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Abstract. In covering approximation space, the rough membership functions give numerical charac-

terizations of covering-based rough set approximations. It is considered as a tool for establishing the

relationship between covering-based rough sets and fuzzy covering-based rough sets. In this paper,

we introduce a new method to update the approximation sets with rough membership functions in

covering approximation space. Firstly, we present the third types of rough membership functions and

study their properties. And then, we consider the change of them while simultaneously adding and

removing objects in the information system. Based on that change, we propose a method for upda-

ting the approximation sets when the objects vary over time. We proved that the method facilitates

knowledge maintenance without retrain from scratch.

Keywords. Rough set; Incomplete information systems; Covering-based rough set; The third types

of rough membership functions; Incremental learning.

1. INTRODUCTION

Rough set theory was originally proposed by Pawlak in 1982 [27] and now it is used as a
useful mathematical tool to solve problems containing uncertain data in information systems
and data analysis. However, it can only be used in the complete information systems while
real data is often imperfect. Therefore, many extensions have been made in recent years to
deal with this problem. Some scholars have extended rough sets by replacing the equivalent
relation with other binary relations. Those approaches are based on two cases. One is Lost
value [13] in which unknown values of attributes are already lost and the other is Do not
care [6–8,15], which may be potentially replaced by any value in the domain.

In addition, the researchers also extended the rough set based on coverings of the universe
of discourse [14, 20, 25]. First, Zakowski built the first type of covering-based rough sets by
covering instead of a partition of the universe [20]. Bonikowski et al. used the concepts
of extension and intension to propose the second type of covering-based rough sets [20].
And Pomykala included interior and closure operators from topology in the second type of
covering-based rough sets [14]. Wang et al. established relationships between four matroidal
structures of coverings and the second type of covering-based rough sets [5]. Tsang et al.
introduced the third type of covering-based rough sets [9], and Zhu discussed difference
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between this model and Pawlaks rough sets [28]. Zhu and Wang studied the fourth type
of covering-based rough sets and established axiomatic systems for the lower and upper
approximation operators [21].

The dynamic information system can be divided into three aspects: variation of objects,
variation of attributes, and variation of attributes values. As the information changes, the
approximation sets also change. Thence, incremental learning techniques are used for mining
dynamic databases. The main idea of those methods is using the results obtained previously
in order to facilitate knowledge maintenance in the changing database without exploiting the
total database from scratch. Based on rough set theory, studies on incremental data analysis
have been developed. A method for incremental updating rough approximations in informa-
tion system under the characteristic relation-based rough sets is proposed by Li et al. [18].
Chen et al. discussed a method for incremental approach for updating approximations of
variable precision rough-set model [12]. They updated the properties of information granu-
lation and approximations with the refining and coarsening of attribute values. Luo et al.
proposed incrementally updating approximations in the set-valued information systems [3].
Then, Luo et al. introduced an incremental method for updating probabilistic approximati-
ons when adding and removing objects based on characteristic relation [4]. It is easy to see
that these incremental methods are all used to the ratio of overlap in the equivalence class
without considering the degree of overlap in a basic set. The third type of rough membership
function is defined the highest ratio of overlap in a decision set. If conditional probability
pays close attention to the classification of an equivalence class then the third type of rough
membership function pays close attention to the decision class. In this paper, we propose a
method for updating the approximation sets based on the third type of rough membership
function in the incomplete system when the objects vary.

This paper is organized as follows: Section 2 briefly reviews some basic concepts of
Pawlaks rough sets and covering-based rough sets. Section 3 gives the concept and some
properties of the third type of rough membership function by neighborhood operator in
covering approximation space. Section 4 introduces an incremental updating method with
approximation sets in covering approximation space and Section 5 presents the conclusions.

2. PRELIMINARIES

In this section, we briefly review some existing definitions and results of Pawlaks rough
sets and covering-based rough sets.

The main idea of a rough set is based on the partition or indiscernibility relation to
define subsets called the lower and upper approximation sets to approximate description of
arbitrary subset in the universe. This partition or equivalence relation is still restrictive
for various applications. Therefore, it is not applicable in information systems containing
imperfect data. To deal with this problem, Kryszkiewicz introduced indiscernibility based
on tolerance relations [15]. Here, a missing value was considered as a special value that may
take any possible value.

Definition 1. [15] An information system usually is defined as IS = (U,A, V, f) where U is
a non-empty finite set of objects, A is a non-empty finite set of attributes, V = {Va |a ∈ A}
is a domain of attribute a, f is a function from U ×A into V.
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If U contains at least an unknown value object, then IS is called an incomplete infor-
mation system, denoted as IIS, otherwise complete. In incomplete information systems,
unknown values are denoted by special symbol “ ∗ ” and are supposed to be contained in the
set Va.

In practice, if we have A = C∪{d}, where C denotes a nonempty finite set of conditional
attributes and d /∈ C is a distinguished attribute called decision, then IS = (U,C∪{d}, V, f)
is called a decision table.

Definition 2. [15] Let IIS = (U,C ∪ {d}, V, f) be an incomplete information system, and
P ⊆ C. Then a Tolerance relation TORP denotes a binary relation between objects that are
possibly equivalent in terms of values of attributes and defined as

TORP = {(x, y) ∈ U × U |∀a ∈ P, fa(x) = fa(y) ∨ fa(x) = ∗ ∨ fa(y) = ∗} , (1)

where fa(x), fa(y) denote the values of objects x and y on a, ∨ denotes disjunction.

This relation is reexive and symmetric but does not need to be transitive.

Let TP (x) = {y ∈ U |TORP (y, x)} be the set of objects which are in relation with x in
terms of P in the sense of the above tolerance relation.

Definition 3. [15] Let IIS = (U,C ∪ {d}, V, f) be an incomplete information system, and
P ⊆ C,X ⊆ U . The lower and upper approximations of X in terms of P are defined as
follows

appr
P

(X) = {x ∈ U |TP (x) ⊆ X } , (2)

apprP (X) = {x ∈ U |TP (x) ∩X 6= ∅} . (3)

Definition 4. [25] Let U be a universe of discourse and C be a family of subsets of U . Then
C is called a covering of U if none of elements of C is empty and ∪{C |C ∈ C} = U . If K
is an element of C, K is called a covering block. Furthermore, (U,C) is called a covering
approximation space and denoted it by CAS.

In the incomplete information system IIS = (U,C ∪ {d}, V, f), with P ⊆ C, let C =
{TPi(x)} then C is called a special characteristic covering of U [9].

Next, we recall some definitions of covering, which shall be needed in the sequel.

Definition 5. [25] Let CAS = (U,C) be a covering approximation space. For any x ∈ U ,
NC(x) =

⋂
{K ∈ C : x ∈ K} is called the neighborhood of x.

Definition 6. [5] Let CAS = (U,C) be a covering approximation space. CovC(X) =
{NC(x) : x ∈ U} is called the covering of neighborhoods induced by C.

Definition 7. [5] Given U be a discourse of universe. A ⊆ U is called a fuzzy set, or rather
a fuzzy subset of U , if exist a function assigning each element x of U a value A(x) ∈ [0, 1].
At that time, the family of all fuzzy subsets of U , i.e., the set of all functions from U to [0, 1]
is called the fuzzy power set of U and denoted as P(U).
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3. ROUGH SET MODEL BASED ON THE THIRD TYPE OF ROUGH
MEMBERSHIP FUNCTION

One of the fundamental notions of set theory is the rough membership function. It
was used to measure the uncertainty of a set in an information system. In Pawlak rough set,
the rough membership function was also used to present numerical characterizations of rough
set approximations. Yao made a survey on existing studies, and gave some new results on
the decision-theoretic rough set model based on rough membership function [23]. Greco et
al. introduced a generalization of the original definition of rough sets and variable precision
rough sets using the concept of absolute and relative rough membership functions [17]. Ge
et al. constructed a kind of rough membership function based on covering rough set [22]. It
is considered the fourth type of rough membership. In CAS = (U,C) with x ∈ U , X ∈ P(U),
they defined the rough membership function as follows

ϕXC (x) = max

{
|X ∩ C|
|C|

|x ∈ C, C ∈ C

}
.

Based on this definition, we realize that ϕXC (x) is only related to the covering blocks
containing x. Yang et al. defined the first type of rough membership function as follows [1]

σXC =
|X ∩NC (X)|
|NC (X)|

,

where NC (X) =
⋂
{C ∈ C|x ∈ C}. The above definition means, in the case that object x

related both the covering C and X, then it is important to measure the rough membership
of x to X with respect C. After that, they defined the second and third types of rough mem-
bership functions by generalizing the first and fourth types of rough membership functions,
respectively. Here the second type of rough membership shows the ratio of |X ∩NC(x)| and
|NC(x)|, and the third type of rough membership shows the highest ratio of |X ∩C| and |X|.
Since NC(x) ⊆ C, then the second type of rough membership function is always less than or
equal to the third type of rough membership function.

In the following, we review the definition about the third type of rough membership
function in a covering approximation space and its properties.

Definition 8. [1] Let CAS = (U,C) be a covering approximation space. For any x ∈ U,
X ∈ P(U), the third type of rough membership function is defined as follows

V X
C (x) =

{
0, X = ∅,
max

{
|X∩C|
|X| |x ∈ C, C ∈ C

}
, X 6= ∅. (4)

Here, V X
C (x) is considered maximum coverage measure. If given a rule C → X then

V X
C (x) means the elements C are the most general in the decision class X. With x ∈ X and
X 6= ∅ then V X

C (x) > 0.
Based on Definition 8, some properties of V X

C (x) are presented as follows.

Proposition 9. [1] Let CAS = (U,C) be a covering approximation space. For any X ∈ P(U),
∀x ∈ X, the following statements hold

(i) 0 ≤ V X
C (x) ≤ 1,
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(ii) If ∃C ∈ C such that ∅ 6= C ⊆ C, then V X
C (y) = 1,∀y ∈ C.

According to the proposition above, assume that C = {C1, C2, .., Cm}, if x ∈ Ci, then
V Ci
C (x) = 1, for i = 1, 2, ..,m. Thus, the family CV = {V Ci

C |i = 1, 2, ..,m} is a fuzzy
β−covering of U for β ∈ [0, 1].

Definition 10. [1] Let CAS = (U,C) be a covering approximation space. 0 ≤ ρ 6 1 and
X ∈ P(U). The graded lower and graded upper approximations based on covering of X with
respect to (U,C) based on the parameter ρ are defined, respectively, as follows

Cρ (X) =
{
x ∈ U

∣∣∣V (∼X)
C (x) ≤ ρ

}
, (5)

Cρ (X) =
{
x ∈ U

∣∣∣V (X)
C (x) > ρ

}
, (6)

where ∼ X denotes a complementary set of X.

Below are the definitions of the positive region, negative region, upper boundary region,
lower boundary region and boundary region based on covering.

Definition 11. [1] Let CAS = (U,C) be a covering approximation space. 0 ≤ ρ 6 1 and
X ∈ P(U). The positive region, negative region, upper boundary region, lowers boundary
region and boundary region are defined as

POSρ(X) = Cρ (X) ∩ Cρ (X) ; (7)

NEGρ(X) = U − (Cρ (X) ∪ Cρ (X)); (8)

LBNDρ(X) = Cρ (X)− Cρ (X) ; (9)

UBNDρ(X) = Cρ (X)− Cρ (X) ; (10)

BNDρ(X) = LBNDρ(X) ∪ UBNDρ(X). (11)

The sets POSρ(X), NEGρ(X), LBNDρ(X), UBNDρ(X), BNDρ(X) are also called the
graded covering-based positive region, negative region, lower boundary region, upper boun-
dary region and boundary region of X, respectively.

From the definition above we can get the following properties of approximation space
directly as:

(i) Cρ (U) = U ;

(ii) Cρ (∅) = ∅;

(iii) Cρ (∼ X) =∼ Cρ (X);

(iv) Cρ (∼ X) =∼ Cρ ();

(v) If ∃C ∈ C such that X ⊆ C, then X ⊆ Cρ (X);

(vi) If ∃C ∈ C such that ∼ X ⊆ C, then Cρ (X) ⊆ X;

(vii) Cρ (X) ⊆ Cρ
(
Cρ (X)

)
;

(viii) Cρ
(
Cρ (X)

)
⊆ Cρ (X);
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(ix) C0 (X) = {x ∈ U |C ⊆ X,x ∈ C ∈ C},
C0 (X) = {x ∈ U ||X ∩ C| 6= ∅,∃C ∈ C, such that x ∈ C};

(x) If |A| = | ∼ A|, then

Cρ (X) = {x ∈ U ||C| − |X ∩ C| ≤ ρ|X|, x ∈ C ∈ C,

and Cρ (X) = {x ∈ U ||X ∩ C| > ρ|X|, ∃C ∈ C such that x ∈ C;

(xi) If 0 ≤ ρ1 ≤ ρ2 < 1, then Cρ2 (X) ⊆ Cρ1 (X) and Cρ2 (X) ⊆ Cρ1 (X).

4. UPDATE APPROXIMATION SETS IN DYNAMIC COVERING
INFORMATION SYSTEMS

Yao et al. studied the minimum, maximum and average rough membership functions,
and their properties [24]. Xu and Zhang proposed new lower and upper approximations and
obtained some important properties in generalized rough set induced by a covering [19].
Shi et al. discussed the uncertainty of covering in the covering approximation space and
presented an approach which measures these similarities using a triangular norm [26]. Lin
et al. presented three types of covering based multi-granulation rough sets by using different
covering approximation operators [11].

In the dynamic systems, researchers investigated knowledge reduction by using incremen-
tally updating approaches. Lang et al. provided some methods to computing the type−1
and type−2 characteristic matrices of dynamic coverings when the objects vary [10]. Cai
et al. studied knowledge reduction of dynamic covering decision information systems caused
by altering attribute values [16]. Hu et al. proposed a method for updating approximations
based on equivalence relation matrix, diagonal matrix and cut matrix in multigranulation
rough set when a single granular structure evolves over time [2].

In such an approach, there is a problem as to whether there is a way to update the
approximation sets without using matrices. To deal with this issue, we propose a method to
update the approximation sets based on the third type of rough membership function.

Let IIS = (U,C ∪ {d}, V, f) be an incomplete decision table and P ⊆ C. We call CP =
{TP (x)|x ∈ U} a special characteristic covering.

We describe this information system at time step t, when the object has not changed,
as IIS(t) = (U (t), C(t) ∪ {d}(t), V, f). At time step t + 1, when adding object x and deleting
object x occur simultaneously, the information is denoted as IIS(t+1) = (U (t+1), C(t+1) ∪
{d}(t+1), V, f).

According to Definition 10, to update the lower and upper approximation sets, we first
need to consider their change when the third type of rough membership function changes.

For simplicity, we denote V (t) the third type of rough membership function at time t and
V (t+1) at time t+ 1.

In the following, we consider the change of approximation sets when the third type of
rough member functions increases, decreases or is constant. We first consider the change of
approximation sets when the third type of rough membership function does not change.

Theorem 12. Suppose that at time t+ 1, the third type of rough membership functions does
not change, i.e.,V (t+1) = V (t), then

C
(t+1)
ρ (X) = C

(t)
ρ (X)−∆ + ∆′, (12)
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where

∆ = {x|x ∈ C
(t)
ρ (X)}, and ∆′ = {x|V (X)(x) > ρ}. (13)

C(t+1)
ρ (X) = C(t)

ρ (X)−∆1 + ∆2, (14)

where

∆1 = {x|x ∈ C(t)
ρ (X)} and ∆2 = {x|V (∼X)(x) ≤ ρ}. (15)

Proof. It can be directly deduced from Definition 10. �

Next, we will update the approximation sets as the third type of rough membership
functions increases over time.

Theorem 13. Suppose that at time t + 1, the third type of rough membership functions
increases, i.e., V (t+1) > V (t), then

If V (X)(t+1) > V (X)(t) then

C
(t+1)
ρ (X) = C

(t)
ρ (X)−∆1 + ∆2, (16)

where

∆1 = {x|V (X)(x) > ρ}, and ∆2 = {x|V (X)(x) > ρ}. (17)

If V (∼X)(t+1) > V (∼X)(t) then

C(t+1)
ρ (X) = C(t)

ρ (X)−∆ + ∆′, (18)

where

∆ = {x, x ∈ U |V (∼X)(x) ≤ ρ, V (∼X)(t+1)(x) > ρ}, and ∆′ = {x|V (∼X)(x) ≤ ρ}. (19)

Proof. If V (X)(t+1) > V (X)(t) > ρ and V (X)(x) ∧ V (X)(x) > ρ then (16) hold based on
Definition 10.

If V (∼X)(t+1) > V (∼X)(t), since V (∼X)(t) ≤ ρ, we consider two cases:

+ Case 1: If V (∼X)(t+1)(x) ≤ ρ then

If V (∼X)(x) ≤ ρ⇒ x ∈ C(t)
ρ (X) ⇒ C(t+1)

ρ (X) = C(t)
ρ (X)− {x}.

If V (∼X)(x) ≤ ρ⇒ x ∈ C(t+1)
ρ (X) ⇒ C(t+1)

ρ (X) = C(t)
ρ (X) ∪ {x}.

+ Case 2: If V (∼X)(t+1)(x) > ρ, based on Definition 10, x does not belong to Cρ(X) at

time t+ 1, furthermore, if V (∼X)(x) ≤ ρ, V (∼X)(x) ≤ ρ, then (18) holds. �

And finally, we consider the change of the approximation sets when the third type of
rough membership function decreases.

Theorem 14. Suppose that at time t + 1, the third type of rough membership functions
decreases, i.e., V (t+1) < V (t), then

If V (X)(t+1) < V (X)(t) then

C
(t+1)
ρ (X) = C

(t)
ρ (X)−∆ + ∆′, (20)
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where

∆ = {x, x ∈ U |V (X)(x) > ρ, V (X)(t+1)(x) ≤ ρ}, and ∆′ = {x|V (X)(x) > ρ}. (21)

If V (∼X)(t+1) < V (∼X)(t) then

C(t+1)
ρ (X) = C(t)

ρ (X)−∆1 + ∆2, (22)

where
∆1 = {x|V (∼X)(x) ≤ ρ}, and ∆2 = {x|V (∼X)(x) ≤ ρ}. (23)

Proof. The proof of this theorem is to that of Theorem 13. �

In the following, we study the changing trend of the third type of rough membership
functions when adding and removing objects simultaneously.

Let IIS(t) = (U (t), C(t) ∪ {d}(t), V, f) be an information system at time t, with which the

tolerance classes and decision classes, respectively, are U (t)/TOL
(t)
P =

{
T
(t)
P1, T

(t)
P2, .., T

(t)
Pm

}
and U (t)

/
{d}(t) =

{
D

(t)
1 , D

(t)
2 , .., D

(t)
n

}
.

And the information system at time t + 1 is IIS(t+1) = (U (t+1), C(t+1) ∪ {d}(t+1), V, f)

with which the tolerance classes and decision classes, respectively, are U (t+1)
/
TOL

(t+1)
P ={

T
(t+1)
P1 , T

(t+1)
P2 , .., T

(t+1)
Pm

}
and U (t+1)

/
{d}(t+1)

=
{
D

(t+1)
1 , D

(t)
2 , .., D

(t+1)
n

}
.

In order to easily update the third type of rough membership functions, in the following,
we show how to update the tolerance and decision classes. We assume that, at time t + 1,
object x is added and object x is deleted simultaneously. Then, the change of tolerance and
decision classes at time t+ 1 can be obtained as follows

T
(t+1)
Pi =


T
(t)
Pi − {x} if x ∈ T (t)

Pi ∧ x /∈ T
(t)
Pi ,

T
(t)
Pi ∪ {x} if x /∈ T (t)

Pi ∧ x ∈ T
(t)
Pi ,

T
(t)
Pi ∪ {x} − {x} if x ∈ T (t)

Pi ∧ x ∈ T
(t)
Pi ,

T
(t)
Pi , otherwise.

(24)

D
(t+1)
j =


D

(t)
j − {x} if x ∈ D(t)

j ∧ x /∈ D
(t)
j ,

D
(t)
j ∪ {x} if x /∈ D(t)

j ∧ x ∈ D
(t)
j ,

D
(t)
j ∪ {x} − {x} if x ∈ D(t)

j ∧ x ∈ D
(t)
j ,

D
(t)
j , otherwise.

(25)

Here we assume that object x belongs to existing tolerance classes and decision classes.
In the opposite case, x will form a new class, respectively.

Since {TPi} is a family of subset of U with TPi 6= ∅ and
⋃
TPi = U , then we consider CP =

{TP1, TP2, .., TPn} a special characteristic covering and (U,CP ) a covering approximation
space. When {TPi} changes, the changing trend of the third type of rough membership
functions is as follows.

Theorem 15. Let IIS = (U,C∪{d}, V, f) be an information system, where U = {u1, u2, .., un},
P ⊆ C, D ⊆ U , TOLP is a tolerance relation on U . Suppose, object x is added and object x
is deleted simultaneously from time t to time t+ 1. And
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If

1.
(
x /∈ T (t+1)

Pi ∧ x /∈ D(t+1)
)
∧
(
x /∈ T (t)

Pi ∧ x /∈ D
(t)
)
,

2.
(
x /∈ T (t+1)

Pi ∧ x /∈ D(t+1)
)
∧
(
x ∈ T (t)

Pi ∧ x /∈ D
(t)
)
,

3.
(
x /∈ T (t+1)

Pi ∧ x ∈ D(t+1)
)
∧
(
x /∈ T (t)

Pi ∧ x ∈ D
(t)
)
,

4.
(
x ∈ T (t+1)

Pi ∧ x /∈ D(t+1)
)
∧
(
x /∈ T (t)

Pi ∧ x /∈ D
(t)
)
,

5.
(
x ∈ T (t+1)

Pi ∧ x /∈ D(t+1)
)
∧
(
x ∈ T (t)

Pi ∧ x /∈ D
(t)
)
,

6.
(
x ∈ T (t+1)

Pi ∧ x ∈ D(t+1)
)
∧
(
x ∈ T (t)

Pi ∧ x ∈ D
(t)
)

then V (D)(t+1) = V (D)(t).

If

7.
(
x /∈ T (t+1)

Pi ∧ x /∈ D(t+1)
)
∧
(
x /∈ T (t)

Pi ∧ x ∈ D
(t)
)
,

8.
(
x /∈ T (t+1)

Pi ∧ x ∈ D(t+1)
)
∧
(
x ∈ T (t)

Pi ∧ x ∈ D
(t)
)
,

9.
(
x ∈ T (t+1)

Pi ∧ x /∈ D(t+1)
)
∧
(
x /∈ T (t)

Pi ∧ x ∈ D
(t)
)
,

10.
(
x ∈ T (t+1)

Pi ∧ x ∈ D(t+1)
)
∧
(
x /∈ T (t)

Pi ∧ x /∈ D
(t)
)
,

11.
(
x ∈ T (t+1)

Pi ∧ x ∈ D(t+1)
)
∧
(
x ∈ T (t)

Pi ∧ x /∈ D
(t)
)
,

12.
(
x ∈ T (t+1)

Pi ∧ x ∈ D(t+1)
)
∧
(
x /∈ T (t)

Pi ∧ x ∈ D
(t)
)
,

then V (D)(t+1) > V (D)(t).

If

13.
(
x /∈ T (t+1)

Pi ∧ x /∈ D(t+1)
)
∧
(
x ∈ T (t)

Pi ∧ x ∈ D
(t)
)
,

14.
(
x /∈ T (t+1)

Pi ∧ x ∈ D(t+1)
)
∧
(
x /∈ T (t)

Pi ∧ x /∈ D
(t)
)
,

15.
(
x /∈ T (t+1)

Pi ∧ x ∈ D(t+1)
)
∧
(
x ∈ T (t)

Pi ∧ x /∈ D
(t)
)
,

16.
(
x ∈ T (t+1)

Pi ∧ x /∈ D(t+1)
)
∧
(
x ∈ T (t)

Pi ∧ x ∈ D
(t)
)
,

then V (D)(t+1) < V (D)(t).

Proof.

1. Since
(
x /∈ T (t+1)

Pi ∧ x /∈ D(t+1)
)
∧
(
x /∈ T (t)

Pi ∧ x /∈ D(t)
)

⇒ T
(t+1)
Pi = T

(t)
Pi and D(t+1) = D(t)

⇒ |T (t+1)
Pi ∩D(t+1)| = |T (t)

Pi ∩D(t)| and |D(t+1)| = |D(t)|

⇒ max

{ ∣∣∣T (t+1)
Pi ∩D(t+1)

∣∣∣
|D(t+1)|

∣∣∣x ∈ T (t+1)
Pi

}
= max

{ ∣∣∣T (t)
Pi ∩D

(t)
∣∣∣

|D(t)|

∣∣∣x ∈ T (t)
Pi

}
.
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According to Definition 8, V (D)(t+1) = V (D)(t).

The proof of 2, 3, 4, 5, and 6 is similar to that of 1.

7. Since
(
x /∈ T (t+1)

Pi ∧ x /∈ D(t+1)
)
∧
(
x /∈ T (t)

Pi ∧ x ∈ D(t)
)

⇒ T
(t+1)
Pi = T

(t)
Pi and D(t+1) = D(t) − {x}

⇒ |T (t+1)
Pi ∩D(t+1)| = |T (t)

Pi ∩D(t)| and |D(t+1)| = |D(t)| − 1 < |D(t)|,∣∣∣T (t+1)
Pi ∩D(t+1)

∣∣∣
|D(t+1)| >

∣∣∣T (t)
Pi ∩D

(t)
∣∣∣

|D(t)|

⇒ max

{ ∣∣∣T (t+1)
Pi ∩D(t+1)

∣∣∣
|D(t+1)|

∣∣∣x ∈ T (t+1)
Pi

}
> max

{ ∣∣∣T (t)
Pi ∩D

(t)
∣∣∣

|D(t)|

∣∣∣x ∈ T (t)
Pi

}
.

According to Definition 8, V (D)(t+1) > V (D)(t).

The proof of 8, 9, 10, 11, and 12 is similar to that of 7.

13. Since
(
x /∈ T (t+1)

Pi ∧ x /∈ D(t+1)
)
∧
(
x ∈ T (t)

Pi ∧ x ∈ D(t)
)

⇒ T
(t+1)
Pi = T

(t)
Pi − {x} and D(t+1) = D(t) − {x}

⇒ |T (t+1)
Pi ∩D(t+1)| = |T (t)

Pi ∩D(t)| − 1 and |D(t+1)| = |D(t)| − 1 < |D(t)|,∣∣∣T (t+1)
Pi ∩D(t+1)

∣∣∣
|D(t+1)| <

∣∣∣T (t)
Pi ∩D

(t)
∣∣∣

|D(t)|

⇒ max

{ ∣∣∣T (t+1)
Pi ∩D(t+1)

∣∣∣
|D(t+1)|

∣∣∣x ∈ T (t+1)
Pi

}
< max

{ ∣∣∣T (t)
Pi ∩D

(t)
∣∣∣

|D(t)|

∣∣∣x ∈ T (t)
Pi

}
.

According to Definition 8, V (D)(t+1) < V (D)(t).

The proof of 14, 15, and 16 is similar to that of 13. �

Theorem 16. Let IIS = (U,C∪{d}, V, f) be an information system, where U = {u1, u2, .., un},
P ⊆ C, D ⊆ U , TOLP is a tolerance relation on U . Suppose, object x is added and object x
is deleted simultaneously from time t to time t+ 1. And

If

1.
(
x /∈ T (t+1)

Pi ∧ x /∈ D(t+1)
)
∧
(
x /∈ T (t)

Pi ∧ x /∈ D
(t)
)
,

2.
(
x /∈ T (t+1)

Pi ∧ x /∈ D(t+1)
)
∧
(
x /∈ T (t)

Pi ∧ x ∈ D
(t)
)
,

3.
(
x /∈ T (t+1)

Pi ∧ x ∈ D(t+1)
)
∧
(
x /∈ T (t)

Pi ∧ x ∈ D
(t)
)
,

4.
(
x /∈ T (t+1)

Pi ∧ x ∈ D(t+1)
)
∧
(
x ∈ T (t)

Pi ∧ x ∈ D
(t)
)
,

5.
(
x ∈ T (t+1)

Pi ∧ x /∈ D(t+1)
)
∧
(
x ∈ T (t)

Pi ∧ x /∈ D
(t)
)
,

6.
(
x ∈ T (t+1)

Pi ∧ x ∈ D(t+1)
)
∧
(
x /∈ T (t)

Pi ∧ x ∈ D
(t)
)
,

7.
(
x ∈ T (t+1)

Pi ∧ x ∈ D(t+1)
)
∧
(
x ∈ T (t)

Pi ∧ x ∈ D
(t)
)
,

then V (∼D)(t+1) = V (∼D)(t).
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If

8.
(
x /∈ T (t+1)

Pi ∧ x /∈ D(t+1)
)
∧
(
x ∈ T (t)

Pi ∧ x ∈ D
(t)
)
,

9.
(
x /∈ T (t+1)

Pi ∧ x ∈ D(t+1)
)
∧
(
x /∈ T (t)

Pi ∧ x /∈ D
(t)
)
,

10.
(
x ∈ T (t+1)

Pi ∧ x /∈ D(t+1)
)
∧
(
x /∈ T (t)

Pi ∧ x /∈ D
(t)
)
,

11.
(
x ∈ T (t+1)

Pi ∧ x /∈ D(t+1)
)
∧
(
x /∈ T (t)

Pi ∧ x ∈ D
(t)
)
,

12.
(
x ∈ T (t+1)

Pi ∧ x /∈ D(t+1)
)
∧
(
x ∈ T (t)

Pi ∧ x ∈ D
(t)
)
,

13.
(
x ∈ T (t+1)

Pi ∧ x ∈ D(t+1)
)
∧
(
x /∈ T (t)

Pi ∧ x /∈ D
(t)
)
,

then V (∼D)(t+1) > V (∼D)(t).
If

14.
(
x /∈ T (t+1)

Pi ∧ x /∈ D(t+1)
)
∧
(
x ∈ T (t)

Pi ∧ x /∈ D
(t)
)
,

15.
(
x /∈ T (t+1)

Pi ∧ x ∈ D(t+1)
)
∧
(
x ∈ T (t)

Pi ∧ x /∈ D
(t)
)
,

16.
(
x ∈ T (t+1)

Pi ∧ x ∈ D(t+1)
)
∧
(
x ∈ T (t)

Pi ∧ x /∈ D
(t)
)
,

then V (∼D)(t+1) < V (∼D)(t).

Proof. The proof of Theorem 16 is similar to that of Theorem 15. �

This section shows a method for updating approximation sets when object x is added and
object x is deleted in the incomplete information system. Next, we will present an example
to illustrate this method.

Example 17. Given an information system is in Table 1.

Table 1. An incomplete information system at time step t

Car a1 a2 a3 a4 d

x1 Low High Full High Excel.

x2 Medium Medium Full Low Excel.

x3 Low Medium Medium * Poor

x4 Low * * High Poor

x5 High Low Full High Good

x6 High * Full High Good

x7 High Low Full High Poor

x8 High Low Full High Good

Let C = {a1, a2, a3, a4}.
Based on Definition 2, we have

TC(1) = {1}, TC(2) = {2}, TC(3) = TC(4) = {3, 4},
TC(5) = TC(6) = TC(7) = TC(8) = {5, 6, 7, 8}.

From there we get the partition and the third type of rough membership function
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U (t)
/
TOL

(t)
C =

{
T
(t)
C1, T

(t)
C2, T

(t)
C3, T

(t)
C4

}
,

where

T
(t)
C1 = {1}, T (t)

C2 = {2}, T (t)
C3 = {3, 4}, T (t)

C4 = {5, 6, 7, 8}.
With D(t) = {3, 4, 7}, we can calculate the third type of rough membership functions as

follows

V D(t)

TC
=

0

x1
+

0

x2
+

2
3

x3
+

2
3

x4
+

1
3

x5
+

1
3

x6
+

1
3

x7
+

1
3

x8
,

V ∼D
(t)

TC
=

1
5

x1
+

1
5

x2
+

0

x3
+

0

x4
+

3
5

x5
+

3
5

x6
+

3
5

x7
+

3
5

x8
.

Let ρ = 0.3. According to Definition 10, the graded covering-based lower and upper
approximations of D(t) can be obtained as follows

C0.3(D
(t)) = {x1, x2, x3, x4},

C0.3(D
(t)) = {x3, x4, x5, x6, x7, x8}.

Next, suppose that at time t + 1, object x9 is added and object x1 is deleted shown in
Table 2.

Table 2. An incomplete information system at time step t+ 1

Car a1 a2 a3 a4 d

x2 Medium Medium Full Low Excel.

x3 Low Medium Medium * Poor

x4 Low * * High Poor

x5 High Low Full High Good

x6 High * Full High Good

x7 High Low Full High Poor

x8 High Low Full High Good

x9 Low * Medium High Good

Then the tolerance classes can be updated as follows

T
(t+1)
C1 = T

(t)
C1 − {x1} = ∅,

T
(t+1)
C2 = T

(t)
C2 = {x2},

T
(t+1)
C3 = T

(t)
C3 ∪ {x9} = {x3, x4, x9},

T
(t+1)
C4 = T

(t)
C4 = {x5, x6, x7, x8}.

Since x9 /∈ D(t+1) ∧ x1 /∈ D(t) then D(t+1) = D(t).
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According to Theorem 15 and Theorem 16, the third type of rough membership functions
is calculated as follows

V D(t+1)

TC
=

0

x2
+

2
3

x3
+

2
3

x4
+

1
3

x5
+

1
3

x6
+

1
3

x7
+

1
3

x8
+

2
3

x9
,

V ∼D
(t+1)

TC
=

1
5

x2
+

0

x3
+

0

x4
+

3
5

x5
+

3
5

x6
+

3
5

x7
+

3
5

x8
+

1
5

x9
.

Based on Theorem 13 and Theorem 14, the graded covering-based lower and upper
approximations of D(t+1) can be updated as follows

C0.3(D
(t+1)) = C0.3(D

(t))− {x1} ∪ {x9} = {x2, x3, x4, x9},
C0.3(D

(t+1)) = C0.3(D
(t)) ∪ {x9} = {x3, x4, x5, x6, x7, x8, x9}.

By the above example, we illustrate that by using the third type of rough membership
functions we can update the approximation sets. When the objects are added and deleted
simultaneously from time t to time t + 1, the third type of rough membership functions
will change. Based on this change, we can update the approximation sets by modifying the
original sets. According to the above example, to fix the approximation set, we just need to

calculate the V
D(t+1)
TC

(x9) and V
(∼D)(t+1)
TC

(x9) without recalculating all the objects.

5. CONCLUSION

Approximation sets are important concepts of the rough set theory. When the objects
change over time, the approximation set also change. Our contribution is to introduce a met-
hod for updating graded covering-based approximation sets in the incomplete information
systems under the objects variation. At that time, the approximation sets can be formally
based on the third type of rough membership function. When the objects vary, they lead
to the variations of tolerance classes and decision classes. This makes the third type of
rough membership function change. Based on the change of the third type of rough mem-
bership function, we suggest a way of maintenance approximation sets. The approximation
sets can be updated by modifying the partial sets without recomputing sets from the very
beginning when the objects vary. Our future work will focus on algorithm development, ex-
perimentation, evaluation and comparison in real databases for the validation of the proposed
approaches.
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