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Abstract. Dealing with the time series forecasting problem attracts much attention from the fuzzy

community. Many models and methods have been proposed in the literature since the publication

of the study by Song and Chissom in 1993, in which they proposed fuzzy time series together with

its fuzzy forecasting model for time series data and the fuzzy formalism to handle their uncertainty.

Unfortunately, the proposed method to calculate this fuzzy model was very complex. Then, in 1996,

Chen proposed an efficient method to reduce the computational complexity of the mentioned forma-

lism. Hwang et al. in 1998 proposed a new fuzzy time series forecasting model, which deals with

the variations of historical data instead of these historical data themselves. Though fuzzy sets are

concepts inspired by fuzzy linguistic information, there is no formal bridge to connect the fuzzy sets

and the inherent quantitative semantics of linguistic words. This study proposes the so-called lin-

guistic time series, in which words with their own semantics are used instead of fuzzy sets. By this,

forecasting linguistic logical relationships can be established based on the time series variations and

this is clearly useful for human users. The effect of the proposed model is justified by applying the

proposed model to forecast student enrollment historical data.

Keywords. Forecasting model; Fuzzy time series; Hedge algebras; Linguistic time series; Linguistic

logical relationship.

1. INTRODUCTION

Fuzzy time series was firstly examined by Song and Chissom in 1993 [1], in which they
proposed a fuzzy model of time series forecasting to deal with the uncertainty in nature of
the time series data. Song and Chissom also introduced two forecasting models [2, 3] to
deal, respectively, with time-invariant or time-variant fuzzy time series and applied them to
forecast the enrollment time series of Alabama. However, their calculating methods were
complex and incomprehensible. In 1996, to overcome this difficulty, Chen [4] proposed an
arithmetic approach to the fuzzy time series forecasting model to simplify the fuzzy fore-
casting formalism and reduce the computational complexity. He justified that his proposed
method was more efficient than Song and Chissom’s and it took less computational time
and offered better accuracy of forecasting results. In [5], Sullivan and Woodall proposed the
Markov model, which used linguistic labels with probability distributions to forecast student
enrollment time series.
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After those initial researches on fuzzy time series, many forecasting models and their
calculating methods have been proposed mainly to get two aims: to improve the accuracy
of the forecast results and to simplify the calculation model. In 1998, Hwang et al. [6]
proposed a new fuzzy time series forecasting model based on the variations of historical data
instead the time series themselves. This model pays attention to the variability of historical
data which seems to be an appropriate approach to predict based on the annual variations
of enrollment numbers. Fuzzy time series is an effective way to deal with uncertain and
wide-range variation time series data. The calculation with fuzzy time series is mainly based
on the fuzzy sets that are consistently constructed for the given historical data.

For nearly three decades, many forecasting methods on fuzzy time series have introduced.
They extended the fuzzy time series forecasting with high-order models, e.g., [7, 8, 9, 10,
11, 12], and/or multi-factors models, e.g., [12, 13, 14]. To improve the performance of
forecasting methods, many modern computation techniques are applied such as artificial
neural network, e.g., [15, 16], evolutionary computation (genetic algorithm, particle swarm
optimization), e.g., [11, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26] clustering technique, e.g.,
[11, 25, 27, 28, 29] and so on. However, the construction of these fuzzy sets still heavily
relies on the knowledge and experience of the developers. These fuzzy sets constructed for a
time series are fundamental elements to produce fuzzy logical relationships (FLRs) involved
in the time series to handle the time series data.

Fuzzy sets in their nature are originated from fuzzy linguistic words of natural language
which possess their own qualitative semantics. However, in the fuzzy set framework, there is
no formal basis to connect fuzzy sets and their associated linguistic words whose semantics is
represented by their respective fuzzy sets. It is natural and essential that one may actually
deal with and immediately handle the linguistic labels with their own inherent semantics
assigned to the fuzzy sets occurring in the fuzzy time series and in its FLRs. However, this
requires that the word-domains of variable and the inherent semantics of their words must
be mathematically formalized.

Hedge algebras (HAs) was introduced in 1990 to formalize the word-domains of variables
as algebraic order-based structures and the semantics of words are formally defined in their
respective structures [30]. They establish an algebraic approach to handle fuzzy linguistic
information in a sound manner. In this approach, the word-domain of a variable is considered
as an order-based algebraic structure, whose words are generated from its two atomic words
with the opposite meaning one to the other by using linguistic hedges regarded as unary
operations like very, rather, little, extremely, They form a formalism sufficient to immedia-
tely handle linguistic information and to soundly construct computational objects, including
fuzzy sets, to represent the inherent semantics of their words. Based on this advantage, HAs
were apply to many fields such as fuzzy control, e.g., [31, 32, 33, 34, 35, 36] classification
and regression problems [37, 38], computing with words [39, 40], image processing [41], and
so on.

Recently, there are some studies applying the HAs theory to the fuzzy time series fore-
casting problem [42, 43, 44, 45] The main idea of these studies is only to apply the fuzziness
intervals of words, interpreted as their interval-semantics, to decompose the universe of dis-
course into an interval-partition instead of determining these intervals based only on the
researchers’ intuition. The authors of studies [42, 43, 44] proposed a forecasting method
based on HAs using semantization and desemantization transformations, which are success-
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fully applied in fuzzy control. They tried to determine an interval partition of historical data
similarly as ordinary fuzzy time series forecasting methods and also made some modifications
to improve forecasting accuracy, for instance, optimizing the selection of forecasting model
parameters. Tung et al. [45] proposed a method to construct fuzzy sets for fuzzy time series
forecasting method which based on HAs to establish a fuzzy partition of dataset range. The
number of its fuzzy set is also limited by more or less 7. In principle, in this study, there is
no limitation of the number of words used in the method.

In this study, based on the HAs formalism, we introduce the so-called linguistic time
series and the linguistic model of forecasting time series data, in which words and their own
qualitative semantics are taken into consideration to handle their quantitative semantics,
especially, fuzzy sets are not necessary to use. Thus, it is interesting that FLRs mentioned
above can be represented in terms of linguistic words, called linguistic rules, considered as
linguistic knowledge for forecasting time series data, which are very useful for interacting
with human users. The proposed linguistic forecasting model ensures that the linguistic
knowledge formed from the constructed FLRs convey its own inherent semantics of their
words similar as ordinary human knowledge. This seems to be very essential and useful
for time series forecasting activities, especially, for the interface between time series data
forecasting models and their human users.

The rest of this paper will be organized as follows. In Section 2, we will briefly review
some concepts of fuzzy time series. In Section 3, some definitions of hedge algebras will be
introduced. In Section 4, we will propose linguistic time series and its forecasting model.
We also test the robustness of the proposed model and compare it with the former method.
The conclusion is covered in Section 5.

2. FUZZY TIME SERIES

Fuzzy time series was introduced by Song and Chissom [1] based on the fuzzy set theory
[46], where the values of historical data are presented by fuzzy sets. In the following, we
briefly review some basis concepts of fuzzy time series.

Let U be the universe of discourse, U = {u1, u2, ..., un}, where uj ’s are the expected
intervals of the determined range of the values of a given data time series based on which the
fuzzy sets used to produce the desired fuzzy time series constructed. These fuzzy sets aim
to represent the semantics of the human words used to describe the numeric values of the
time series range mentioned above, e.g., not many, not too many, many, many many, very
many, too many, too many many [1]. Thus, a fuzzy set A on U can be defined as follows

A = fA(u1)/u1 + fA(u2)/u2 + ...+ fA(un)/un, (2.1)

where fA is the membership function of A, fA : U → [0, 1], and fA(ui) indicates the grade
of membership of ui in A, where fA ∈ [0, 1] and 1 ≤ i ≤ n. The concept of fuzzy time
series is inspired by the observation given the authors of [1] as follows. Let us imagine a
series of linguistic values describing the weather of a certain place in north America using
the word vocabulary good, very good, quite good, very very good, cool, very cool, quite cool,
hot, very hot, cold, very cold, very very cold,... The weather of a day in summer may be
described by cool, quite good and that of another day may be hot, very bad . However, in
winter, such linguistic descriptions may by rather cold, good or very very cold, very very bad ,
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and so on. They argued that the temperature ranges and their set of the possible words
may be varied from day to day, from season to season, and the semantics of these words
can be represented by fuzzy sets defined on their respective appropriate real value ranges,
denoted by Y (t). Thus, the weather F (t) of the day ‘t’ can be represented by some fuzzy sets
defined on their respective ranges that can be changed in time. Therefore, they introduce
the following definition.

Definition 2.1. [1] Let Y (t) (t = ..., 0, 1, 2, ...), a subset of R, be the universe of discourse on
which fuzzy sets fi(t) (i = 1, 2, ...) are defined and F (t) is the collection of fi(t) (i = 1, 2, ...).
Then F (t) is called a fuzzy time series on Y (t) (t = ..., 0, 1, 2, ...).

The relationships between the fuzzy sets (and, hence, between their word-labels) are
important for forecasting problem that is formalized in [1] by the following definition.

Definition 2.2. [4] Assume that there exists a fuzzy relationship R(t − 1, t), such that
F (t) = F (t − 1) ◦ R(t − 1, t) where ‘◦’ represents a composition operator, then F (t) is said
to be caused by F (t − 1). When F (t − 1) = Ai and F (t) = Aj , the relationship between
F (t− 1) and F (t) is denoted by the fuzzy logical relationship (FLR)

Ai → Aj , (2.2)

where Ai and Aj are called the left-hand side and the right-hand side of the FLR, respectively.

In [2, 3], R is determined by a fuzzy relation, which is calculated by Rj = [F (t− 1)]T ×
F (t), t = 1, 2, ..., j = 1, ..., p. Assuming that the fuzzy time series under consideration has
p FLRs in the form Ai → Aj , where Al’s are fuzzy sets defined on the set of uk, k = 1, ..., n,
which are the intervals defined by a partition of the ordinary time data series, we have then
p such fuzzy relations, Rj , j = 1, ..., p.

Putting R = ∪pj=1Rj , the forecasting model is defined as

Ai = Ai−1 ◦R, (2.3)

where Ai−1 is the enrollment of year i − 1 and Ai is the forecasted enrollment of year i in
terms of fuzzy sets and ‘◦’ is the ‘max-min’ operator.

Chen in [4] argued that the derivation of the fuzzy relation R is a very tedious work,
and the forecasting calculation by the above forecasting model is too complex, especially
when the fuzzy time series is large. Therefore, he proposed a so-called arithmetic method to
compute the forecasting values based on utilizing, for a given Ai, the midpoints of the cores
of the fuzzy sets of Aj ’s occurring on the right-hand side of those FLRs of the form (2.2)
whose left-hand side are the same Ai. Thus, he introduced fuzzy logical relationship group
defined as follows.

Definition 2.3. [4] Suppose there are FLRs such that

Ai → Aj1, Ai → Aj2, ..., Ai → Ajn.

Then, they can be grouped into a fuzzy logical relationship group (FLRG) and denoted by

Ai → Aj1, Aj2, ..., Ajn. (2.4)

Chen’s method can be shortly described by the following steps:
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Step 1. Partition the universe of discourse into equal-length intervals.

Step 2. Define fuzzy sets on the universe of discourse. Fuzzify the historical data and
establish the fuzzy logical relationship based on fuzzified historical data.

Step 3. Group fuzzy logical relationship with one or more fuzzy sets on the right-hand side.

Step 4. Calculate the forecasted outputs.

In Step 4, Chen carried out the outputs of the experiment on enrollments by three
principles:

(1) If the fuzzified enrollment of year i is Aj , and there is only one fuzzy logical relationship
in the fuzzy logical relationship groups which is show as follows Aj → Ak where Aj

and Ak are fuzzy sets and the maximum membership value of Ak occurs at interval uk,
and the midpoint of uk is mk, then the forecasted enrollment of year i+ 1 is mk.

(2) If the fuzzified enrollment of year i is Aj , and there are the following fuzzy logi-
cal relationships in the fuzzy logical relationship groups Aj → Ak1, Ak2, ..., Akp where
Aj , Ak1, Ak2, ..., Akp are fuzzy sets, and the maximum membership values ofAk1, Ak2, ...,
Akp occur at intervals u1, u2, ..., up, respectively and the midpoints of u1, u2, ..., up are
m1,m2, ...,mp, respectively, then the forecasted enrollment of year i+ 1 is (m1 +m2 +
...+mp)/p.

(3) If the fuzzified enrollment of year i is Aj , and there do not exist any fuzzy logical
relationship groups whose current state of the enrollment is Aj ,where the maximum
membership value of Aj occurs at interval uj and the midpoint of uj is mj , then the
forecasted enrollment of year i+ 1 is mj .

There has been a lot of researches to improve the calculation models as mentioned above.
In general, the fuzzy set theory approach is very flexible, especially, for the time series
modeled in terms of linguistic words or for those whose number of observations is small.
However, analyzing these forecasting methods based on fuzzy time series, we observe that
the fuzzy sets Aj ’s are constructed based only on the researcher’s intuition inspired by the
semantics of human linguistic words in the aforementioned word-vocabularies. In the matter
of fact, there is no formal linkage between human words and the fuzzy sets assigned to them.
This motivates us to introduce the so-called linguistic time series based on hedges algebras
and their quantification theory.

3. HEDGE ALGEBRAS AND SEMANTICS OF WORDS

The motivation of hedge algebras (HAs) approach is to interpret each words-set of a
linguistic variable as an algebra whose order-based structure is induced by the inherent
qualitative meaning of linguistic words. By this, its order relation is called semantical order
relation.

In this section, we recall some basic concepts of HAs. As mentioned above, the ordering
relation of linguistic values creates their semantics. We focus on fuzziness measure (fm),
sign function, and semantically quantifying mappings (SQMs) of HAs. They are necessary
mathematical knowledge of HAs that will be used to present our proposed forecasting model.
More details can be found in [37] or [47].
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Let AX = (X,G,C,H,≤) be an HAs, where G = {c−, c+} is a set of generators called,
respectively, the negative primary word and the positive one of X; C = {0,W, 1} is set of
constant which are the least, the neutral and the greatest, respectively; H = {h−, h+} is a
set of hedges of X, regarded as unary operations, where h− and h+ are the negative hedge
and positive one, respectively; and ≤ is the semantic order relation of words in X.

Definition 3.1. Let AX = (X,G,C,H,≤) be an HAs. A function fm : X → [0, 1] is said
to be fuzziness measure of words in X if

• fm(c−) + fm(c+) = 1 and
∑

(h∈H)

fm(hu) = fm(u), for ∀u ∈ X;

• For the constants 0, W and 1: fm(0) = fm(W ) = fm(1) = 0;

• ∀x, y ∈ X, ∀h ∈ H, fm(hx)

fm(x)
=
fm(hy)

fm(y)
, this proportion does not depend on specific

elements x and y and, hence, it is called fuzziness measure of the hedge h and denoted
by µ(h).

Every fuzziness measure fm on X has the following properties:

f1) fm(hx) = µ(h)fm(x) for ∀x ∈ X;

f2) fm(c−) + fm(c+) = 1;

f3)
∑

−q≤i≤p, i 6=0

fm(hic) = fm(c), c ∈ {c−, c+};

f4)
∑

−q≤i≤p, i 6=0

fm(hix) = fm(x);

f5) Put
∑

−q≤i≤−1
µ(hi) = α,

∑
1≤i≤p

µ(hi) = β, we have α+ β = 1.

It can be seen that given the values of fm(c−), µ(h), h ∈ H, fm is completely defined
and, hence, we call them the fuzziness parameters of the variable in question. It is interesting
that from the given fuzziness parameters, one can define and calculate the numeric semantics
of every word x, v(x), which can shortly be described as follows.

Definition 3.2. A function sign: X → {−1, 1} is a mapping which is defined recursively as
follows. For h, h′ ∈ H and c ∈ {c−, c+}:

1) sign(c−) = −1, sign(c+) = +1;

2) sign(hc) = −sign(c) for h being negative w.r.t c, otherwise, sign(hc) = +sign(c);

3) sign(h′hx) = −sign(hx) if h′hx 6= hx and h′ is negative w.r.t h;

4) sign(h′hx) = +sign(hx) if h′hx 6= hx and h′ is positive w.r.t h.

Theorem 3.1. [47] For given values of the fuzziness parameter of a variable, its corresponding
SQM v : X → [0, 1] is defined as follows
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1) v(W ) = θ = fm(c−);

2) v(c−) = θ − αfm(c−) = βfm(c−);

3) v(c+) = θ + αfm(c+) = 1− βfm(c+);

4) v(hjx) = v(x) + sign(hjx){
j∑

i=sign(j)

fm(hix)− ω(hjx)fm(hjx)}, where

ω(hjx) =
1

2
[1 + sign(hjx)sign(hphjx)(β − α)] ∈ {α, β}.

4. LINGUISTIC TIME SERIES AND ITS FORECASTING MODEL

4.1. Linguistic time series and its forecasting model

To deal with the uncertainty of time data series forecasting, Song and Chissom in their
studies [1, 2, 3] proposed a concept of fuzzy time series established based on a given ordinary
data time series and a formalism to handle uncertainty represented by fuzzy sets. The main
advantage of the fuzzy time series is the ability to handle the uncertainty in the nature
of the time series forecasting problem. In existing approaches, however, the fuzzy sets are
constructed based on the researchers’ intuition in the context of the data time series in
question. There is no formal basis to connect the constructed fuzzy sets to possibly intended
words assigned to them. Obviously, it is very useful and beneficial when one can deal
immediately with human words based on a formal formalism with sufficient reliability, say a
theory developed soundly based on an axiomatic way.

As aforementioned, in this study, we deal with the so-called linguistic time series introdu-
ced to solve the time series forecasting problem which, by the fact of the matter, essentially
involves uncertainty. Since human has capacities to deal with the uncertainty in terms of
their own natural words, the linguistic time series and the formalism developed based on the
HA-formalism to handle their uncertainty to solve the data time series forecasting problem
seem to be useful and beneficial. One may find some studies using the terminology ’linguistic
time series’ in the literature, e.g., [48, 49]. However, these studies, in nature, are essentially
based on the formalism of either the fuzzy time series forecasting methodology [49], or fuzzy
recurrent neural network [48]. According to our knowledge, the linguistic time series, in
which linguistic words appear as linguistic data and are handled immediately based on a
strict mathematical formalism without using fuzzy sets, are, for the first time, used in this
study. For this reason, we introduce the following definition of this new concept.

Definition 4.1. (Linguistic time series) Let X be a set of linguistic words in natural language
of a variable X defined on the universe of discourse Ux to describe its numeric quantities.
Then, any series L(t), t = 0, 1, 2, ..., where L(t) is a finite subset of X, is called a linguistic
time series.

For example, for a given time t, L(t) is a collection of words X(t)’s in X to describe
possible data of enrollments of an university. The way to construct a linguistic time series
for a given historical numeric data is simply as follows. Note that in existing fuzzy-set-based
approach to the time series forecasting problem, for a given data time series, the main crucial
task is to decompose the range of its possible numeric values into intended intervals uj ’s in
to form a universe on which the fuzzy sets associated word-labels under consideration are
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defined, refer to [1]. In our approach, we immediately start with the given possible words
used to describe the values of the determined range of the given historical data.

Definition 4.2. (The linguistic logical relationship) Suppose Xi and Xj are the linguistic
words representing the data at the time t and t + 1, respectively. Then, there exists a
relationship between Xi and Xj called linguistic logical relationship (LLR) and denoted by

Xi → Xj .

Definition 4.3. (The linguistic logical relationship group) Assume that there are LLRs
such as

Xi → Xj1,
Xi → Xj2,

...
Xi → Xjn.

Then, they can be grouped into a linguistic logical relationship group (LLRG) and de-
noted by

Xi → Xj1, Xj2, ..., Xjn.

The proposed forecasting model based on linguistic time series comprises the following
steps:
Step 1 . Determine the universe of discourse. Establish hedge algebras structure, choose α, β
and choose the linguistic words according to the source data.
Step 2. Calculate the quantifying semantics of words using equations 1) to 4) of Theorem
3.1.
Step 3. Mapping the quantifying semantics of words to the domain of the universe of dis-
course. So, we have semantic points collection.
Step 4. ‘Semantize’ the historical data. For each specified point, the semantic of this point
depends on the nearest semantic point.
Step 5. Establish the linguistic logical relationships of words and group them to the linguistic
logical relationship groups.
Step 6. Calculate the forecasted results based on linguistic logical relationship groups and
the principles.

We applied this model to the data of enrollments of the University of Alabama from 1971
to 1992. The enrollments were observed as in Table 1.

1) Application of the proposed model to the above numeric time series
Based on the proposed model, the procedure to solve the linguistic time series forecasting

problem of the historical enrollments of Alabama is constructed and described as follows:
Step 1. Let Dmin and Dmax be the minimum enrollment and the maximum enrollment,
respectively Dmin = 13055 and Dmax = 19337.

In [4], Chen defined the universe of discourse is [13000, 20000]. Then, he partition the
universe of discourse to seven equal length intervals and using corresponding linguistic values:
not many (A1), not too many (A2), many (A3), many many (A4), very many (A5), too many
(A6), too many many (A7).

In our method, we also choose the same universe of discourse with Chen. We assume
DL, DR be the first value and the last value of the universe of discourse, respectively. Hence,
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Table 1. Historical enrollments of University of Alabama from 1971 to 1992

Year Actual enrollments Label Year Actual enrollments Label

1971 13055 X1 1982 15433 X2

1972 13563 X1 1983 15497 X2

1973 13867 X1 1984 15145 X2

1974 14696 X2 1985 15163 X2

1975 15460 X2 1986 15984 X3

1976 15311 X2 1987 16859 X4

1977 15603 X3 1988 18150 X6

1978 15861 X3 1989 18970 X7

1979 16807 X4 1990 19328 X7

1980 16919 X4 1991 19337 X7

1981 16388 X3 1992 18876 X7

DL = 13000 and DR = 20000. We do not partition the universe of discourse into intervals.
Because our model based on hedge algebras, we choose c− = S (Small), c+ = L(Large) and
two hedges h−1 = R (Rather), h+1 = V (Very). Using two hedges R and V impact two
basic elements (generators) S and L we have

dom(Enrollments) = {V S, S,RS,M,RL,L, V L}.

We select seven linguistic values to describe the number of enrollments: Very Small (X1),
Small (X2), Rather Small (X3), Middle (X4), Rather Large (X5), Large (X6) and Very Large
(X7). Note that every linguistic value in hedge algebras has its order. We also assign seven
labels to seven linguistic values as above from X1 to X7.

Step 2. Apply equations from 1) to 4) of Theorem 3.1, we have quantity semantic of words
as follows

v(X1) = θ − 2θα+ θα2; (4.1)
v(X2) = θ − θα; (4.2)
v(X3) = θ − θα2; (4.3)
v(X4) = θ; (4.4)
v(X5) = θ + α2 − θα2; (4.5)
v(X6) = θ − θα+ α; (4.6)
v(X7) = θ + 2α− α2 − 2θα+ θα2. (4.7)

Normally, the neutral values are θ = 0.5 and α = 0.5. In this study, to emphasize the
meaning of the semantic of words, two parameters θ, α will be achieved by trial and error.
We try to turn them with error ε = 0.01 around the neutral values and get the choosing
values of θ = 0.57, α = 0.49.

Applying above equations, we have v(X1) = 0.1483, v(X2) = 0.2907, v(X3) = 0.4331,
v(X4) = 0.57, v(X5) = 0.6732, v(X6) = 0.7807, v(X7) = 0.8882. The values of v(Xi), i =
1, ..., 7 will change if we choose different values of θ and α.
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Step 3. Mapping v(Xi), i = 1, ..., 7 to the universe of discourse, we have seven real semantic
points that similar with the mid-points of seven intervals in Chen’s model. The equation for
mapping as follows

vR(i) = DL + (DR −DL)× v(Xi).

With the data of enrollments, DL = 13000, DR = 20000, we have seven real semantic
points {14038, 15035, 16032, 16990, 17713, 18465, 19217}.

Seven values above corresponding to seven linguistic values: Very Small (X1), Small
(X2), Rather Small (X3), Middle (X4), Rather Large (X5), Large (X6) and Very Large (X7)
where Xi, i = 1, ..., 7 be the labels of linguistic values.

Step 4. Semantization of the given historical data is an assignment of a linguistic value to
each datum of historical data of enrollments. For the actual enrollment of specific year, we
select a linguistic value in X1...X7 to assign for each year depend on which semantic point
is the nearest to the actual enrollment. For example, the enrollment of year 1971 is 13055,
hence, the linguistic value of year 1971 is X1 because 14038 is the nearest semantic point to
the actual enrollment. Similarly, the linguistic value corresponding to 1992 is X7 because
19217(X7) is the nearest semantic point to 18876.

Step 5. Scan from the beginning to the end of historical data with their linguistic values, we
have the LLRs between words. If linguistic value of year k is Xi and the linguistic value of
year k + 1 is Xj then we have the LLR: Xi → Xj . In this case, we have LLRs as follows

Table 2. LLRs of the enrollments

X1 → X1; X1 → X2; X2 → X2; X2 → X3; X3 → X2; X3 → X3

X3 → X4; X4 → X3; X4 → X4; X4 → X6; X6 → X7; X7 → X7

Establish the linguistic logical relationship groups (LLRGs) based on the LLRs that was
observed above

Table 3. Linguistic logical relationship groups

Group LLRGs Shorthand

Group 1 X1 → X1, X1 → X2 X1 → X1, X2

Group 2 X2 → X2, X2 → X3 X2 → X2, X3

Group 3 X3 → X2, X3 → X3, X3 → X4 X3 → X2, X3, X4

Group 4 X4 → X3, X4 → X4, X4 → X6 X4 → X3, X4, X6

Group 5 X6 → X7 X6 → X7

Group 6 X7 → X7 X7 → X7

Step 6. Calculate the forecasted data based on LLRGs and principles as follows:
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(1) If the linguistic value of year k is Xi and there exist the LLRG: Xi → Xj1, Xj2, ...Xjp,
p ≥ 1 then the forecasted value of year k+1 is (sj1+sj2+...+sjp)/p, where sj1, sj2, ...sjp
is the semantic point(s) of Xj1, Xj2, Xjp, respectively.

(2) If the linguistic value of year k is Xi and there does not exist any LLR with Xi in the
right-hand side. Then, the forecasted value of year k+ 1 is si where si is the semantic
point of Xi.

2) Simulation study to justify its performance

We applying this constructed procedure to the numeric time series to simulate its fo-
recasting performance at each time of the numeric time series of to the enrollments of the
University of Alabama. Performing calculations with the proposed model and comparing
with Song et al.’s method and Chen’s method we have results as follows.

Table 4. The comparison of forecasted results

Year
Actual Song et al.’s Chen’s Proposed

enrollments method[2] method[4] method

1971 13055

1972 13563 14000 14000 14537

1973 13867 14000 14000 14537

1974 14696 14000 14000 14537

1975 15460 15500 15500 15534

1976 15311 16000 16000 15534

1977 15603 16000 16000 15534

1978 15861 16000 16000 16019

1979 16807 16000 16000 16019

1980 16919 16813 16833 17162

1981 16388 16813 16833 17162

1982 15433 16709 16833 16019

1983 15497 16000 16000 15534

1984 15145 16000 16000 15534

1985 15163 16000 16000 15534

1986 15984 16000 16000 15514

1987 16859 16000 16000 16019

1988 18150 16813 16833 17162

1989 18970 19000 19000 19217

1990 19328 19000 19000 19217

1991 19337 19000 19000 19217

1992 18876 - 19000 19217

Mean squared error (MSE) 412.499 407.507 262.326
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The MSE (mean squared error) measure is defined as follows

MSE =
1

N

∑
i

(Fi −Ai)
2

where Fi and Ai are the forecasted value and actual value of year i, respectively. N is the
total forecasted years. As we can see in Table 4, our proposed forecasting model has better
mean squared errors (MSE) of 262.326 than Song et al.’s and Chen’s are 412.499 and 407.507,
respectively.

4.2. Linguistic time series based on variations of historical enrollments

In [6], Hwang et al. introduce a time-variant fuzzy time series forecasting model using
variations of historical data. His study suggests that, how and in which way one can model
and calculate the variations of the data is important. In this section, we will show that, based
on hedge algebras, linguistic time series are very useful to linguistically describe and compu-
tationally handle the variations of historical data to solve a forecasting problem. Historical
enrolments of the University of Alabama from year 1972 to 1992 and their variations given
in Table 5 are used in [6], and also in this study to illustrate our forecasting process based
on linguistic time series and to compare its performance with the one proposed in the study
[6], where the range of the variable, denoted by ν, is defined in the interval [−1000; +1400].

Table 5. Variations of historical enrollments data

Year Enrollments Variations Label Year Enrollments Variations Label

1971 13055 1982 15433 −955 X1

1972 13563 +508 X5 1983 15497 +64 X3

1973 13867 +304 X4 1984 15145 −352 X2

1974 14696 +829 X6 1985 15163 +18 X3

1975 15460 +764 X6 1986 15984 +821 X6

1976 15311 −149 X3 1987 16859 +875 X6

1977 15603 +292 X4 1988 18150 +1291 X7

1978 15861 +258 X4 1989 18970 +820 X6

1979 16807 +946 X6 1990 19328 +358 X4

1980 16919 +112 X3 1991 19337 +9 X3

1981 16388 −531 X1 1992 18876 −461 X2

For the method proposed by Hwang et al. [6], the above variation range is partitioned
into equal intervals of the same length 400. Then, they calculate the forecasted results
based on their proposed time-variant fuzzy time series forecasting model. In our method,
based on hedge algebras, we choose c− = d(decreasing), c+ = i(increasing) and two hedges
h−1 = L(Little), h+1 = V (V ery). Hence, the word-domain of the variable ν can be described
by the following word-set of seven linguistic values:

LDOM(ν) = {V decre, decre, L decre, med, L incre, incre, V incre},

where the notations in the above braces are defined and denoted by Xi, for short, as follows:
V decre : Very decreasing (X1), decre : decreasing (X2), L decre : Little decreasing (X3),
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med : medium (X4), L incre : Little increasing (X5), incre : increasing (X6), V incre :
Very increasing (X7). Then, we can transform the numeric time-variant data given in the
column Variations into a linguistic time series given in the column Label, which is very
comprehensive in terms of human words and is listed as follows:

L incre, med, incre, incre, L decre, med, med, incre, L decre, V decre, V decre,
L decre, decre, L decre, incre, incre, V incre, incre, med, L decre, decre

When the two independent fuzziness parameter values of the linguistic variable ν, θ =
0.55 and α = 0.52, are determined by trial and error, we can calculate the quantitative
semantic values of the words of LDOM(ν) occurring in the above linguistic time series,
using equations (4.1) to (4.7) in Section 4.1, and transform the words in the above word-
domain, LDOM(ν), into their corresponding numeric values in {0.1267; 0.264; 0.4013; 0.55;
0.6717; 0.784; 0.8963}, which is a subset of the normalized numeric universe, [−1000; +1400],
of ν. Thus, we must transform these numeric values in [0, 1] into the corresponding values
in [−1000; +1400], and obtain

{−696;−366;−37; +320; +612; +882; +1151}.
We semantize the given historical data and establish the linguistic logical relationships

(LLRs) represented in Table 6, using forecasting model in Section 4.1.

Table 6. LLRs between variations

X1 → X1; X1 → X3; X2 → X3; X3 → X1; X3 → X2; X3 → X4

X3 → X6; X4 → X3; X4 → X4; X4 → X6; X5 → X4; X6 → X3

X6 → X4; X6 → X6; X6 → X7; X7 → X6;

Grouping the obtained linguistic logical relationships into groups, we have the following
LLRGs:

Table 7. LLRGs between variations

Group LLRGs Shorthand

Group 1 X1 → X1, X1 → X3 X1 → X1, X3

Group 2 X2 → X3 X2 → X3

Group 3 X3 → X1, X3 → X3, X3 → X4, X3 → X6 X3 → X1, X3, X4, X6

Group 4 X4 → X3, X4 → X4, X4 → X6 X4 → X3, X4, X6

Group 5 X5 → X4 X5 → X4

Group 6 X6 → X3, X6 → X4, X6 → X6, X6 → X7 X6 → X3, X4, X6, X7

Group 7 X7 → X6 X7 → X6

We apply the proposed model and use above LLRGs, to solve the benchmark problem
of the historical enrollments of Alabama. The obtained forecasting results of the method
are represented in Table 8, whose performance measure MAPE (mean absolute percentage
error) computed as follows:
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MAPE =
100%

N

∑
i

∣∣∣∣(Fi −Ai)

Ai

∣∣∣∣,
where Fi and Ai are the forecasted value and actual value of year i, respectively and N is
the total number of the forecasted years.

Table 8. Forecasted results of linguistic time series based on variations

Year Actual enrollment Variations Forecasting results Errors

1971 13055

1972 13563 + 508 133 75 1.39%

1973 13867 + 304 13951 0.61%

1974 14696 + 829 14446 1.70%

1975 15460 + 764 15275 1.20%

1976 15311 - 149 15495 1.20%

1977 15603 + 292 15699 0.62%

1978 15861 + 258 15991 0.82%

1979 16807 + 946 16440 2.18%

1980 16919 + 112 16842 0.46%

1981 16388 - 531 16552 1.00%

1982 15433 - 955 16021 3.81%

1983 15497 + 64 15468 0.19%

1984 15145 - 352 15460 2.08%

1985 15163 + 18 15180 0.11%

1986 15984 + 821 15742 1.51%

1987 16859 + 875 16563 1.76%

1988 18150 + 1291 17741 2.25%

1989 18970 + 820 18729 1.27%

1990 19328 + 358 19358 0.16%

1991 19337 + 9 19363 0.13%

1992 18876 - 461 19300 2.25%

MSE and MAPE 65.029 1.27%

Analyzing these results, we see that the errors vary from 0.11% to 3.81% and the average
of errors is 1.27%, which is much better than the results of the method examined in [6],
whose forecasting errors vary from 2.79% to 3.08%.

Table 9. The comparisons of MAPE between methods

Methods
Song and

Chissom [2]
Song and

Chissom (w = 4) Chen
Sullivan and
Woodall [5]

Hwang
(w = 4)[6] Proposed

MAPE 3.2% 4.37% 3.22% 2.6% 3.12% 1.27%
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Table 9 represents a comparison between the performance of the proposed method with
the ones of some other forecasting methods discussed in [6]. It shows also that the perfor-
mance of the proposed method, in general, is noticeably better than the one of the fuzzy
time series forecasting methods under consideration in solving the enrollment forecasting
problem.

5. CONCLUSIONS

In this study, we propose a new forecasting model based on the so-called linguistic time
series, in which the linguistic words are considered as elements of a hedge algebra that models
the respective word-domain of the linguistic variable. A distinguished feature of our method
is to deal immediately with linguistic words instead of with fuzzy sets, whose associated
words are considered merely linguistic labels. Because hedge algebras are mathematical
models of the word-domains of linguistic variables, similar as the theory of the real numbers
modeling the domains of their counterpart real variables, the formalism to handle linguistic
time series can be developed based on the hedge algebra formalism instead of fuzzy one to
deal with vague data.

In fuzzy formalism, the elementary mathematical objects are fuzzy sets. Hence, the per-
formance of fuzzy time series forecasting method depends strongly on two main factors. The
first factor is how these fuzzy sets can be soundly constructed based on the developers sub-
jective intuition to represent the semantics of their associated linguistic labels. The second
one is which method to compute the representative (single) value can properly represent the
area of its fuzzy set. It is, in general, a difficult problem in the fuzzy set framework. Mo-
reover, words have their own objective semantics commonly understood between a human
user domain community and their numeric semantics is, more or less, able commonly defined
between domain experts.

Hedge algebras and their quantification theory are developed in an axiomatic way, whose
axioms are justified to soundly model the semantic structures of word-domains of variables.
Once the fuzziness parameter values of a variable are properly determined, the numeric
semantics of the variable words are uniquely computed. Thus, human experts may focus
their effort on proper determining only a few of these fuzziness parameter values. When
they are properly determined, the numeric semantics of all words of the variable of a given
time series forecasting problem can be exactly computed. Also, human words are very
comprehensive, and easily, commonly understood between human users/experts of a human
forecasting domain community. They can easily use their vocabulary to describe the possible
variations of a time data series. This situation suggests us to introduce a concept of linguistic
time (variant) time series model to solve time data series forecasting problems.

The time series forecasting method proposed in this study allows to translate a given
time variant data series into a respective linguistic time variant series, then, to determine
linguistic logical relationships (LLRs) in terms of human linguistic rules, which are very
informative and comprehensive for human community users. The prediction values can
be easily computed in the formalism of the quantification theory of the specified hedge
algebra. The experiment performed in Section 4 shows that the performance of the proposed
forecasting method is noticeably better than the counterpart methods under consideration,
including the one examined in [6].
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As our future work, we intend to apply the proposed model to solve more complex time
data series and enhance the proposed model. We can also apply the proposed model to the
other data sets for illustrating its advantage.
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