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Abstract. The dense families of database relations were introduced by Jarvinen [6]. The aim of
this paper is to investigate some new properties of dense families of database relations, and their
applications. That is, we characterize minimal keys in terms of dense families. We prove that with

a given relation R the equality set F'p is an R-dense family whose size is at most m(n;fl)7 where

m is the number of tuples in K. We also prove that the set of all minimal keys of relation K is the
transversal hypergraph of the complement of the equality set Er. We give an effective algorithm
finding all minimal keys of a given relation K. The complexity of this algorithm is also esimated.

Tém tat. Ho trit mat cia quan hé trong co s& dir lieu duge gigi thiéu béi Jirvinen [6]. Muc dich
cla bai bdo 13 nghién ctru mot s6 tinh chiat méi cia ho trit mat clia quan hé va ting dung cia né.
D6 13, chiing téi mé té khéa toi tiéu cia quan hé thong qua ho trit mat. Ching téi chitng té dwoc
rang voi mot quan hé R cho trude, tap bang nhau Fg 1a mot R- trit mat ma kich thuéce t6i da cia

né 1a m(n;fl)7 & day m 1a s6 cdc bo trong R. Ching téi ciing chitng té duwoc rang tAp tat ca cac

khéa t6i tiéu cia quan hé R chinh 1a siéu do thi transveral clia phan bl cla tap bing nhau Eg. T
day, chiing t6i duwra ra moét thuat todn hiéu qué tim tat cd céc khoéa téi tiéu cia quan hé cho truéde

R. Do phitc tap cia thuat todn ndy cing duoc dénh gii.

1. BASIC DEFINITIONS

In this section we present briefly the main concepts of the theory of relational databases
which will be needed in sequel. The concepts and facts given in this section can be found in
[1,4,7,8,10].

Let U be a nonempty finite set of attributes (e.g. name, age etc). The elements of U will
be denoted by a,b,c¢,...,x,y, z, if an ordering on U is needed, by ay,...,a,. A map dom
associates with each a € U its domain dom(a). A relation R over U is a subset of Cartesian
product [ ], dom(a).

We can think of a relation R over U as being a set of tuples: R = {hy,..., hp},

hi U — U dom(a), hi(a) € dom(a), i =1,2,...,m.
aclU

A functional dependency (FD for short) is a statement of form X — Y, where X, Y C U.
The FD X — Y holds in a relation R = {hqy,...,hy} over U if

(Vhi, hj € R) ((Va € X)(hi(a) = hj(a)) = (Vb € Y)(hi(b) = h;(b))).
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We also say that R satisfies the FD X — Y.

Let Fr be a family of all FDs that holds in R. Then F' = Fg satisfies
(F1) X - X €F,
(F2) (X =Y eFY—-ZcF)=(X—>ZcF),
(F3) (X=YeF, XCV,WCY)=(V->WEeF),
(F4) (X =>YeF,VoWeF)=(XUV-SYUWEeF).

A family of FDs satisfying (F1)- (F4) is called an f-family over U.

Clearly, Fg is an f-family over U. It is known [1] that if F' is an arbitrary f-family, then
there is a relation R over U such that Fr = F.

Given a family F of FDs over U, there exists a unique minimal f-family F'* that contains
F. Tt can be seen that I’ contains all FDs which can be derived from F by the rules (F1)-
(F4).

A relation scheme s is a pair (U, F'), where U is a set of attributes and F is a set of FDs
over U.

Let U be a nonempty finite set and P(U) its power set. The mapping £ : P(U) — P(U)
is called a closure operation over U if it satisfies the following conditions:
(1) X C L(X),
(2) X CY implies £L(X) C L(Y),
(3) LIL(X)) = L(X).
Remark 1. Tt is clear that, if F'is an f-family, and we define Lp(X) as

Lr(X)={acU:X —{a}eF}

then Lp is a closure operation over U. Conversely, it is known [1,3] that if £ is a closure
operation, then there is exactly one f-family F' over U so that £ = Lp, where

F={X =Y :X,YCUYCLX)}

Thus, there is a one-to-one correspondence between closure operations and f-families over U.
Let R be a relation over U and K C U. Then K isa keyof Rif K - U € Fr. K is a
manimal key of R if K is a key of R and any proper subset of K is not a key of R.
Denote K the set of all minimal keys of R.

2. HYPERGRAPHS AND TRANSVERSALS

Let U be a nonempty finite set and put P(U) for the family of all subsets of U. The family
H={F;: E;cPU),i=1,2,...,m} is called a hypergraph over U if F; # ( holds for all i
(in [2] it is required that the union of E;s is U, in this paper we do not require this).

The elements of U are called vertices, and the sets Fy, . .., F,, the edges of the hypergraph
H.

A hypergraph H is called simple if it satisfies VE;, Iy € H @ F; C E; = E; = ;. It can
be seen that Kp is a simple hypergraph.

Let H be a hypergraph over U. Then min(H) denotes the set of minimal edges of H with
respect to set inclusion, ie., min(H) = {E; € H : AE; € H : E; C E;}. It is clear that,
min(H) is a simple hypergraph. Furthermore, min(H) is uniquely determined by H.
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A set T C U is called a transversal of H (sometimes it is called hitting set) if it meets all
edges of H, i.e., VE € H: T NE # (. Denote by Trs(H) the family of all transversals of H.
A transversal T' of H is called minimal if no proper subset T” of T is a transversal.

The family of all minimal transversals of H called the transversal hypergraph of H, and
denoted by Tr(H). Clearly, Tr(H) is a simple hypergraph.
By the definition of minimal transversal, the following proposition is obvious.

Proposition 2.1. Let H be a hypergraph over U. Then
Tr(H) = Tr(min(H)).

The following algorithm finds the family of all minimal transversals of a given hypergraph
(by induction).
Algorithm 2.2. [5]
Input: Let H = {F1,..., E,,} be a hypergraph over U.
Output: Tr(H).
Method:
Step 0. We set Ly := {{a}: a € E1}. Tt is obvious that L; = Tr({E1}).
Step q+1 (g < m). Assume that

Lq = SqU{By1,..., By},
where BiNEg1 =0,i=1,...,t;,and Sy ={A: A€ Ly and AN Eyq # 0}.
For each i (¢ = 1,...,t,) constructs the set {B; U {b} : b € Eg41}. Denote them by
AlLAL(i=1,...1,). Let
Lgp1 = SqU{AL - Ae Sg= Ag A1 <i<tg,1<p<rd.

Theorem 2.3. ([5]) For everyq (1 <q<m)Ly="Tr({E1,...,E4}), i.e., Ly, = Tr(H).

It can be seen that the determination of T'»(H) based on our algorithm does not depend
on the order of F1,..., E,,.

Remark?2. Denote Ly = SqU{B1, ..., By}, and [ (1 < ¢ < m—1) be the number of elements
of Lq. Note that, [, > {,. It can be seen that the worst-case time complexity of our algorithm

m—1
O(U* Y tquq),
q=0

1S

where [p = {5 = 1 and

W St il >,
T, if 1, = t,.

Clearly, in each step of our algorithm L, is a simple hypergraph. It is known that the size

of arbitrary simple hypergraph over U cannot be greater than Cy[ln/ 2]7 where n = |U]. Cy[ln/ 2]

12 From this, the worst-case time complexity of

is asymptotically equal to 271/2/(x.n)
our algorithm cannot be more than exponential in the number of attributes. In cases for
which Iy <1, (¢ = 1,...,m— 1), it is easy to see that the time complexity of our algorithm

is not greater than O(|U|*|H||Tr(H)|?). Thus, in these cases this algorithm finds T7(H) in
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polynomial time in U], |H| and |Tr(H)|. Obviously, if the number of elements of H is small,
then this algorithm is very effective. It only requires polynomial time in |R).

The following proposition is obvious
Proposition 2.4. ([5|) The time complexity of finding Tr(H) of a given hypergraph H is (in
general) exponential in the number of elements of U.

Proposition 2.4 is still true for a simple hypergraph.

3. DENSE FAMILIES
Let D C P(U) be a family of subsets of a U. We define a set Fp over D as follows
Fp={X—-Y:VAeD)X CA=Y C A}

We have the following proposition.

Proposition 3.1. ([6]) If D is a family of subsets of a finite set U, then Fp is an f-family
over U.

The notion of dense family of a database relation is defined in [6], as follows

Let R be a relation over U. We say that a family D C P(U) of attribute sets is R-dense
(or dense in R) if Fr = Fp.

The following proposition guarantees the existence of at least one dense family. In the
sequel we denote L, simply by Lg.

Proposition 3.2. ([6]) The family Lr is R-dense.

For any A C U, we denote by A the complement of A with respect to the set U, that is,
A={acU:ag A}.

Theorem 3.3. ([6]) Let R be a relation over U. If D CP(U) is R-dense, then the following
conditions hold

(1) K is a key of R if and only if it contains an element from each set in {A: A€ D, A+ U}.
(2) K is a minimal key of R if and only if it minimal with respect to the property of containing
an element from each set in {A: A€ D, A+ U}.

Note that an element a € U belongs to all minimal keys if A = {a} for some A € D, where
D is an R-dense family. Now we investigate some properties of dense families of database
relations, and their applications.

Let U be a nonempty finite set and P(U) its power set. For every family D C P(U), the
complement family of D is the family D = {A: A € D} over U.

Let R = {h1,..., hy} be a relation over U, and Eg the equality set of R, i.e.,

ER:{Eij:1<i<j<m},
where E;; = {a € U : hi(a) = hj(a)}.
Proposition 3.4. The equality set F'r s R-dense.

Proof. Assume that X — Y € Fg. Let F;; € Fr such that X C F;;. This means that
hi(X) = h;(X). From this, and according to the definition of FDs, we have h;(Y) = h;(Y).
Thus, Y C F;;. By the definition of F'g,,, that is,
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Fi, ={X =Y :(VE; € Er) X C By =Y C By},

we obtain X — Y € Fg,.

Conversely, let X — Y € Fg,. Suppose that there are h;, h; € R such that h;(X) =
h;(X), 1 <i < j<m. Which means that X C F;;. By X =Y € Fg,, Y C F;;. Hence, we
also obtain h;(Y) = h;(Y). Consequently, X — Y € Fg.

The proposition is proved. [ |

w elements.

It is easy to see that the dense family Er has at most
Theorem 3.5. Let R be a relation over U. Then
Kpr = Tr(min(ER)).
Proof. By the definition of relation R, we have U ¢ Egr. From this, Proposition 2.1, Proposi-
tion 3.4 and Theorem 3.3, the theorem is obvious.

The proof is complete. [ |
Let R = {h1,..., hy} be a relation over U, and N the nonequality set of R, i.e.,

NR:{Nij:1<i<j<m},
where N;; = {a € U : hi(a) # hj(a)}.
Note that, because R is a relation, § ¢ Ng and U & Er. Moreover, Ng = Eg. From this,
and Theorem 3.5, we have the following corollary.
Corollary 3.6. Let R be a relation over U. Then
Kgr = Tr(min(Ng)).

From Proposition 3.4 and the definition of dense family, the following proposition is obvi-
ous.

Proposition 3.7. Let R = {hq, ..., hy} be a relation over U = {aq, ..., a,}. Then ERU{U}
15 R-dense.

4. FINDING THE SET OF ALL MINIMAL KEYS OF A RELATION

In this section, we present an effective application of Theorem 3.5, which is the following
algorithm finding all minimal keys of a given relation K. Remember that this problem is
inherently exponential in the size of R [4].

Algorithm 4.1.

Input: a relation R = {hq,..., h,} over U.
Output: Kp.

Method:

Step 1. Construct the equality set

ER:{Eij:1<i<j<m},

where E;; = {a € U : hi(a) = hj(a)}.
Step 2. Compute the complement of Fp as follows
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E_R: {E_”E” € ER}.

Denote elements of Er by Ny, ..., Ni
Step 3. From Eg compute the family min(Egr) = {N; € Er : AN; € Er : N; C N;}.
Step 4. By Algorithm 2.2 we construct the set Tr(min(ERg)).

Based on Proposition 2.1, Algorithm 2.2 and Theorem 3.5, we have K = Tr(min(ER)).
It can be seen that the time complexity of this algorithm is the time complexity of Algorithm
2.2. In many cases this algorithm is very effective (see Remark 2).

It can be seen that, if the number of elements of the equality set Fgr is constant, i.e.
|ERr| < k for some constant k, then the time complexity of finding Kp of a given relation R
is polynomial time [9)].

Clearly, if we replace E by N, we have another similar effective algorithm finding all
minimal keys of a relation.

5. CONCLUSIONS

In this paper we have investigated dense families of database relations and characterized
minimal keys in terms of dense families. We prove that the set of all minimal keys of relation
R is the transversal hypergraph of the complement of the equality set Kr. We also give an
effective algorithm finding all minimal keys of a given relation R.

Our further research will be devoted to the following problemns:

1. Let R be a relation over U and D C P(U). What is a necessary and sufficient condition
for family D to be R-dense?

2. Let R be a relation over U. Can we use dense families to sloving the problem of
determining a cover of a relation R?
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