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Abstract. In this article, we focus on mining fuzzy association rules. First, we specially highlight
the delicate relation between fuzzy association rules and fuzzy theory. As a result, we will recom-
mend a method to convert the fuzzy association rules into quantitative ones. More remarkably, we
propose a new parallel algorithm for mining fuzzy association rules. The algorithm has been ex-
perimented on PC-Cluster (using MPI standard) and returned optimistic results. The testing tools
named FuzzyARM and ParallelFARM were also developed and run on serial and parallel systems

respectively.
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Tém tdt. Bai bdo nay dinh huéng téi khai phé luat két hop md. Dau tién ching toi néu bat moi
lién hé tinh té gitra luat két hop me véi 1y thuyét ms. Tir d6, chiing téi dé nghi phuwong phap
chuyén déi luat két hop mo thanh luat két hop dinh lwong. Péng ké hon, chiing toi dé xuat thuat
todn song song méi khai phé luat két hop mo. Thuat toin da dwoc thir nghiém trén cum PC-cluster
(dung chuan MPI) va cho két qua hiéu qui. Hai cong cu FuzzyARM v ParallelFARM da dwoc phét

trién va chay twong trmg trén céc hé thong tuin tuir va song song.

1. INTRODUCTION AND RELATED WORD

Association rule is the form of “70 percent of customers that purchase beer also purchase
dry beef, 20 percent of customers purchase both”. “Purchase beer” and “purchase dry beef”
are called the antecedent and the consequent of the association rule respectively. 20% is called
support factor (the percentage of transactions or records that contain both antecedent and
consequent of a rule) and 70% is called confident factor (the percentage of transactions or
records that hold the antecedent also hold the consequent of a rule).

Almost all previous algorithms deal with binary association rules [11,23,24]. In binary
association rules, an item is only determined whether it is present or not. The quantity
associated with each item is fully ignored, e.g. a transaction buying twenty bottles of beer is
the same a transaction that buys only one bottle. However, attributes in real world databases
may be binary, quantitative, or categorical, etc. To discover association rules that involve
these data types, quantitative and categorical attributes need to be discretized to convert into
binary ones. There exist some of discretization methods that are proposed in [22]| [26]. An
example of this kind of rule is “sex = ‘male’ and age € ’50..65° and weight € ’60..80° and
sugar in blood > 120mg/ml= blood pressure = ‘high’, with support 30% and confidence 65%” .
However, quantitative association rule expose several shortcomings such as “sharp boundary
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problem” and meaning interpretation due to the traditional methods of data discretization.
Fuzzy association rule was suggested to overcome these drawbacks in quantitative association
rules. Fuzzy association rule is more natural and intuitive to users thanks to its “fuzzy”
characteristics. An example is “dry cough and high fever and muscle aches and breathing
difficulties = get SARS = ‘yes’, with support 4% and confidence 80%”. High fever in the
above rule is a fuzzy attribute. We measure the body temperature based on a fuzzy concept.

In this article, we concentrate on fuzzy association rule and the new parallel algorithm for
mining it. The rest of article is organized as follows: The section 2 formally describes the
issue of mining binary association rules. Some methods of data discretization based on fuzzy
concepts are mentioned in the section 3. The section 4 presents the fuzzy association rule
and serial algorithm for mining this kind of rule. A new parallel algorithm for mining fuzzy
association rule is proposed in the following section. And, the last section makes a conclusion
by reviewing the achievements obtained throughout the article and stating the future work.

2. MINING ASSOCIATION RULES

Let T = {é1,49,...,i,} be a set of n items or attributes (in transactional or relational
databases) and T = {{1,12,..., %} be a set of m transactions or records. Each transaction
is identified with its unique TID number. A (transactional) database D is a binary relation
d on the Descart multiplication IXT (or also written § C IxT). We say (i, t) € § (or iot) if
an item 1 occurs in a transaction t. Generally speaking, a transactional database is a set of
transactions, where each transaction t contains a set of items or t € 2! (where 2/is the power
set of I) [13,24].

X C 1 is called an itemset. The support factor of an itemset X, denoted as s(X), is the
percentage of transactions that contains X. X is frequent if its support is greater than or equal
to a user-specified minimum support (minsup) value, i.e. s(X)> minsup [24]. Association rule
is an implication in the form of X —— Y, where X and Y are frequent itemsets that disjoint,
ie. X NY =@, and ¢, the confidence factor of the rule, is the conditional probability that a
transaction contains Y, given that it contains X, i.e. ¢ = s(XUY)/s(X). A rule is confident
if its confidence factor is larger or equal to a user-specified minimum confidence (minconf)
value, i.e. ¢ > minconf [24]. A rule X = Y is frequent if the itemset XUY is frequent. The
association rules mining task can be stated as follows:

Let D be a database, minsup and minconf are the minimum support and the mini-
mum confidence respectively. The mining task tries to discover all frequent and confident
association rules X — Y, i.e. s(XUY)> minsup and ¢(X — Y) = s(XUY)/s(X) >
minconf.

Most of the previously proposed algorithms decompose this mining task into two separated
phases [3,4,11,13,22,23]: (1) finding all possible frequent itemsets and (2) generating all
possible frequent and confident rules from frequent itemsets.

3. DATA DISCRETIZATION BASED ON FUZZY SETS

3.1. Traditional methods of data discretization

Binary association rules mining algorithms [11, 13,23, 24] work with databases containing
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Table 1. Diagnostic database of heart disease

Age | Sex Chest Serum Fasting Resting Maximum | Heart
pain type cholesterol blood sugar | electrocardio- heart disease
(1,2,3,4) (mg/ml) (>120mg/ml) | graphics rate
(0,1,2)
60 1 (f) 4 206 0(<120mg/ml) | 2 132 2 (yes)
29 0(m) |3 274 1(>120mg/ml) | 2 150 2
54 1 3 273 0 2 152 1 (no)

only binary attributes. Hence, they cannot be directly applied to practical databases as shown
in table 1. In order to conquer this obstacle, quantitative and categorical columns must first
be converted into binary ones [22,26]. The first case: let A be a discrete quantitative or
categorical attribute with finite value domain {vq, va, ..., vr } and k is small enough (k < 20).
After being discretized, the original attribute is developed into k£ new binary attributes named
AV, A Vs, ... A Vi Value of arecord at column A_V; is equal to True (Yes or 1) if the original
value of this record at attribute A is equal to v;, and equal to False (No or 0) otherwise. The
attributes Chest pain type and Resting electrocardiographics in table 1 belong to this case. The
second case: if A is a continuous and quantitative attribute or a categorical one having value
domain {vi,vs,...,vp} (p is relatively large). A will be mapped to ¢ new binary columns in
the form of (A: start;..end;), (A: starty..ends), ..., (A: starty..endy). Value of a given record
at column (A: start;..end;) is True (Yes or 1) if the original value v at this record of A is
between start; and end;, (A: start;..end;) will receive False (No or 0) value for vice versa. The
attributes Age, Serum cholesterol, and Maximum heart rate in table 1 belong to this form.

Unfortunately, the mentioned discretization methods encounter some pitfalls such as “sharp
boundary problem” [3,5]. The figure below indicates the support distribution of an attribute
A having the value domain ranging from 1 to 10. Supposing that we divide A into two sepa-
rated intervals [1..5] and [6..10] respectively. If the minsup value is 41%, the range [6..10] will
not gain sufficient support. Therefore [6..10] cannot satisfy minsup (40% < minsup = 41%)
even though there is a large support near its left boundary. For example, [4..7] has support
55%, [5..8] has support 45%. So, this partition results in a “sharp boundary” between 5 and 6,
and therefore mining algorithms cannot generate confident rules involving the interval [6..10].
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Figure 1. “Sharp boundary problem”
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Another disadvantage is that partitioning value domain into separated ranges results in
a problem in rule interpretation. Supposing that the range [1..29] denotes young people,
[30..59] for middle-aged people, and [60..120] for old ones, so the age of 59 implies a middle-
aged person whereas the age of 60 implies an old person. This is not intuitive and natural
in understanding the meaning of quantitative association rules. Fuzzy association rule was
recommended to overcome the above shortcomings [3,5]. This kind of rule not only successfully
improves “sharp boundary problem” but also help us to express association rules in a more
intuitive and a friendly format.

3.2. Data discretization using fuzzy sets

In the fuzzy set theory [12,28], an element can belongs to a set with a membership value in
[0, 1]. This value is assigned by the membership function associated with each fuzzy set. For
attribute z and its domain D, (also known as universal set), the mapping of the membership
function associated with fuzzy set f, is as follow:

my, () : Dy — [0, 1] (3.1)

The fuzzy set provides a smooth change over the boundaries and allows us to express
association rules in a more expressive form. Let’s use the fuzzy set in data discretizing to
make the most of its benefits. For xample, for the attribute Age and its universal domain
[0, 120], we attach with it three fuzzy sets Age_Young, Age_Middle-aged, and Age_Old. The
graphic representations of these fuzzy sets are shown in the following figure.

A
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Figure 2. Membership functions of fuzzy sets associated with “Age” attribute

3.3. Data discretization using fuzzy sets can bring the following benefits

Firstly, smooth transition of membership functions should help us eliminate the “sharp
boundary problem”. Besides, fuzzy association rule is more intuitive, and natural than known
ones. Also, data discretization by using fuzzy sets assists us significantly reduce the number of
new attributes because number of fuzzy sets associated with each original attribute is relatively
small comparing to that of an attribute in quantitative association rules. For instance, if we
use normal discretization methods over attribute Serum cholesterol, we will obtain five sub-
ranges (also five new attributes) from its original domain [100, 600], whereas we will create
only two new attributes Cholesterol_Low and Cholesterol_High by applying fuzzy sets. This
advantage is very essential because it allows us to compact the set of candidate itemsets, and
therefore shortening the total mining time. Moreover, all values of records at fuzzy attributes
are in [0, 1]. As a result, this offers an exact method to measure the contribution or the impact
of each record to the overall support of an itemset. The final advantage, that we will see more
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clearly in the next section, is fuzzified databases still hold “downward closure property” if we
have a wise choice for T-norm operator. Thus, conventional algorithms such as Apriori also
work well upon fuzzified databases with just slight modifications.

4. MINING FUZZY ASSOCIATION RULES

Table 2. Diagnostic database about heart disease of 4 patients

Age | Serum cholesterol (mg/ml) | Fasting blood sugar (>>120mg/ml) | Heart disease

60 206 0 (<120mg/ml) 2 (yes)

52 255 0 2

68 274 1 (>120mg/ml) 2

54 288 1 1 (no)
Let D be a relational database, I = {ij, iz, ..., i,} be a set of n attributes, denoting that i,
is the ut” attribute in I. And T = {t1, t2, ..., tyn} is a set of m records, and ¢, is the vt

record in T. The value of record ¢, at attribute ¢, can be refered to as t,[,|. For instance, in
the table 2, the value of #3]és] (also the value of t3[Serum cholesterol]) is 274 (mg/ml). Using
fuzzification method in the previous section, we associate each attribute ¢,, with a set of fuzzy

sets: o) :{ 1 9 k}

For example, with the database in table 2, we have: e = {Age_Young, Age_Middle-aged,
Age_Old}

A fuzzy association rule stated in [3,5] is an implication in the form of:
XisA=YisB
(4.1)
Where:
o X, Y CTare itemsets. X = {@,22,...,2p} and Y = {y1,y2,... ,¥q}-
o A= {fo1, furs oo, fap}, B ={fy1, fu2, -, fyq} ave sets of fuzzy sets corresponding to
attributes in X and Y, f,; € F; v ah fy; € Fy;.

We can rewrite the fuzzy association rules as two following forms:

X = {ar,eo ) is A= {foteooe S} 2 Y = (e 0 8B = {1 Sy (42)

or

(@11s fz1) AND ... AND (=, is fop) = (y1 s fy1) AND ... AND (y, is fyq) (4.3)

A fuzzy itemset is now defined as a pair (X, A), in which X (C I) is an itemset and A
is a set of fuzzy sets associated with attributes in X. The support of a fuzzy itemset (X, A)
is denoted fs({X, A)) and determined by the following formula:

mg%ﬁwm®%ﬁmw®m®%wmw}

Fs((X, 4) = = 7

(4.4)

Where:
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o X = {x1, ..., x,} and #,is the v record in T.

® is the T-norm operator in fuzzy logic theory. Its role is similar to that of logic operator
AND in traditional logic.

o, (tp[2y])is calculated as:
R B (@)

10 if vice versa

my, is the membership function of fuzzy set f, associated with x,,, and w,, is a threshold
of membership function m,,, and specified by users.

|T| (card of T) is the total number of records in T (also equal to m).

A frequent fuzzy itemset: a fuzzy itemset (X, A) is frequent if its support is greater
or equal to a fuzzy minimum support (fminsup) specified by users, i.e. fs({X, A)) > fminsup.
The support of a fuzzy association rule is defined as:

fs((Xis A =Y is B)) =fs({(XUY, AUB))
(4.6)

A fuzzy association rule is frequent if its support is larger or equal to fiminsup, i.e.
fs((Xis A = Y is B)) > fminsup. Confidence factor of a fuzzy association rule is denoted
fe(Xis A = Y is B) and defined as:

feXis A=Y isB) = fs((Xis A=Y is B))/fs({X, A))
(4.7)

A fuzzy association rule is considered frequent if its confidence greater or equal
to a fuzzy minimum confidence (fminconf) threshold specified by users. This means that the
confidence must satisfy the condition: fe(X is A = Y is B) > fminconf.

T-norm operator (®): there are various ways to choose T-norm operator [1,2,12, 28]
for formula (3.6) such as: (1) min function (¢ @ b = min(a,b)); (2) normal multiplication
(a®b= a.b); (3) limited multiplication (¢ ® b = max(0,a+b—1)); (4) drastic multiplication
(a@b=ua(if b=1),=b(if a=1),=00f a,b<1)); etc.

Based on experiments, we see that the normal multiplication is the most preferable choice
for T-norm operator because they are convenient to calculate support factors as well as can

highlight the logical relations among fuzzy attributes in frequent fuzzy itemsets. The following
formula (4.8) is derived from the formula (4.4) by applying the normal multiplication.

3 T fow.(telra))
Fs((X, A)) = =S

T
Algorithm for mining fuzzy association rules:

The inputs of the algorithm are a database D with attribute set I and record set T, and
fminsup as well as fiminconf. The outputs of the algorithm are all possible confident fuzzy
association rules.

The algorithm in table 3 uses the following sub-programs:
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e (Dp, Ip, Tr) = FuzzyMaterialization(D, I, T): this function is to convert the
original database D into the fuzzified database Dp. Afterwards, I and T are also trans-
formed to Ir and Tg respectively. In addition, the function FuzzyMaterialization
also converts T into Tpg.

Table 3. Algorithm for mining fuzzy association rules

BEGIN
(Dp, Ip, Tp) = FuzzyMaterialization(D, I, T);
F; = Counting(Dp, Ip, Tr, fminsup);
k= 2;
while (Fr—1  # @)
Cg = Join(Fr_1);
Cr = Prune(Cy);
Fir = Checking(Cg, Dp, fminsup);
F=FUF;
k=k+1;

O 00~ O T = W N =~

—_ =
— o

}

GenerateRules(F, fminconf);
END

—_ =
LW DN

e F; = Counting(Dp, Ir, Tp, fminsup): this function is to generate Fy, that is set of
all frequent fuzzy 1-itemsets. All elements in F; must have supports greater or equal to
fminsup.

e C; = Join(Fy_1): this function is to produce the set of all fuzzy candidate k-itemsets
(Cr) based on the set of frequent fuzzy (k—1)-itemsets (F_1) discovered in the previous
step. The following SQL statement indicates how elements in F_1 are combined to form
candidate k-itemsets.

INSERT INTO Cj,

SELECT p.il,p.iQ, Ces ,p.ik,h q.ik,1

FROM L 1p, Lx 19

WHERE p.i1 = q.d1,...,pdk92 = qip_2, P01 < q.ix_1 AND p.ig_1.0# q.ip_1.0;

In which, p.i; and q.i; are index number of 4t fuzzy attributes in itemsets p and
q respectively. p.i;.o and q.i;.0 are the index number of original attribute. Two fuzzy
attributes sharing a common original attribute must not exist in the same fuzzy itemset.

e C; = Prune(Cy): this function helps us to prune any unnecessary candidate k-itemset
in Cy, thanks to the downward closure property “all subsets of a frequent ttemset are
also frequent, and any superset of a non-frequent itemset will be not frequent”. To
evaluate the usefulness of any k-itemset in Cy, the Prune function must make sure
that all (k — 1)-subsets of Cy, are present in Fy_1.

e F;. = Checking(Cyg, D, fminsup): this function first scans over the whole records or
transactions in the datatabase to update support factors for candidate itemsets in Cg.
Afterwards, Checking eliminates any infrequent candidate itemset, i.e. whose support
is smaller than fminsup. All frequent itemsets are retained and put into Fy.
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e GenerateRules(F, fminconf): this function generates all possible confident fuzzy
association rules from the set of all frequent fuzzy itemsets F.

Convert fuzzy association rule into quantitative one: according to the formula
(4.5), the member-ship function of each fuzzy set f is attached with a cut wy. Based on this
threshold, we can defuzzify to convert association rule into another form similar to quantitative
one. For example, the fuzzy rule “Old people = Blood sugar < 120 mg/ml, with support 62%
and confidence 82%” should be changed to the rule “Age > 46 = Blood sugar < 120 mg/ml,
with support 62% and confidence 82%”. We see the minimum value of attribute [Age, Age_Old]
that greater or equal to wage 014 (=0.5) is 0.67. The age corresponding to the fuzzy value
0.67 is 46, so any person whose age is larger or equal to 46 will have fuzzy value greater or
equal to 0.67. Therefore, we substitute “Age_OIld” by “Age > 46”. Similarly, we can change
any fuzzy association rule to quantitative one.
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The FuzzyARM tool was developed for the purpose of experiment.

|+The nurmber of fuzzy attributes —=— Processing time {s) |

It was written in

MS Visual C++ language and run on IBM PC Pentium IV, 1.5 GHz, 512 Mb RAM. The
testing data are the databases of heart disease diagnosis (created by George John, October
1994, statlog-adm@ncc.up.pt, bob@stams.strathclyde.ac.uk), diabetes disease, auto and vehi-
cle (Drs.Pete Mowforth and Barry Shepherd, Turing Institute George House 36 North Hanover
St. Glasgow G1 2AD). The algorithm for mining fuzzy association rules is tested in various
aspects such as processing time, number of frequent itemsets and confident rules, the effect
of fminsup and fminconf, the influence of number of records and number of attributes, the
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efficiency of each choice for T-norm operator, etc.
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5. PARALLEL MINING FOR FUZZY ASSOCIATION RULES

One of the most essential and time-consuming tasks in association rules mining is finding

all possible frequent itemsets from immense volumes of data. It needs much CPU time (CPU-
bound) and I/O operation (I/O-bound). Thus, researchers have been trying their best to
improve the existing algorithms or devise new ones in order to speed up the whole mining

process [6,8,11,13,23].

Most of these algorithms are sequential and work efficiently upon

small or medium databases (the sizes of databases are recognized based on their number of
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attributes and records). However, they lose their performance and expose some disadvantages
while working with extremely large databases (usually hundreds of megabytes or more) due to
the limitations in the processor’s speed as well as the capacity of internal memory of a single
computer.

Fortunately, with the explosive development in hardware industry, high performance com-
puting systems are introduced to the market. This has opened up an opportunity for a
new research direction in data mining community. Since 1995, researchers continually de-
vise efficient parallel and distributed algorithms for the issue of association rules mining
[4,7,10,15,19,20,22]. These algorithms are diverse because of their tight dependences upon
architectures of various parallel computing systems. We would like to recommend a novel par-
allel algorithm for mining fuzzy association rules. It has been experimented on a Windows-
based PC-Cluster system using MPI standard [16-18] and returns optimistic results. This
algorithm is relatively optimal because it strongly reduces the data communication and syn-
chronization among processors. However, it can only mine the fuzzy or quantitative asso-
ciation rules as well as suite for relational rather than transactional databases. Almost all
known parallel algorithms, more or less, need the data communication and synchronization
among processors. This leads to an additional complexity in real implementations of these
algorithms. Hence, they are not considered to be “ideal” parallel computing problems. Based
on the approach in fuzzy association rules mentioned above, we would like to suggest a new
parallel algorithm for mining this kind of rule. It is ideal that little communication needs to
be taken place during the processing time. Data communication is made only twice: one at
the startup for dividing and delivering fuzzy attributes among processors, and one for rules
gathering as the algorithm finishes.

5.1. Our approach

Each fuzzy attribute is a pair of attribute name accompanied by fuzzy set name. For
instance, with I = {Age, SerumCholesterol, BloodSugar, HeartDisease}, we now have the set
of fuzzy attributes Iy as:

Ip = {[Age, Age_Young|(1), [Age, Age_Middle-aged|(2),
[Age, Age_Old|(3), | Cholesterol, Cholesterol_Low|(4),
[ Cholesterol, Cholesterol_High|(5), [ BloodSugar, BloodSugar_0](6),
[ BloodSugar, BloodSugar_1|(7), [HeartDisease, HeartDisease_Nol|(8),
[HeartDisease, HeartDisease_Yes](9) }.

We totally perceive that any fuzzy association rule (both antecedent and consequent) never
contains two fuzzy attributes that share a common original attribute in I. For example, the rule
such “Age_Old and Cholesterol_High and Age_Young = HeartDisease_Yes” is invalid because
it contains both Age_Old and Age_Young (derived from a common attribute Age). There are
two chief reasons for the above supposition. First, fuzzy attributes sharing a common original
attribute are usually mutually exclusive in meaning so that they will largely decrease the
support of rules in which they are contained together. For example, the Age_Old is opposite
in semantics with Age_Young because no person in the world is “both young and old”. Second,
such rule is not worthwhile and carries little meaning. Thus, we can conclude that all fuzzy
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attributes in the same rule are independent in that there is no pair of fuzzy attribute whose
original attribute is identical. This observation is the foundation of our new parallel algorithm.

We will roughly describe our idea via a simple example. Suppose that we will run our
algorithm on the database in table 2 and on a 6-processor parallel system. We need to divide
the set of fuzzy attributes Iz among processors so that processors can operate in parallel and
independently as follows.

The processor P': 1L = {1, 4, 6, 7, 8, 9}; for P%: 12, = {1, 5, 6, 7, 8, 9};
for P3: 13, = {2, 4,6, 7,8, 9}; for P*: I1, = {2, 5,6, 7, 8, 9};
for P5: 15, = {3, 4, 6,7, 8, 9}; for P 1. = {3, 5,6, 7, 8, 9}.

We divide the Ip based on the first two attributes Age and Cholesterol. The 9 initial
fuzzy attributes are now distributed among 6 processors and each processor receives 6 fuzzy
attributes. This division is “ideal” because the number of processors (6) is equal to the
multiplication of number fuzzy sets associated with attribute Age (3) and number of fuzzy
sets associated with attribute Cholesterol (2) (i.e. 6 = 3*2). The optimal division is where
we could equally disperse fuzzy attributes to all processors in the system. In the case of being
unable to obtain an optimal division, we will use “the most reasonable” one. This means
that several processors are in idle state while others work hard. I would like to present an
algorithm used for fuzzy attributes division. It first tries to find the optimal solution, if not it
will return “the most reasonable” one. The division algorithm is formally described below:

Given a database D with I = {i1,4o,...,4,} is set of n attributes, and T = {t1,t2, ... ,tm}
is set of m records. After being fuzzified, D, I, and T are converted into Dg, Ir, and Tg

respectively.
IF - {[ily fill]y sty [ily fikl]y [Z.Qy f112]7 sty [Z.Qy 1%2]7 sty [Zny 1171]7 sty [Zny ijn]}
Where, f;‘] and kjare the ut® fuzzy set and the number of fuzzy sets associated with

attribute ;. For example, the database in table 2, we have I = {Age, SerumCholesterol,
BloodSugar, HeartDisease} and after converting we receive the I,. In this case, ky = 3, kg =
2, ks = 2, k4 = 2 are numbers of fuzzy sets associated with original attributes in I.

Let FN = {k1}U{ko} U .. . U{kp} = {51,82,..., 8.} (v <n as the may be pairs such as
(k;, k;) that equal) and N is the number of processors in the system. The division algorithm
is changed to the problem stated as follows:

Find the non-empty subset Fn of FN such that the multiplication among elements
in Fn is equal to N (this is the optimal solution). In the case of being unable to obtain
the optimal solution, the algorithm will return “the most reasonable” solution. This
means that the multiplication among elements in Fn is a lower approximation of N.

The strategy for searching the optimal solution is that the algorithm must lookup the
support counts of frequent 1-itemsets (returned by Counting function) during its execution
to decide which attributes are suited for being divided. Attributes used to divide should be
well balanced among their fuzzy attributes in the terms of support count. This strategy helps
maintain load-balancing among processors.

The parallel algorithm:
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Inputs: The database D with the attribute set I and the record set T, the number of
processors is refered to as N, The minsup and minconf indicate the minimum support and
minimum confidence threshold respectively.

Outputs: All possible confident fuzzy association rules.
The parallel algorithm for mining fuzzy association rules includes the following steps:

(1) Converting the database D, attribute set I, and record set T into Dg, Ip, and Tp
respectively. This is fuzzification process. This step is very similar to the function Fuzzy-
Materialization in the algorithm in the table 3.

(2) Call the function Counting in the algorithm in table 3 to count support factor for all
1-itemsets. After this step, only frequent 1-itemsets are retained for subsequent steps.

(3) Using the division algorithmn for fuzzy attributes scattering among N processors in the
system.

(4) Each processor P? use the sequential algorithm in table 3 to mine frequent itemsets
and the rule generating algorithm to generate confident fuzzy association rules.

(5) Collecting discovered rules from all processors in the system.
Proof of correctness:

The division process is merely recursive. This means that each dividing step is very similar
to the previous or next step. For this reason, we need to prove for only one step, and the proof
for the general case is reduced to a more simple proof below:

Let N = k; be the number of processors in the system and s = {k1} is an optimal solution.
After being partitioning, ki processors receive:

Il - {[ih fil ]7 [Z.Qy 112]7 ceey [Z.Qy 1%2]7 ceey [Zny flln]y ceey [Zny ZZL]} (fOI‘ processor 1)
I%‘ - {[ih fi2]7 [Z.Qy 112]7 ceey [Z.Qy 1%2]7 ceey [Zny flln]y ceey [Zny ZZL]} (fOI‘ processor 2)
IRV = {{iv, SRV, Lo, f5), ooy iy SB2)s oo lims SR - oo [ins SEP]} (for processor k).

We have to prove that the discovered frequent itemsets from parallel algorithm and those
from sequential algorithm are the same. This means that any frequent itemset resulted from
the sequential algorithm will belong to the set of frequent itemsets returned by the parallel
algorithm and vice versa.

Proof:

(1) Obviously, any frequent itemset generated from the parallel algorithm belongs to the
set of frequent itemsets generated from the sequential algorithm.

(2) Any frequent itemset generated from the sequential algorithm is classified into (k1 +
1) categories as: If it contains the fuzzy attribute [i1, f}], then it will be generated from the
processor 1. If containing the fuzzy attribute [i1, fflL it will be generated from the processor
2, etc. If containing the fuzzy attribute [iq, fl-kllL it will be generated from the processor k1.
And, if it contain no fuzzy attribute in {[i1, f4], [i1, f2], ..., [i1, fE']}, it will be generated
from all k7 processors in the system. Thereby, we can conclude that any frequent itemset

generated from the sequential algorithm also belongs to the set of frequent itemsets returned
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by the parallel algorithm.
Computational complexity:

Almost all serial Apriori-like algorithms are classified into NP-complete. This assertion
was stated by M. J. Zaki in [14] when he transform the problem of association rules mining
into an equivalent issue in bipartite graph: determining the number of maximal bipartite
cliques in a bipartite graph. Hence, the algorithm shown in table 3 also has a computational
complexity of NP-complete. Nevertheless, the result is very encouraging because most of the
real world databases are very sparse. The experiments indicate that the time complexity is
usually polynomial according to the database size (i.e., number of attributes and number of
records).

Supposing that the computational complexity of sequential algorithm for mining associ-
ation rules is denoted as C = f(|I|, |T|), where |I| and |T| are cardinalities of I and T
respectively. We now try to estimate the time complexity of our new parallel algorithm based
on C = (|1, |TY).

Assume that our system has IN processors and the partitioning algorithm finds out an
optimal solution s = {ki,ks, ..., kn}. Not losing the generality, the system initially has
only ki processors (i.e., N = ky). The set of frequent 1-itemsets is partitioned equally among
processors. As a result, the number of candidates generated during mining time at each
processor is equal to 1/ky of that of the serial algorithm. The time complexity will, therefore,
be reduced kq times comparing to that of the sequential algorithm. In other words, the time
complexity, denoted as PC,is PC = C /N = f(|I|,|T|)/k;. Similarly reasoning, if the system
is now added (ko —1) k1 new processors (i.e., N = kjxks). The new computational complexity
isPC = C/N = f(|I],|T])/ (k1* ko). In general, if the system includes N = (ky*ko*...xk,,)
processors, the complexity will be PC = C / N = f(|I|, |T|)/(k1*ko*...xky). In conclusion,
the time complexity of our parallel algorithm reduces N times comparing to that of serial
algorithm, where N is the number of processors in the system.

Experiments:

The tool ParallelFARM (Parallel Fuzzy Association Rules Mining) was developed for
the purpose of experiment. It was written in MS Visual C++ and run on Windows-based
PC-Cluster using MPT standard (Message Passing Interface). Our PC-Cluster includes four
Windows-based nodes that run on IBM PC Pentium 1V, 1.5 GHz, 512 Mb RAM. The
testing data are the databases of heart disease (created by George John, October 1994,
statlog-adm@ncc.up.pt, bob@stams.strathclyde.ac.uk), auto and vehicle (Drs.Pete Mowforth
and Barry Shepherd, Turing Institute George House 36 North Hanover St. Glasgow G1 2AD),
etc.

6. CONCLISION AND FUTURE WORD

The target of section 3 is to deeply study a special kind of rule - the fuzzy association
rule. This type of rule is much more flexible and intuitive comparing to the elementary kind
of rule described in the previous section. The depiction of this kind of rule in [3,5] is so
brief that they could not emphasize the sensitive relation between fuzzy association rules and
fuzzy logic theory. The article also explains why we choose the algebraic multiplication for



134

PHAN XUAN HIEU, HA QUANG THUY

T-norm operator in formula (4.4). In addition, this section restates the algorithm for mining
fuzzy association rules in [3,5] based on Apriori with just slight customizations. Finally, this
section offers a transformation method for converting fuzzy association rule into quantitative

ones. We also suggest a novel parallel algorithin for mining fuzzy association rules. In this
algorithm, processors will largely reduce the amount of information need to be communicated
during processing time. The algorithm is considered to be “ideal” thanks to its wise strategy
in deliver the original set of fuzzy attributes for processors. This division method is both
balanced and intelligent in that partitions after dividing are equal and each processor can
operate upon its partition independently.
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