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CONVERGENCE RATES IN REGULARIZATION
FOR ILL — POSED MIXED VARIATIONAL INEQUALITIES
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Abstract. In this paper the convergence rates of the regularized solution for ill-posed inverse-strongly
monotone mixed variational inequalities in Banach spaces are obtained on the base of choosing the

regularization parameter a priory as well as a posteriori by the generalized discrepancy principle.

Tém tAt. Bai bdo nghién citu téc do héi tu clia nghiém hiéu chinh cho bat ding thirc bién phan
hon hop khéng chinh quy véi todn tir ngiroe don diéu manh trong khong gian Banach dira trén viéc
chon tham s& hiéu chinh truwéc hodc sau bang nguyén 1y dé léch suy rong.

1. INTRODUCTION

Let X be a real reflexive Banach space having the E-property: the weak convergence and
convergence of norms of any sequence in X follow its strong convergence, and X™*, the dual
space of X, be strictly convex. For the sake of simplicity, the norms of X and X* are denoted
by the symbol ||.||. We write (z*, x) instead of x*(x) for 2* € X* and x € X. Let A
be a hemi-continuous and monotone operator from X into X*, and p(x) be an weakly lower
semicontinuous functional on X.

For a given f € X*, consider the mixed variational inequality: find an element xy € X
such that

(A(zg) — fo 2 — 20y + () —p(xg) 20, Vae X. (1.1)

Note that, if ¢ is the indicator function of a closed convex set K in X, that is,

o(a) = Ig(x) = {O’ if zek

400, otherwise,
then problem (1.1) is equivalent to that of finding xp € K such that
(A(zg) — fyx —20) 20, VeeK. (1.2)

When K is the whole space X, the variational inequality (1.2) has the form of operator
equation

Ax) = f (1.3)

which belongs to a class of ill-posed problems involving monotone operator.
To solve ill-posed problems (1.2) or (1.3) there are a lot of investigations (see [1-3,8,9,11,16,
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18,23-26] and references therein). Meantimes, for ill-posed problem (1.1) there are several
works (see [6,10,17]). To regularize (1.1), in those papers, one uses the following mixed varia-
tional inequality (see [10,17]).

(Ap(2l) + aU? (2], — 2y) — f5,2 — 20) + pe(x) —e(2]) 20, Vae X, (1.4)
where Ay, are also monotone operators from X into X* and approximate A in the sense

[An(x) — A(@)|| < hg([lx]l), h—0, (1.5)

with a nonegative continuous and bounded (image of bounded set is bounded) function g(t),
U? is the generalized duality mapping of X, i.e., U? is the mapping from X onto X* satisfying
the condition (see [3])

(U*(@),2) = ]*, U@ = [le*™, s >2, (1.6)
fs are the approximations of f : ||fs — f|| < 6,0 — 0, . are the functionals on X having the
same properties as ¢, and

(@) = p-(2)| < ed(||z]), £ —0, (L)

|p=(2) = ¢e(y)| < Collz —yll, Y,y € X, '
where (y is some positive constant, d(¢) has the same properties as g(t), 7 = (h,d,2), and
x4 is some element in X playing the role of a criterion selection. By the choice of x,, we can

influence which solution we want to approximate. Assume that x, is not a solution of (1.1),
i.e., there exists an element x; € X such that

(Alwe) = [0 — @) + plar) — (@) <O0. (1.8)

In [10], [17] it is showed the existence and uniqueness of the solution «], for every a > 0 and
for arbitrary Ap, fs, ve. And, the regularized solution x] converges to g € Sy, the set of
solutions of (1.1) which is assumed to be nonempty, with

lro — f| = min flr — 2],

if (h+9+4¢2)/a,a — 0. Up to now, the problem of choosing the value of the regularization
parameter « depending on 7, i.e. a = «a(h,d, =), is still opened. Moreover, the convergence
rate for the regularized solution x7 does not have been studied yet. The purpose of the paper
is to answer two above questions. On the one hand, we show that the parameter o can be
chosen by the generalized discrepancy principle, i.e., a« = a(h, d,£) can be solved the equation

pla) = (h+d+2)Pa"? p,q>0, (1.9)

where p(a) = al|a7 —24||*"!. Note that the generalized discrepancy principle for regularization
parameter choice is presented in [14] for the ill-posed operator equation (1.3) when A is a linear
and bounded operator in Hilbert space. Recently, it is considered and applied to estimate
convergence rates of the regularized solution for equation (1.3) involving an m-accretive (in
general nonlinear) operator (see [22]).

On the other hand, to estimate the value ||z}, — 2¢|| we assume that A is inverse-strongly
monotone operator, i.e., A possesses the property

(A(z) — A(y),x — y) = mallA(x) — AW)|]®, VYa,ye€ X, (1.10)

where m4 is some positive constant. Note that the operator A with property (1.10) has
been introduced independently and/or used several authors (see [7,12,27]), and has been given
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different names (e.g., the Dunn property, co-coercivity, etc.). Without (1.10) and the monotone
property of Ay, the convergence rates of the regularized solution for (1.3) is considered in [20]
and [21]. The convergence rates of regularized solutions for (1.2) in Hilbert space are studied
in [18] when Aj, = A.

Later, the symbols — and — denote weak convergence and convergence in norm, respec-
tively, and the notation a ~ b is meant that a = O(b) and b = O(a).

Concerning the mapping U?, assume that

(U () =U(y), . —y) = mslle —y|°, (1.11)

where m, is some positive constant depending the properties of the space X. It is well-
known that when X = H, the Hilbert space, ms; = 1, s = 2, and when X = L, or W,
mg = p— 1,5 =2 for the case 1 < p < 2. In the case p > 2, m, = 227P/p and s = p (see [3]).

2. MAIN RESULT

To obtain the result on the convergence rate for {x;(h 55)} as in [14] we need the following

lemmas.

Lemma 1. For each p,q, h, 6,2 > 0, there exists at least a value o such that (1.9) holds.
Proof. Let o, s = oy are arbitrary (ag > 0). From (1.4) we can obtain
o (U, — )., — 0, 0a(U7 (2T, — 2.),af, — ) >0 (2.1

-
o (o %1

or

a1<Us<$;1 - $*> - U5<x;2 - $*>7 $;1 - $;2> < (OZQ - a1><Us<$;2 - $*>7 $;1 - $;2>

Thus, by virtue of (1.6) and (1.11) we have got

|y —
—— |27,

mllal, —al, [P < — x|

T

Obviously, a7, — a7 | as a; — ag. It means that the function [|«7 — a.|| is continuous on

«q @9
[ag, +00). Therefore, p(«) is continuous, too.

From (1.6) and (2.1) it follows
(enllzg, — sl = anllel, — @l H)(llad, — @l = a7, — @) <0.
Consequently, the function ||, — 2| is not increasing and p(«) is nondecreasing.

We show that for every fixed 7 we have p(a) > 0 when « > 0. Indeed, if a7 > 0 and
p(a1) = 0, then @], = a,. Therefore, from(1.4) it implies that

(Ap(s) — fs, 2 —wy) + () — () 20, Ve X
for every fixed h, d, £ > 0. Now, by virtue of (1.5) and (1.7) after passing h, d, £ to zero in the

last inequality, we see that @, is a solution of (1.1) that contradicts our assumption (1.8).
Since 0 < p(a) < p(ay) for 0 < a < ap, then

ot
i atp(e) = .

Similarly, 0 < p(aq) < p(«) for 0 < a7 < a. Therefore,

lim afp(a) = +oo.
a—+00
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Hence, the result follows from the intermediate value theorem.
Lemma 2. limy 5.0 a(h,d,2) = 0.

Proof. Let hy,, 0p, e, — 0 and o, = a(hy, 0,,8,) — 00 as n — oco. From (1.4) it follows
(Ap, (23)) + U (2, —as) — fo,, 2 —ag) >

Pen ('x;?;) — Pe, (.%‘)7 Ve € X.

Taking @ = «, in this inequality and using the properties of . , Ay and U?®, we can deduce
that

(2.2)

o, — ™t < (1A, (20) = S5, ]| + Co)/an-

Hence, x7r — @y, as n — +00. On the other hand, by using the properties of Ay, and U* we
can write (2.2) in the form

(Anp (@)= fo, 0 —al) + @ () — e, (20,) 2 an (U (2, — @), 27, — )
> —onlaz, — @ el — all = —plon) |l — |

= —(hy + 6, + )P0, |2l — .

After passing n to oo in the last inequality, on the base of (1.5), (1.7), fs5, — f and ] — @,
as n — oo we obtain

(A@) — fiw — ) +o(@) —p(w2) 20, Vo€ X, (2.3)
which is equivalent to
(A(@s) = f,2 — @) + o(@) — () 20, VoeX,

(see [13]). Tt contradicts (1.8).

Thus, a(h,d, =) remains bounded as h,d,& — 0. Let hy,d,,6, — 0 as n — oo, and
meantime a,, — ¢ > 0. Since oz}qux;’; —a||"t = (hp + 0, + £,)P, we have |zl —a,|| — 0,
as n — oo. Again, x, € Sp.

Hence, limy, 5. 0 a(h, d,£) = 0.

Lemma 3. If 0 < p < q, then limp, 5. 0(h +0 +2)/a(h,d,£) = 0.
Proof. Obviously,

P

hts
POT N (454 )P 9(h, 6,5)| 0 P(h, 5, <)

a(h,d,£)

= p(a(h,d,£))a? P(h,d,z).

As in the proof of lemma 2, we have

P
h+d+e

—— | S — q-p

oo | < U4 = foll + Co)a#(h.6.2) = 0

as h,d,& — 0, since ¢ > p. Therefore,
hto+el|”

a(h, é,¢)

1m
h,0,e—0

The lemma. is proved. [ |
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Lemma 4. Let 0 < p < q. Then, there exist constants C,Co > 0 such that, for sufficiently
small h, 0, > 0, the relation

C1 <(h+6+e)Pat79(h,6,2) < Cy
holds.
Proof. Clearly,
(ht 64 2P 00, 0,2) = o (b, & 2)plea(hy8,6) = ey — 2.
By Lemma 2 the sequence {x;(}% 5, 5)} converges to xg, as 7 = (h,d,£) — 0. Therefore, there
exists a positive constant (5 in the lemma.

On the other hand, as X is reflexive and {x;(h 55)} is bounded, there exists a subsequence
of the sequence {x;(h 55)} that converges weakly to some element #, in X. Without loss of

(h,&,g)}' Then,
[ — | < Viminf 5 gy — ]

generality, denote the subsequence again by {x;

We can conclude that #, # x,. Indeed, if Z, = x,, then from the monotone hemi-continuous
property of Ap,U?® and (1.4) it follows

(An(2) + alh, 6, )U% 2 — 20) — fo, 2 — 2) + () — p=(27) 20, Vo e X.

After passing h,d and £ in the last inequality to zero we obtain (2.3). It contradicts (1.8).
Thus, any weak cluster point of {x;(h 55)} is different from x,. Therefore, there exists a
constant (] in the lemma. [ ]

Theorem 1. Assume that the following conditions hold:
(i) A is an inverse-strongly monotone operator from X into X* with the property

[ A(z) — A(=0) — A(2o)(z — 20)|| < 7l|Ax) — Azo)[|, V2 € X,

where A'(x) denotes the Frchet derivative of A at x, and T is some positive constant;
(it) There exists an element z € X such that A'(xg)*z = U®(xg — @),
(iit) The parameter o is chosen by (1.9).
Then, we have

. B b fldtqg—p p
o7 = aoll = O+ 342,y = o mind SHAZE 24
Proof. From (1.1), (1.4), (1.5) and (1.7) it follows
(A(2g) = Alwo), @7, — o) + (U (af, — @x) — U(wo — @4), @7, — o)
< (U (wo — @), w0 — @4,) + (An(ag) — A2g), zo — a7)
+(fs = f @l — wo) + eld([|wol]) + d([Jaz])]- (2.4)
Hence, from (1.10), (2.4) and the monotone property of U*® we can write

1A(7) — Alo)|I* < mAl{[hg(llwlll) + 0+ allwo — @]l — ol

T eld(|lzol) + d<||x;||>1}.
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Further, from (1.4), (1.7), (1.11), (2.4) and the monotone property of A which is followed from
(1.10) we have

mllag, —aol|® < (U (g, —@v) — U (w0 — @), 2, — o)

h T d
%Hx; — 2ol + (U (20 — 24), w0 — 27,

—[d([lwoll) + d(ll=Z])]- (2.5)

When o = a(h,d, ) is chosen by (1.9), from lemma 3 it follows the boundedness of {«] }.
Then,

<

|A(x]) — A(zo)]| S O(VR+ 6+ 2+ ).

By virtue of conditions (i), (ii) and (2.4) we obtain

(U0 — @), 0 — a7) = (2, A'(w0) (w0 — ],))

< =+ DI[AGR) — Azo) |
< |2ll(F + DOWR + 6+ + ).

Now, (2.5) has the form
h H+o
ms||xl, — @0 < %Hx; —2ol| + O(Wh+ 06+ +a)
—[d([lwoll) + d(llZ])]-

Further, from lemma 4 it implies that
alh,6,£) < C7 VD (h 4 5 4 g)p/(0+9)
and

h+6+¢e

L 1=p,4
a(h,é,g) X 02<h+(5+€> 0} (h,é,g)

Cngq/(Hq)(h T+ 64 £) P(h+ 64 £)P/ (11D
Cngq/(Hq)(h T +€)1fp/(1+q)‘

V/ANV/AN

In final, we have
M@ 6,0 — @ol|* < max{L, Co}CoCy q/(Hq)(h 164 g)l P/ 0F9)
X 56,5 — @oll + O (Vh+6+e+alh, o)
+O((h+ 6 +2)t P/0TD)
<SO((h +5+2) PO aT 5. — woll
+O((h+6+ E)19/2(1+q)) +O((h+6+ g)lfp/(Hq))‘

where the constant Co > g(||x;(h7575)||).

Using the implication
a,b,c=0,5>t,a° <bal +c= a* =010 1 ¢)
we obtain
1256,y — ol = O((h + 6 +2)").

Theorem is proved.



CONVERGENCE RATES IN REGULARIZATION 349

Remark. If « is chosen a priory such that a ~ (h+ 9 4+ 2)?,0 < p < 1, then from (2.5) we
obtain the inequality

M|l 5.0 — @oll* SO((h +6+ ) P) a7 5,5 — 2oll
+O((h+36+e)P?) + O((h+6+2)' 7).

Therefore,

1=
o7 = a0ll = O+ 642,y = minf =2, 2}

3. EXAMPLE

Let € be a bounded domain in R™ n > 1, with a Lipshitz continuous boundary T,
¢ — g(£?)¢ is a function defining the filtration law. We assume that g(£2)¢ = go(£2)6+g1(£2)€
and the following conditions are satisfied:

gi(E)E=0 for €20, gi()E=0 for £<B, i=0,1, (3.1)

Jo (52)5 is continuous and

(90(69)); >0 for &=, (3.2)
B >0 is a limiting gradient, there exist cg, ¢, 2 > 0, p > 1 such that
c1(€ = BP ! < go(€H)E o€ =B for €25, (3.3)
(90(6) —go*)m)/(E—n) Scol +E 4P VEmeR >0, (3.4)
g1 =0 for &> 8. (3.5)

Furthermore let T' = I'o UTy, mesTo > 0, mesl'y > 0, X = {& € W () : (t) = 0,t € [0},
K={xe X :2(t) 20,t €1} (I'1 is a semipermeable part of the boundary), A : X — X*
is an operator generated by the form

(A, y) = /Q ool v (e, y)dt,  wye X, (3.6)

where (.,.) and | . | are the inner production and norm in R™ respectively.
We also define the functional ¢ : X — R by the relation

||
o) = /Q / 7 g (ededt — 0 /Q (e | —p)d, o = (| ta)/2

We call the function zyg € K the solution of the seepage problem of an incompressible
liquid which is the solution of the variational inequality (1.1) (see [4,15]).

From the definition of the functional ¢, the second of the conditions (3.1), and equality
(3.5) we have (see [5] and references therein) the functional ¢ satisfy the condition

| p(@) = plao) < 77 (@ — o)l 2

it follows that the functional ¢ is Lipshitz continuous.
We now define the regularized function (see [5])
0, §<P-¢
915<52>5: 79(5_6+‘€)/€ ’ 6_5<5<6
’l9 Y 5 =
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This function generates the corresponding regularized functional .. In [5] it is showed that
the functional ¢, satisfies the first of the conditions (1.7) with d(||z||) = 2mes and the
operator A is monotone.

When p = 2 the space X is a Hilbert space, in [19] inequality (1.10) is determined for the
operator A defined in (3.6).

Thus, for the seepage problems under consideration the conditions of the previous sections
of this paper are satisfied and, consequently, Theorems 1 hold.
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