1]9/3—;)

No1 = (7)

In some experiments it has become true, but we have not proved that it becomes true for
other cases.

Example 4. Using this estimation for the conditions in example 3:

k -\ Pi
In (H1 (1- d_)) In(0.3674)

N f— = f— _—
01 { 1n(0.995)

k

In (1 -3 pi%)

=1

} ~ 21. (7)

204 HARETON LEUNG, NGUYEN HOANG PHUONG, TRAN NGOC CUONG, LE HAT KHOI

We have shown the changing effect on P, while keeping the domain size and total number
of inputs which produce an incorrect output constant. By controlling the selected test cases,
we will improve partition testing. In the problem of controlling the selected test case, we must
reach a limitation of selected test cases. If too many test cases are needed, we may not have
enough time to test the software. Assume that the time of testing is not tend to forever.

4. CONCLUSIONS

We have shown an approach that partition testing can be a good strategy. In particular, it
depends largely on how the inputs that produce an incorrect output are concentrated within
the subdomains defined by the partition.

When analyzing the partition testing based on the probability of detecting at least one
failure-causing inputs, or failure-based measure, we have approached a way that makes parti-
tion testing strategy to be really effective and therefore worth doing. It has clearly to perform
substantially in an adequa way and control the set of selected test cases. By using an adequacy
probability distribution of selected test cases and choosing an adequate number of selected
test cases for partition testing, the partition testing will be better or at least as effective as
random testing.

REFERENCES

[1] Debra J. Richardson and Lori A. Clarke, Partition Analysis: A method combining testing
and verification, IEEE Transactions on Software Engineering SE-11 (12) (1983).

[2] Elaine J. Weyuker and Bingchiang Jeng, Analyzing Partition Testing Strategies, [EEE
Transactions on Software Engineering 17 (7) (1991).

[3] R. Hamlet, R. Taylor, Partition testing dose not inspire confidence, Proc. 2nd Workshop
on Software testing, Verification, and Analysis July 1988 (206-215).

[4] J.W. Duran, S.C. Ntafos, An evaluation of random testing, IEEFE Trans. Software FEng.
SE-10 (1984) (438-444).

[5] J.D. Musa, A. Tannino, K. Okumoto, Software reliability: measurement, prediction, ap-
plication, Mc-Crow Hill Co., 1987.

[6] H.T. Nguyen, V. Krenovich, Application of Continuous Mathematics to Computer Sci-
ence, Chapter 3: ”Program testing: a problem”, Kluwer Academic Press, 1997.

[7] Tsong Yueh Chen, Yuen Tak Yu, On the maximin algorithms for test allocations in
partition testing - Journal of Information and Software Technology 43 (2001) 97-107.

[8] Tsong Yueh Chen, Yuen Tak Yu, The universal safeness of test allocation strategies for
partition testing, Journal of Information Sciences 129 (2000) 105-118.

[9] Tsong Yueh Chen, Yuen Tak Yu, On the test allocations for the best lower bound per-
formance of partition testing - Proceedings of 1998 Australian Software Engineering Con-
ference, IEEE Computer Society Press, New York (1998) 160-167.

[10] Tsong Yueh Chen, Yuen Tak Yu, Optimal improvement of the lower bound performance
of partition testing strategies, IEEE Proceedings of Software Engineering 44 (5-6) (1997)
271-278.

Received on October 14 - 2003
Rewvised on January 14 - 2004

