
Journal of Computer Science and Cybernetics, V.36, N.3 (2020), 233–250

DOI 10.15625/1813-9663/36/3/14770

EFFICIENT METAHEURISTIC ALGORITHMS FOR THE
MULTI-STRIPE TRAVELLING SALESMAN PROBLEM

HA-BANG BAN

1School of Information and Communication Technology,
Hanoi University of Science and Technology

�

Abstract. The Multi-stripe Travelling Salesman Problem (Ms-TSP) is an extension of the Tra-

velling Salesman Problem (TSP). In the q-stripe TSP with q ≥ 1, the objective function sums the

costs for traveling from one vertex to each of the next q vertices along the tour. To solve medium

to large-sized instances, a metaheuristic approach is proposed. The proposed method has two main

components, which are construction and improvement phases. The construction phase generates an

initial solution using the Greedy Randomized Adaptive Search Procedure (GRASP). In contrast,

the optimization phase improves it with several variants of Variable Neighborhood Search (VNS),

both coupled with a technique called Shaking Technique to escape from local optima. Besides, the

Adaptive Memory (AM) technique is applied to balance between diversification and intensification.

To show the efficiency of our proposed metaheuristic algorithms, we extensively implement them on

benchmark instances. The results indicate that the developed algorithms can produce efficient and

effective solutions at a reasonable computation time.

Keywords. q-stripe-TSP; Adaptive memory; VND, VNS; GVNS.

1. INTRODUCTION

The Travelling Salesman Problem (TSP) has been studied in a number of previous works
[4]. Given an complete graph Kn = (V,E), where V = 1, 2, . . . n is a set of vertices, and
E is the set of edges. Let C = {cij | cij ≥ 0} be a symmetric cost matrix in which cij is
the distance between vertex i and j. The goal is to find a solution T = (τ(1), τ(2), ..., τ(n))
that minimizes the total travel length

∑n
i=1(c(τ(i), τ(i + 1)). The term τ(n + 1) in the

above formula coincides with τ(1). That means the salesman returns to the vertex from
which he began his tour. In this paper, a new variant of TSP, that is the q-stripe TSP with
1 ≤ q ≤ (n− 1)/2 is studied. This problem was already introduced by E. Cela et al. in [4].
In this variant, the goal is to find a permutation T = (τ(1), τ(2), ..., τ(n)) over all vertices
that minimizes the cost function as follows

L(T) =

q∑
p=1

n∑
i=1

(c(τ(i), τ(i+ p)),

where the term τ(i+ p) for i ≥ n coincides τ(i+ p− n). As for q = 1, the problem becomes
the classical TSP. In the other cases, the permutation T encodes a tour through the vertices,
and the objective function sums the distances cij over all vertices i and j that are at most
q steps away from each other when travelling along the tour.

*Corresponding author.

E-mail address: BangBH@soict.hust.edu.vn

c© 2020 Vietnam Academy of Science & Technology

mailto:BangBH@soict.hust.edu.vn

234 HA-BANG BAN

In [4], E. Cela et al. also indicate that the q-stripe-TSP is a particular case of the
Quadratic Assignment Problem (QAP) [7], that has many practical applications such as
in transportation [1], distributed computing, balancing of turbine running [10], reactionary
chemistry [15], genetics [16], creating the control panels, manufacture [9], scheduling problem
[8]. Assume that, on a new campus the buildings are arranged to minimize the total walking
distances for students. The model can be described as follows: Let n be the number of
the new buildings to be established, and let cij be the distance between location i and
location j on the campus, where the new buildings can be established. The connection
matrix f = (fij) describes the frequencies with which students walk between locations i
and j. An assignment of the sites to the buildings is wanted, i.e. a permutation τ of the
set {1, 2, ..., n}. The product fij × cτ(i)τ(j) describes the weighted walking distance between
buildings τ(i) and τ(j) if building τ(i) is established on location i and building τ(j) is
established on location j. Therefore, the problem to minimize the total walking distance
becomes

∑n
i=1

∑n
j=1 fij×cτ(i)τ(j). The problem has been known as the Quadratic Assignment

Problem (QAP). E. Cela et al. [4] show that the q-stripe TSP problem is a special case of
the QAP on the graph Cqn (note that: The graph Cqn generated from the graph G easily
[4], encodes the cost structure of the q-stripe TSP on n vertices). By making matrix C the
distance matrix of n vertices and by making matrix fij the adjacency matrix of the graph
Cqn, we arrive at the q-stripe TSP as a particular case of the QAP.

For example: Given a complete graph K6 = {1, 2, 3, 4, 5, 6} that consists of 6 locations
from L1 to L6, and 6 buildings. In the case of q = 2, the graph C2

6 is generated from
K6 according to [4] as follows: For q ≥ 1 and n ≥ 2q + 1, the vertex set of graph C2

6 is
{1, 2, 3, 4, 5, 6}, and there is an edge between any two distinct vertices i and j with | i−j |≤ q
or | i − j |≥ n − q (see in Figure 1). In Figure 1, K6 includes all edges while C2

6 does not
consists of the blocked edges (the blocked edges are illustrated in dashed lines). The blocked
edge (L2, L5) means that there is no any direct connection between buildings if they are
established on L2, and L5, respectively. It is suitable in practical situation when there is no
way for students to walk directly from one building to another. The q-stripe TSP becomes
the QAP on the graph C2

6 .
Assume that, T = {3, 2, 4, 1, 5, 6} is a solution and its corresponding objective value

QAP (T) = c32 + c34 + c35 + c36 + c24 + c21 + c26 + c41 + c45 + c15 + c16 + c56.

L(T) = c32 + c24 + c41 + c15 + c56 + c63 + c34 + c21 + c45 + c16 + c53 + c62.

Obviously, the objective value of the q-stripe-TSP is equal to the one of the QAP because
C is the symmetric matrix. This implies that the q-stripe TSP problem is a special case of
the QAP on the graph Cqn.

The q-stripe-TSP is also NP-hard because it is a generalization case of the TSP. For
NP-hard problems, there are three common approaches to solve them, namely, 1) exact, 2)
α-approximation algorithm, 3) heuristic (or metaheuristic). Firstly, the exact algorithms
guarantee to find the optimal solution and take exponential time in the worst case, but they
often run much faster in practice. Several exact algorithms that belong to this approach are
Branch-and-Bound, Branch-and-Cut, Branch-and-Price, and Dynamic Programming [17].
For the q-stripe-TSP, there exists no work in the literature to solve the problem. However,
numerous exact algorithms solve the TSP with large sizes [17]. Secondly, the term “α-
approximation algorithm” refers to algorithms that produce a solution within some factor

EFFICIENT METAHEURISTIC ALGORITHMS 235

L 1

L 2 L 3

L 5L 4

L 6

Building 3

Building 2 Building 4

Building 1 Building 5

Building 6

blocked blocked

Figure 1. The graph Kn and Cqn

of α of the optimal solution. Currently, there is no approximation algorithm proposed for

the problem. In the case of the TSP, the best-known approximation ratio of
3

2
can be

found in [4]. However, the ratio is still large for practical applications. Finally, (meta)-
heuristic algorithms perform well in practice, and the efficiency of them can be evaluated by
experiments. Heuristics are often too greedy; therefore, they usually get trapped in a local
optimum and thus fail to obtain the global optimum solution. The metaheuristic approach,
on the other hand, is not greedy and may even accept a temporary deterioration of solution,
which allows them to explore more thoroughly the solution space and thus to get better
solutions.

Previously, research on the q-stripe-TSP has been not studied much, and this work
presents the first metaheuristic approach for this problem. Our metaheuristic algorithm is
mainly based on the principles of systematically exploring several different neighborhoods in
the VNS [14], and GRASP [6] to solve the problem. In a construction phase, the GRASP is
used to build an initial solution that is the input for an improvement phase. In a cooperative
way, several variants of VNS [14] combined with Shaking techniques [12] are employed to
generate various neighborhoods as well as allow the search to escape from local optimal
in the improvement phase. In addition, Adaptive Memory (AM) [13] is integrated into
our algorithms to balance between diversification and intensification. Extensive numerical
experiments on benchmark instances show that the proposed algorithm reaches the efficient
and effective solutions at a reasonable amount of time.

The rest of this paper is organized as follows. Section 2 presents the proposed algorithm.
Computational evaluations are reported in Section 3. Sections 4 and 5 discuss and conclude
the paper, respectively.

2. METHODOLOGY

The efficient metaheuristic includes the GRASP [6] in the construction phase, and several
variants of VNS (VND, VNS, and GVNS) [14], Shaking technique [12], as well as Adaptive
Memory (AM) [13] in the improvement phase, respectively. The good metaheuristic algo-
rithm needs to keep the balance between intensification and diversification. Diversification
means to create various solutions to explore the solution space on a global scale. In contrast,

236 HA-BANG BAN

intensification means to focus on the search in a local region by exploiting the information
that a current good solution is found in this region. In the algorithm, several variants of
VNS ensure intensification while the Shaking and AM techniques keep diversification. This
combination maintains the simplicity spirit of several variants of VNS, while it explores the
solution space effectively.

• The GRASP is introduced by Feo et al. [6]. The basic idea of GRASP allows us
to balance between greedy and random approaches. The advantage of the GRASP
compared to other heuristics, such as Ant Colony Algorithm, Genetic Algorithm,... in
[3], is that there is the only parameter to tune (the size of the candidate list). The
GRASP appears to be competitive with respect to the quality of solutions, and the
fact that it is easier to implement and tune.

• The Variable Neighborhood Search (VNS) algorithm is proposed by Mladenovic et al.
[14]. It executes alternately local search procedure, and shaking technique to escape
from the local optima. At each iteration, a random solution is generated from a current
neighborhood, and then a local search procedure is implied to improve the solution.
If the new solution is better than the best one, the procedure is repeated. Otherwise,
the search passes to the next neighborhood.

• The Variable Neighborhood Descent (VND) algorithm, which is a VNS variant, is
proposed by Mladenovic et al. [14]. The VND is obtained if a change of neighborhoods
is performed in a deterministic way. Assume that, an initial solution is given. Local
search heuristics in their descent phase is used to generate neighborhoods. The final
solution should be a local minimum with respect to all neighborhoods. The difference
between the VNS and VND is that the VNS uses Shaking.

• The General Variable Neighborhood Search (GVNS) algorithm [14] is a variant of VNS.
It includes an initial feasible solution, and a shaking procedure followed by VND local
search. The GVNS is a VNS variant where the VND is used as the improvement
procedure.

• The Adaptive Memory (AM) is a technique used in the local search [13]. The technique
allows first to diversify the search by exploring solutions that are very different from
each other, second to intensify the search to identify better local optima in a promising
region. However, since the technique does not maintain enough diversification, the
shaking technique is used. It allows guiding the search towards an unexplored part
of the solution space. The combination helps to balance between diversification and
intensification.

An outline of the GRASP, VND, VNS, GVNS, and GVNS with AM (GVNS-AM) are shown
in Algorithms from 1 to 5. These algorithms fall into a single-start version. Moreover, we
develop a multi-start version for them (see Algorithm 6). It simply executes the variants of
VNS for the number of iterations and returns the best-found solution.

2.1. The construction phase

Algorithm 1 shows the constructive procedure. The algorithm implements iteratively
until an initial solution is found. At each step, a Restricted Candidate List (RCL) is deter-

EFFICIENT METAHEURISTIC ALGORITHMS 237

Algorithm 1 Construction

Input: v1, V, α are a depot (or starting vertex), vertex set, and the size of RCL, respectively.
Output: The initial solution T .
1: {v1 is a depot}
2: T ← {v1};
3: repeat
4: {vc is the last vertex in T}
5: Generate RCL which consists of α nearest vertices to vc;
6: Pick a random vertex v ∈ {vi|vi ∈ RCL and vi /∈ T};
7: T ← {vi};
8: until |T | < n;
9: return T ;

Algorithm 2 VND

Input: T, km are an initial solution, and neighborhood set, respectively.
Output: T ∗ {T ∗ is the best solution}
1: k = 1;
2: repeat
3: Find the best neighborhood T

′
of T ∈ Nk(T); {implement local search}

4: if (L(T
′
) < L(T)) or (L(T

′
) < L(T ∗)) then

5: T = T
′
;

6: if (L(T ∗) > L(T
′′
)) then

7: T ∗ = T
′
;

8: end if
9: k ← 1; {return to the first neighborhood}

10: else
11: k + +; {switch to the next neighborhood}
12: end if
13: until k < km;
14: T ∗ = T

′
;

15: return T ∗;

mined by ordering all non-selected vertices in terms of a greedy function that measures the
benefit of including them in the tour. After that, one element will be chosen randomly from
RCL to add to the partial solution. Since all vertices are visited, the algorithm stops, and
the initial solution is returned. The size of RCL is a parameter that controls the balance
between greediness and randomness.

2.2. Neighborhoods

We use seven neighborhoods widely proposed in the literature to explore the search
space of the problem [10]. Let Nk (k = 1, ..., km) be a finite set of pre-selected neighborhood
structures, and let Nk(T) be the set of solutions in the k−th neighborhood of T . We describe
in more detail about seven neighborhoods:

1) move-up (N1) moves a vertex forward one position in T . The complexity of exploring

238 HA-BANG BAN

Algorithm 3 VNS

Input: T, km are an initial solution, and neighborhood set, respectively.
Output: T ∗. {T ∗ is the best solution}
1: k = 1;
2: repeat
3: T

′
= Shaking-Technique(T);

4: Find the best neighborhood T
′′

of T ∈ Nk(T
′
); {local search}

5: if (L(T
′
) < L(T)) or (L(T

′
) < L(T ∗)) then

6: T = T
′′
;

7: if (L(T ∗) > L(T
′′
)) then

8: T ∗ = T
′
;

9: end if
10: k ← 1; {return to the first neighborhood}
11: else
12: k + +; {switch to the next neighborhood}
13: end if
14: until k < km;
15: T ∗ = T

′
;

16: return T ∗;

Algorithm 4 GVNS

Input: T, km, tmax are a starting solution, neighborhood set, and the maximum running
time, respectively.

Output: T ∗. {T ∗ is the best solution}
1: repeat
2: k = 1;
3: while (k < km) do
4: T

′
= Shaking-Technique(T);

5: {deploy VND procedure}
6: T

′′ ← VND(T
′
, km);

7: if (L(T
′′
) < L(T)) or (L(T

′′
) < L(T ∗)) then

8: T = T
′′
;

9: if (L(T ∗) > L(T
′′
)) then

10: T ∗ = T
′′
;

11: end if
12: k ← 1; {return to the first neighborhood}
13: else
14: k + +; {switch to the next neighborhood}
15: end if
16: end while
17: until time < tmax
18: T ∗ = T

′
;

19: return T ∗;

EFFICIENT METAHEURISTIC ALGORITHMS 239

Algorithm 5 GVNS with AM

Input: T, km, tmax are a starting solution, neighborhood set, and the maximum running
time, respectively.

Output: T ∗. {T ∗ is the best solution}
1: repeat
2: k = 1;
3: while (k < km) do
4: T

′
= Shaking-Technique(T);

5: {deploy VND procedure}
6: T

′′ ← VND(T
′
, km);

7: if (L(T
′′
) < L(T)) or (L(T

′′
) < L(T ∗)) then

8: T = T
′′
;

9: if (L(T ∗) > L(T
′′
)) then

10: T ∗ = T
′′
;

11: end if
12: k ← 1; {return to the first neighborhood}
13: else
14: k + +; {switch to the next neighborhood}
15: end if
16: AM ← {T ′′};
17: if (| AM |== m) then
18: Erase AM ;
19: end if
20: T = Pick the best tour in AM in accordance with (1);
21: end while
22: until time < tmax
23: T ∗ = T

′
;

24: return T ∗;

Algorithm 6 multi-start version

Input: v1, V, α, km, tmax,m start iter are a starting vertex, vertex set, size of RCL, neig-
hborhood set, maximum running time, and number of starts, respectively.

Output: the best solution T ∗.
1: i = 0;
2: repeat
3: T = Construction(v1, V, α);
4: T

′
= GVNS-AM(T, km, tmax);{The same for the VND, VNS, GVNS}

5: if (L(T ∗) > L(T
′
)) then

6: T ∗ = T
′
;

7: end if
8: i+ +;
9: until i ≤ m start iter

10: return T ∗;

240 HA-BANG BAN

Algorithm 7 Shaking-Technique(T)

Input: T is the tour.
Output: a new tour T .
1: k1 = 1 + rand(n4);
2: k2 = k1 + 1 + rand(n4);
3: k3 = k2 + 1 + rand(n4);
4: {T1 copies consecutive vertices from 1-st to k1 − th position in T}
5: T1 = T [1 : k1];
6: {T2 copies consecutive vertices from k3 − th to k4 − th position in T}
7: T2 = T [k3 : k4];
8: {T3 copies consecutive vertices from k2 − th to k3 − th position in T}
9: T3 = T [k2 : k3];

10: {T4 copies consecutive vertices from k1 − th to k2 − th position in T}
11: T4 = T [k1 : k2];
12: T = T1 ∪ T2 ∪ T3 ∪ T4;
13: return T ;

the neighborhood is O(Tsol × n);

2) move-down (N2) moves a vertex backward one position in T . The complexity of exploring
the neighborhood is O(Tsol × n);

3) shift (N3) relocates a vertex to another position in T . The complexity of exploring the
neighborhood is O(Tsol × n);

4) swap-adjacent (N4) attempts to swap each pair of adjacent vertices in the tour. The
complexity of exploring the neighborhood is O(Tsol × n);

5) swap (N5) tries to swap the positions of each pair of vertices in the tour. The complexity
of exploring the neighborhood is O(Tsol × n2);
6) 2-opt (N6) removes each pair of edges from the tour and reconnects them. The complexity
of exploring the neighborhood is O(Tsol × n2);
7) Or-opt (N7) is reallocated three adjacent vertices to another position of the tour. The
complexity of exploring the neighborhood is O(Tsol × n2).

2.3. Local search

To improve the solution, we developed local search procedure by combining the seven
neighborhood structures. Assume that, an initial solution is given. Local search heuristics
are used to generate neighborhoods. The final solution should be a local minimum with
respect to all neighborhoods. The order of neighborhoods is fixed. In a pilot study, we found
that the performance of the algorithm is relatively insensitive to the order in which the
neighborhoods are used. The neighborhoods are therefore explored in a specific order, from
“small” to “large” as it is common, i.e., swap-adjacent, move-up, move-down, remove-insert,
swap, 2-opt, and or-opt.

EFFICIENT METAHEURISTIC ALGORITHMS 241

2.4. Shaking technique

The shaking mechanism design is very important to achieve success in our algorithm. If
the mechanism produces too small perturbation moves, the search procedure may return to
the previously visited local optimum points. On the other hand, excessive shaking moves
may drive the search procedure to undesirable regions in the search space. In this article,
we implement an adaptive perturbation mechanism. The shaking mechanism, called double-
bridge, was originally developed in [12]. It consists of removing and re-inserting four arcs
in such a way that a feasible tour is generated. This mechanism can also be seen as a
permutation of two disjoint segments of a tour. The detail is described in Algorithm 7.

2.5. Adaptive memory technique

The Adaptive Memory Technique (AM) [13] is a dynamic memory that changes at each
iteration. It saves various solutions obtained by the local search step. For each solution in
the AM, we count its cost and diversity in a set of solutions in the AM:

R(T) = (|AM | −RF (T) + 1) + β × (|AM | −RD(T) + 1), (1)

where |AM | is the current size of AM ; β ∈ [0, 1]; RF (T) is the rank of T according to its
objective function; RD(T) is the rank of T according to its diversity value,

d(T) =

∑n
k=1 d(T, Tk)

n
, (2)

where d(T, Tk) is the metric distance between T and Tk, and d(T) is the average metric
distance of T in the AM list. In intuitive way, the distance is the minimum number of
transformations from T to Tk. When there exists no polynomial operator for calculating
d(T, Tk), d(T, Tk) is n minus the number of vertices which has the same position in both T,
and Tk. The larger d(T) is, the higher RD(T) is. The smaller L(T) is, the higher RF (T) is.
The solution that has the largest R(T) value is selected from AM.

2.6. Stop condition

The VND, and VNS stop if after all neighborhoods are implemented, the improvement
cannot be found while the GVNS, and GVNS-AM stop after tmax seconds or the best-solution
is found (tmax is the parameter of the algorithm and its value is determined from preliminary
experiments).

3. EVALUATIONS

Our algorithms are run on a Pentium 4 core i7 2.40 GHz processor with 8 GB of RAM.
After preliminary experiments, the parameters RCL, β, |AM |, tmax, and m start iter are
respectively set to 10, 0.75, 100, 10000, and 5. These parameters are chosen through empirical
tests, and with them, the algorithm seems to produce good solutions at a reasonable amount
of time in comparison with other parameter values tested. We also compare the multi-start
version of our algorithm with single-start, in which ten solutions are generated with the
GRASP, each of which is improved by using the VND, VNS, GVNS, and GVNS-AM. The

242 HA-BANG BAN

best solutions found by ten independent runs are reported. In the tables below, we give a
report on the time when the best solution of each instance is reached.

To evaluate our algorithm’s solution quality, we need to compare it with the other me-
taheuristics. The main problem is that there exists no other metaheuristic reported in the
literature for this problem. That means we found no previous attempts to solve the q-
stripe-TSP, neither exact nor heuristic (or metaheuristic), to compare with. Therefore, to
evaluate the efficiency of our algorithm, we define the improvement of our algorithm with
respect to Best.Sol (Best.Sol is the best solution found by our algorithm) in comparison
with the upper bound (UB) obtained by the Nearest Neighborhood Search in [15]. The
Nearest Neighborhood Search is not promising theoretically; however, it yields good enough
solution in practice. In addition, to demonstrate the efficiency and wide applicability of the
algorithms in the case of TSP, our solutions are also compared to the optimal solutions in
some TSP-instances though it is not designed to solve the TSP. The optimal solutions for
the TSP-instances are extracted in [18].

3.1. Instances

We implement the algorithm in random and real datasets as follows:

• To create a set of 80 instances, we have generated 20 random instances for each pro-
blem size (n = 30, 50, 100, and 200). For each instance, vertex coordinates have been
generated from a uniform distribution between 0 and 100. All distances are Euclidean,
rounded down to the nearest integer. The instances are available from the author upon
request.

• The real datasets are extracted from TSPLIB in [18].

3.2. Results

We define the improvement of our algorithm with respect to BKS (BKS is the best solu-
tion found by our algorithm) in comparison with the solution from the Nearest Neighborhood
Search (UB) [10] for the problem as followings

Gap[%] =
BKS−UB

UB
× 100%.

In tables, BKS, Time correspond to the best solution, and average time in seconds of ten
executions obtained by all algorithms, respectively. The values in Table 1 are the average
values from Table 5 to 8 in Appendix while the values in Table 2 are the average values
from Table96 to 12 in Appendix. In Table 3, the OPT column corresponds to the optimal
TSP-solutions using the q-stripe-TSP’s cost function. Table 4 shows the results of our
algorithms in comparison with the optimal TSP-solutions for some instances. In Table 4,
Gap is calculated as follows

Gap[%] =
BKS −OPT

OPT
× 100% (OPT is the optimal value).

From Tables 1 and 2, it can also be seen that the difference in the average gap between

EFFICIENT METAHEURISTIC ALGORITHMS 243

Table 1. Average results for random instance in single-start

n

VND VNS GVNS GVNS-AM

Gap

[%]
Time

Gap

[%]
Time

Gap

[%]
Time

Gap

[%]
Time

30 -10.00 0.026 -11.79 0.034 -11.82 0.065 -11.85 0.077

50 -10.76 1.27 -12.47 1.30 -12.86 2.24 -12.91 2.24

100 -11.08 9.19 -11.40 10.79 -11.92 18.84 -12.32 19.79

200 -11.27 367.17 -12.26 367.25 -12.31 377.07 -12.65 377.82

Table 2. Average results for random instance in multi-start

n

VND VNS GVNS GVNS-AM

Gap

[%]
Time

Gap

[%]
Time

Gap

[%]
Time

Gap

[%]
Time

30 -10.00 0.036 -11.79 0.052 -11.82 0.084 -11.85 0.114

50 -10.76 3.23 -12.47 4.23 -12.86 5.23 -12.91 5.23

100 -11.08 105.83 -11.40 127.78 -11.92 277.38 -12.32 227.79

200 -11.27 3671.73 -12.26 3720.53 -12.31 4171.46 -12.65 4177.34

Table 3. Comparison of our best-found q-stripe-TSP-solution with the optimal TSP-solution using

the q-stripe-TSP’s objective function

q q

Table 4. Comparison with the optimal solutions for TSP-instances

OPT
Best.Sol

Gap
Time Best.Sol

Gap
Time Best.Sol

Gap
Time Best.Sol

Gap
Time

244 HA-BANG BAN

the construction phase and improvement phase for the VND, VNS, GVNS, and GVNS-
AM is from 10.0% to 12.91% for both of single-start and multi-start. This indicates that
the construction phase returns good quality solutions fast. Although the improvement of
the post phase upon the construction one is not too large, it is significant. The VNS,
GVNS, and GVNS-AM obtain better solutions than the VND from 0.99% to 1.38%. It is
easy to understand when the VND only implements intensification. On the other hand,
the others maintain diversification better by using the shaking technique. Therefore, the
shaking technique plays an important role in improving the quality of solution. The solutions
obtained by the GVNS are usually slightly better than those of the VNS, but the running
time of the GVNS consumes more than VNS. It implies that we cannot improve further the
quality of solution only by running the algorithm with a larger amount of time.

In Tables 1 and 2, we can draw some conclusions about the working of our algorithm.
Unsurprisingly, the multi-start versions require a much larger computation time than the
single-start versions, but the quality improvement is not found. This may indicate that the
GRASP in the multi-start versions is not able to provide enough diversification and the
shaking is useful.

In all tables, the GVNS-AM obtains better solutions than the GVNS does. Clearly,
the AM is an efficient technique when it ensures the balance between intensification and
diversification. The technique allows first to diversify the search by exploring solutions that
are very different from each other, and second to intensify the search to identify better local
optima in a promising area.

Table 3 shows unsurprisingly that the optimal TSP-solutions are generally not good
solutions to the q-stripe-TSP in the same instances. On average, the best solutions found by
our algorithm are about 13.13% better than the optimal TSP solutions by using the q-stripe-
TSP’s objective function. Therefore, the methods designed for the TSP may not be adapted
easily to solve the q-stripe-TSP. Developing the efficient algorithms for the q-stripe-TSP is
necessary.

Table 4 shows that our algorithm can run well to the TSP (note that the TSP is a
particular variant of the q-stripe-TSP since q=1) although it is not designed to solve it. In
comparison with the optimal solutions in the TSP, our algorithm’s solutions are the optimal
solutions for the instances with up to 70 vertices. The average gap between the optimal
solution and our result is about 0.71% for the instances with 130 vertices. It shows that our
results are near to the optimal values.

4. DISCUSSIONS

Three types of algorithms are used to solve NP-hard problem. The first type consists
of exact algorithms, but they are very time-consuming for large instances. The second type
consists of α−approximation algorithms that produce a solution within the factor of α of
the optimal solution. The third type includes heuristic (or metaheuristic) algorithms. These
algorithms can provide good solutions within a short computation time for large instances.
In addition, they are easy and fast to implement.

EFFICIENT METAHEURISTIC ALGORITHMS 245

Currently, numerous works to solve the TSP are proposed. We immediately think that
a good algorithm for the TSP can solve the q-stripe-TSP well by using the q-stripe-TSP’s
objective function. However, the experimental results in Table 3 show that the methods
designed for the TSP may not be adapted easily to solve the q-stripe-TSP. Therefore, de-
veloping efficient algorithms for the q-stripe-TSP is necessary. We found no previous works
in the literature to solve the q-stripe-TSP, neither exact nor heuristic. Our contribution
is to provide the efficient algorithms. These algorithms are the first metaheuristics for the
problem. In the work, four algorithms include the VND, VNS, GVNS, and GVNS-AM.
These algorithms often solve the optimization problem effectively. We can find the similar
approach in [1]. Among the algorithms, the VND gives the worse results. It is easy to un-
derstand because the VND only ensures intensification while the others keep diversification
by using the shaking technique. The experimental results also show that it is impossible to
improve the quality of solution by running the algorithm for a long time. More specifically,
the GVNS returns very slightly better solutions than those of the VNS. The GVNS-AM
outperforms than the others. Obviously, the AM and Shaking technique bring the efficiency
well since it balances between diversity and intensification. It maintains the simplicity spirit
of the GVNS while it explores the solution space effectively. The multi-start versions do
not provide better solutions than single-start in many cases while they consume much time.
This may indicate that the GRASP in the multi-start version is not able to provide enough
diversification.

The VND, VNS, GVNS, and GVNS-AM seem to work well. We divide them into two
types of algorithms: 1) Fast algorithms include the VND, and VNS. They use significantly
less computing time, combined with a rather small loss of solution quality. Both algorithms
are useful for the large instances; 2) Slow algorithms consist of the GNVS, and GVNS-AM.
They are the most effective algorithms in terms of solution quality for the q-stripe-TSP as
well as TSP, although they are quite a time consuming for the problem with up to 200
vertices. In the TSP-instances, they can find the optimal solutions for the instances with up
to 70 vertices. Moreover, it also provides the near-optimal solutions for the larger problems
in Table 4. Although our purpose is not to provide metaheuristics for the TSP, the obtained
results for this problem show the efficiency and wide applicability of our algorithms.

5. CONCLUSIONS

In this work, we provide several metaheuristics for the q-stripe-TSP. These metaheuristics
consist of the GRASP in construction phase and the VND, VNS, GVNS, and GVNS-AM in
improvement phase. Besides, the AM technique is applied to balance between diversification
and intensification. Experiments show that the metaheuristics produce good solutions for
the problem at a reasonable amount of time. For the case of the TSP (a particular case of the
q-stripe-TSP), the optimal solutions can be obtained for the instances with 70 vertices. In
the future, we intend to extend our algorithm by including more neighborhoods and carefully
studying the effectiveness of each neighborhood on the q-stripe-TSP. Increasing the efficiency
of our algorithm, even more, to allow even larger problems to be solved, is another future
research topic.

246 HA-BANG BAN

APPENDIX

Table 5. Average results for q-TSP-30-x instance in single-start

Instances UB

VND VNS GVNS GVNS-AM

Best.Sol
Gap

[%]
Time Best.Sol

Gap

[%]
Time Best.Sol

Gap

[%]
Time Best.Sol

Gap

[%]
Time

TSP-30-1 22397 19949 -10.93 0.03 19402 -13.37 0.04 19402 -13.37 0.06 19402 -13.37 0.08

TSP-30-2 22370 20163 -9.87 0.01 19812 -11.43 0.04 19811 -11.44 0.07 19811 -11.44 0.08

TSP-30-3 20412 17942 -12.10 0.02 17745 -13.07 0.04 17745 -13.07 0.06 17745 -13.07 0.08

TSP-30-4 23811 21245 -10.78 0.03 21093 -11.41 0.03 21078 -11.48 0.07 21067 -11.52 0.08

TSP-30-5 21664 19363 -10.62 0.04 19136 -11.67 0.03 19094 -11.86 0.06 19094 -11.86 0.08

TSP-30-6 21021 19235 -8.50 0.03 18940 -9.90 0.06 18940 -9.90 0.06 18938 -9.91 0.07

TSP-30-7 23784 21535 -9.46 0.03 21081 -11.36 0.04 21081 -11.36 0.07 21081 -11.36 0.08

TSP-30-8 23033 20631 -10.43 0.03 20024 -13.06 0.03 20024 -13.06 0.07 20024 -13.06 0.08

TSP-30-9 21331 19458 -8.78 0.02 19050 -10.69 0.03 19050 -10.69 0.07 19050 -10.69 0.07

TSP-30-10 21867 19425 -11.17 0.01 19167 -12.35 0.03 19167 -12.35 0.08 19167 -12.35 0.08

TSP-30-11 20048 18301 -8.71 0.05 17645 -11.99 0.02 17645 -11.99 0.07 17643 -12.00 0.07

TSP-30-12 18507 16921 -8.57 0.03 16638 -10.10 0.02 16638 -10.10 0.06 16581 -10.41 0.08

TSP-30-13 22476 20547 -8.58 0.02 19719 -12.27 0.02 19743 -12.16 0.06 19718 -12.27 0.08

TSP-30-14 21060 19495 -7.43 0.01 18833 -10.57 0.03 18833 -10.57 0.06 18833 -10.57 0.07

TSP-30-15 22085 20091 -9.03 0.02 19581 -11.34 0.04 19578 -11.35 0.06 19577 -11.36 0.07

TSP-30-16 20826 18892 -9.29 0.02 18663 -10.39 0.04 18660 -10.40 0.07 18660 -10.40 0.08

TSP-30-17 22753 19748 -13.21 0.04 19388 -14.79 0.03 19388 -14.79 0.06 19388 -14.79 0.08

TSP-30-18 20686 18788 -9.18 0.02 18505 -10.54 0.03 18505 -10.54 0.07 18505 -10.54 0.08

TSP-30-19 22352 19194 -14.13 0.03 19135 -14.39 0.04 19045 -14.80 0.06 19011 -14.95 0.07

TSP-30-20 21647 19657 -9.19 0.03 19241 -11.11 0.04 19241 -11.11 0.06 19241 -11.11 0.08

Aver -10.00 0.026 -11.79 0.034 -11.82 0.065 -11.85 0.077

Table 6. Average results for q-TSP-50-x instance in single-start

UB
Best.Sol

Gap
Time Best.Sol

Gap
Time Best.Sol

Gap
Time Best.Sol

Gap
Time

EFFICIENT METAHEURISTIC ALGORITHMS 247

Table 7. Average results for q-TSP-100-x instance in single-start

UB
Best.Sol

Gap
Time Best.Sol

Gap
Time Best.Sol

Gap
Time Best.Sol

Gap
Time

Table 8. Average results for q-TSP-200-x instance in single-start

UB
Best.Sol

Gap
Time Best.Sol

Gap
Time Best.Sol

Gap
Time Best.Sol

Gap
Time

248 HA-BANG BAN

Table 9. Average results for q-TSP-30-x instance in multi-start

Instances UB
VND VNS GVNS GVNS-AM

Best.Sol
Gap

[%]
Time Best.Sol

Gap

[%]
Time Best.Sol

Gap

[%]
Time Best.Sol

Gap

[%]
Time

TSP-30-1 22397 19949 -10.93 0.03 19402 -13.37 0.04 19402 -13.37 0.08 19402 -13.37 0.12

TSP-30-2 22370 20163 -9.87 0.03 19812 -11.43 0.04 19811 -11.44 0.08 19811 -11.44 0.12

TSP-30-3 20412 17942 -12.10 0.03 17745 -13.07 0.06 17745 -13.07 0.08 17745 -13.07 0.1

TSP-30-4 23811 21245 -10.78 0.05 21093 -11.41 0.06 21078 -11.48 0.09 21067 -11.52 0.09

TSP-30-5 21664 19363 -10.62 0.04 19136 -11.67 0.06 19094 -11.86 0.08 19094 -11.86 0.12

TSP-30-6 21021 19235 -8.50 0.04 18940 -9.90 0.05 18940 -9.90 0.08 18938 -9.91 0.12

TSP-30-7 23784 21535 -9.46 0.03 21081 -11.36 0.05 21081 -11.36 0.08 21081 -11.36 0.12

TSP-30-8 23033 20631 -10.43 0.03 20024 -13.06 0.06 20024 -13.06 0.08 20024 -13.06 0.09

TSP-30-9 21331 19458 -8.78 0.04 19050 -10.69 0.05 19050 -10.69 0.08 19050 -10.69 0.11

TSP-30-10 21867 19425 -11.17 0.03 19167 -12.35 0.05 19167 -12.35 0.09 19167 -12.35 0.13

TSP-30-11 20048 18301 -8.71 0.04 17645 -11.99 0.06 17645 -11.99 0.08 17643 -12.00 0.11

TSP-30-12 18507 16921 -8.57 0.04 16638 -10.10 0.06 16638 -10.10 0.09 16581 -10.41 0.11

TSP-30-13 22476 20547 -8.58 0.04 19719 -12.27 0.04 19743 -12.16 0.09 19718 -12.27 0.1

TSP-30-14 21060 19495 -7.43 0.03 18833 -10.57 0.04 18833 -10.57 0.08 18833 -10.57 0.13

TSP-30-15 22085 20091 -9.03 0.03 19581 -11.34 0.06 19578 -11.35 0.09 19577 -11.36 0.11

TSP-30-16 20826 18892 -9.29 0.04 18663 -10.39 0.05 18660 -10.40 0.08 18660 -10.40 0.12

TSP-30-17 22753 19748 -13.21 0.03 19388 -14.79 0.05 19388 -14.79 0.08 19388 -14.79 0.12

TSP-30-18 20686 18788 -9.18 0.04 18505 -10.54 0.05 18505 -10.54 0.09 18505 -10.54 0.11

TSP-30-19 22352 19194 -14.13 0.04 19135 -14.39 0.06 19045 -14.80 0.09 19011 -14.95 0.12

TSP-30-20 21647 19657 -9.19 0.03 19241 -11.11 0.05 19241 -11.11 0.08 19241 -11.11 0.12

Aver -10.00 0.036 -11.79 0.052 -11.82 0.084 -11.85 0.114

Table 10. Average results for q-TSP-50-x instance in multi-start

UB
Best.Sol

Gap
Time Best.Sol

Gap
Time Best.Sol

Gap
Time Best.Sol

Gap
Time

EFFICIENT METAHEURISTIC ALGORITHMS 249

Table 11. Average results for q-TSP-100-x instance in multi-start

UB
Best.Sol

Gap
Time Best.Sol

Gap
Time Best.Sol

Gap
Time Best.Sol

Gap
Time

Table 12. Average results for q-TSP-200-x instance in multi-start

UB
Best.Sol

Gap
Time Best.Sol

Gap
Time Best.Sol

Gap
Time Best.Sol

Gap
Time

REFERENCES

[1] H.B. Ban, “A GRASP+VND algorithm for the multiple traveling repairman problem with dis-

tance constraints”, Journal of Computer Science and Cybernetics, vol.33, no.3, 2017, pp.

272–288.

[2] R. Bermudez, M. H. Cole, “A genetic algorithm approach to door assignments in breakbulk

250 HA-BANG BAN

terminals”, University of Arkansas, Mack-Blackwell National Rural Transportation, 2001, Study

Center, Fayetteville.

[3] C. Blum, A. Roli, “Metaheuristics in combinatorial optimization: Overview and conceptual

comparison”, ACN Computing Surveys, vol. 35, no. 3, 2003, pp. 268–308.

[4] E. Cela, V. G. Deineko, and G. J. Woeginger, “The multi-stripe travelling salesman problem”,

J. Annals of Operations Research, vol. 259, 2017, pp. 21–34.

[5] N. Christofides, “Worst case analysis of a new heuristic for the Travelling salesman problem”,

Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University, Pitts-

burgh, PA, 1976.

[6] T. A. Feo and M.G.C. Resende, “Greedy randomized adaptive search procedures”, Journal of
Global Optimization, 1995, pp. 109–133.

[7] G. Finke, E. B. Rainer, F. Rendl, “Quadratic assignment problems”, J. North-Holland Mat-
hematics Studies, vol. 132, 1987, pp. 61–82.

[8] A.M. Geoffrion, G.W. Graves, “Scheduling parallel production lines with changeover costs:

Practical application of a quadratic assignment/LP approach”, J. Oper Res, vol. 24, no. 4,

1976, pp.595–610.

[9] M. Grotschel, “Discrete mathematics in manufacturing”, Proc. ICIAM on SIAM, Robert E.

O’Malley (ed.), 1992, pp. 119–145.

[10] D. S. Johnson, and L. A. McGeoch, “The traveling salesman problem: A Case Study in Local

Optimization in Local Search in Combinatorial Optimization”, E. Aarts and J. K. Lenstra, eds.,

pp. 215-310.

[11] A. Mason, M. Ronnqvist, “Solution methods for the balancing of jet turbines, J. Comput Oper
Res”, vol. 24, no. 2, 1997, pp. 153–167.

[12] O. Martin, S. W. Otto, and E.W. Felten, “Large-step Markov chains for the travelling salesman

problem”, J. Complex Systems, vol. 5, no. 3, 1991, pp. 299–326.

[13] I. Mathlouthi, M. Gendreau, J. Y. Potvin, A metaheuristic based on tabu search for solving
a technician routing and scheduling problem, 2018.

[14] N. Mladenovic, P. Hansen, “Variable neighborhood search”, Computers & Operations Rese-
arch, vol. 24, no. 11, 1997, pp.1097–1100.

[15] I. Ugi, J. Bauer, J. Brandt, J. Friedrich, J. Gasteige, C. Jochum C, W. Schubert, “New Fields

of Application for Computers in Chemistry”, Angew Chem, Vol. 91, No. 2, 1979, pp. 111-123.

[16] A. T. Phillips, J. B. Rosen, “ A quadratic assignment formulation of the molecular conformation

problem,” J Glob Optim, vol. 4, pp. 229–241, 1994. https://doi.org/10.1007/BF01096724

[17] K. Ruland, “Polyhedral Solution to the Pickup and Delivery Problem,” Ph.D. Thesis, Washing-

ton University, Saint Louis, MO, 1995.

[18] TSPLIB: http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html

Received on January 07, 2020
Revised on April 06, 2020

	Introduction
	Methodology
	The construction phase
	Neighborhoods
	Local search
	Shaking technique
	Adaptive memory technique
	Stop condition

	 Evaluations
	Instances
	Results

	 Discussions
	 Conclusions

